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Abstract

The Abstraction and Reasoning Corpus (ARC) benchmarks
broad generalization in artificial intelligence, and presents a
significant challenge to existing machine learning models and
program synthesis solvers. In this work, we introduce a Re-
flection System for ARC. It combines Large Language Mod-
els (LLMs) and a program synthesis solver based on a Do-
main Specific Language (DSL). We analyse the accuracy of
LLMs on ARC and demonstrate unsatisfactory results. We
create AugARC, an augmented ARC benchmark, which con-
sistently improves the performance of LLMs compared to
the normal ARC benchmark. Using augmented ARC data,
we fine-tune LLMs and observe a significant gain in ARC
accuracy after training. By utilizing reflection, we combine
LLMs and a previous DSL solver into our Reflection System
for abstraction and reasoning. The proposed Reflection Sys-
tem motivates research to advance previous ARC attempts by
combining the advantages of LLMs and program synthesis
solvers with reflection.

Introduction
Incorporating abstract reasoning into machines has been an
active research topic since the 1955 Dartmouth AI work-
shop (McCarthy et al. 2006). Despite the significant progress
in machine learning, today’s AI systems still lack human-
level abstract reasoning (Korteling et al. 2021). Studies have
shown that digital systems are significantly inferior to hu-
mans in terms of abstract cognitive abilities (Boden et al.
2017; Shneiderman 2020).

To address the gap between human intelligence and AI
models, François Chollet created the Abstraction and Rea-
soning Corpus (ARC) (Chollet 2019). ARC consists of 1000
visual tasks, that capture essential aspects of abstraction and
analogy. The ARC tasks are split into 400 for training, 400
for evaluation and 200 hidden tasks for testing. A Program
Synthesis approach from 2020 solved 40% of the complete
evaluation set (Icecuber 2023), and a voting ensemble from
2024 achieved 40.25% (Bober-Irizar and Banerjee 2024).

Many systems that attempt to solve the ARC test set use
heuristic search. Such models are heavily handcrafted and
designed entirely with the goal of solving ARC. Recent
attempts have tried solving ARC with Graph Abstractions
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Figure 1: Visualisation of an ARC task. The test-taker is
provided with some input-output pairs as examples. The ob-
jective is to recognise the transformation used in the given
input-output pairs and apply it to the test input grid to obtain
the test output grid.

(Xu, Khalil, and Sanner 2023) and Generalized Planning
(Lei, Lipovetzky, and Ehinger 2024). However, these two
approaches have only been tested on a subset of ARC eval-
uation data. Some attempts have been made to use Large
Language Models (LLMs) to solve ARC (Xu et al. 2023;
Min 2023; Mitchell, Palmarini, and Moskvichev 2023), with
some of the previous publications testing LLMs on the ARC
evaluation set (Bober-Irizar and Banerjee 2024; Opiełka
et al. 2024; Gendron et al. 2023; Lee et al. 2024b). Neverthe-
less, previous studies test LLMs only on subsets of the ARC
evaluation data and do not attempt to build more advanced
systems with reflection based on several LLMs.

Hence, we aim to fully explore the abilities of base LLMs
on ARC and how those can be combined in systems with re-
flection. We introduce a new augmented ARC (AugARC)
benchmark tailored towards LLMs, which shows consis-
tently improved performance across all tested LLMs com-
pared to the normal ARC. We show the benefit of fine-tuning

Finally, we build a Reflection System which solves 5 more
evaluation tasks than a previous system that combines mul-
tiple ARC solvers (Bober-Irizar and Banerjee 2024).
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(c) Third Shot - 270° rotated ARC

Figure 2: Evaluation Task of the 3-shot AugARC Benchmark. The first shot is a normal ARC evaluation task, while the second
and third shots are 90° and 270° rotated. All three shots are represented as a 2D matrices of numbers, each one representing a
different colour. The figure showcases the three shots in as coloured grids for demonstration purposes.

AugARC: Augmented ARC for LLMs
ARC training data can be utilised to fine-tune LLMs and
improve their performance in evaluation and test sets. One
potential issue with this approach is the size of the training
set - it contains only 400 samples. Since LLMs have billions
of parameters, they usually cannot be effectively trained on
smaller datasets and instead require more samples. There-
fore, due to its small size, the ARC training dataset limits
the ability to fine-tune LLMs for improved broad general-
ization and reasoning.

Augmented Training Data
To overcome the limited number of ARC training tasks, we
implement an augmentation procedure that can significantly
extend the training dataset. Our approach expands the ARC
training set by applying the following transformations:
- Rotation: clockwise rotation of each ARC grid for a

given task by 90° or 270°.
- Flipping: flips each ARC grid of a task horizontally

(along the y-axis) and vertically (along the x-axis).
- Permutations: rearranges the sequence of demonstra-

tion input-output pairs before the test input grid. We set a
threshold for the maximum number of permutations per
task to produce datasets of various sizes.

Depending on the transformations applied and the maxi-
mum number of permutations applied, the augmented ARC
training datasets vary from 2000 up to over 18 million tasks.
The AugARC data is available from the following reposi-
tory: https://github.com/kiril-bikov/AugARC

3-Shot AugARC Benchmark
A key reason for the relatively scarce ARC research on
LLMs is the lack of a textual version of the benchmark.

Dataset Size Max Permutations
2 000 tasks -
4 000 tasks 2
5 715 tasks 3
7 430 tasks 4
9 145 tasks 5
18 668 610 tasks All

Table 1: Size of the augmented ARC training datasets
according to the maximum number of permutations. All
datasets include 90° and 270° rotations, and horizontal and
vertical flipping. The augmented datasets range in size from
2000 to 18 million tasks.

The only benchmark suitable for LLMs that resembles Chol-
let’s visual ARC (Chollet 2019) is the AI2 Reasoning Chal-
lenge (Clark et al. 2018; Pătras et al. 2022). AI2 is a multi-
choice question answering benchmark that focuses on as-
sessing reasoning. Although AI2 is a more popular and well-
established reasoning benchmark for LLMs compared to
Chollet’s ARC (Chollet 2019), the latter is more effective
at evaluating broad generalization abilities due to its hand-
crafted abstract logic.

Identifying that the lack of a textual ARC benchmark is
a significant barrier for evaluating LLMs, we create the Au-
gARC Benchmark. The AugARC Benchmark provides an
easy and unified way to evaluate LLMs on 3-shot accuracy
on reasoning tasks. In AugARC, each ARC task starts with
a textual description explaining the format of the problem.
Each ARC grid is represented as a 2D matrix of numbers.

AugARC Input to LLMs The first prediction is based on
a normal ARC task, whereas the second and the third ones

https://github.com/kiril-bikov/AugARC


Figure 3: Reflection System - execution on two ARC evaluation tasks. Initially, multiple solvers make independent predictions
on the task. Then, the task and the prediction are presented to the reflection model, which chooses the correct final prediction. In
the example, solver 1 is based on program synthesis (DSL Search) and solver 2 is an LLM (Claude 3 Opus). The reflection model
is an LLM (GPT-4o). Both task flows are actual demonstrations of how the Reflection System performs on ARC evaluation
tasks. In both cases, the Reflection System produces a correct final solution.

are 90° and 270° clockwise rotated versions of the same task.
The AugARC Benchmark is tailored for LLMs, as these
models process inputs in an auto-regressive, sequential man-
ner. By rotating the ARC tasks, LLMs are presented with a
different sequence of numbers (2D matrices) which contain
the same abstract logic.

Reproducing ARC Solutions from AugARC Outputs
Although the second and third shot in AugARC are based
on rotated ARC tasks, the output of the LLMs can easily be
transformed back to a solution to the original ARC problem.
Once an output is generated by the LLM, it is simply rotated
back in an anticlockwise direction. In this way, AugARC
only changes the input representation of the ARC problems:
the outputs by the models are then rotated to valid ARC solu-
tions. This process ensures that the results with the AugARC
approach are directly comparable to previous ARC attempts.

Fine-tuning LLMs on ARC tasks
Although LLMs have shown impressive capabilities, they
can sometimes hallucinate and are therefore regarded as un-
reliable in reasoning tasks. One potential way to reduce such
hallucinations and improve performance on abstract logical
tasks is to fine-tune LLMs. Due to the limited size of the
ARC training dataset (400 tasks), previous studies have not
attempted to train LLMs on ARC. Our proposed augmenta-
tion of ARC allows us to overcome this limitation and have
sufficient ARC data to fine-tune LLMs.

For efficient training of LLMs, we use Quantized Low-
Rank Adaptation (QLoRA) with 4-bit NormalFloat (NF4)
quantization (Dettmers et al. 2024). Low-Rank Adapta-
tion constrains the update of a pre-trained weight matrix

W0 ∈ Rd×k with a low-rank decomposition W0 + ∆W =
W0 + BA, where B ∈ Rd×r, A ∈ Rr×k, and the rank
r ≪ min(d, k) (Hu et al. 2021). During training, W0 is
frozen and does not receive gradient updates, while A and
B contain trainable parameters. Both W0 and ∆W = BA
are multiplied with the same input, and their respective out-
put vectors are summed coordinate-wise (Hu et al. 2021).

Using QLoRA, we fine-tune LLMs on an augmented
ARC training dataset consisting of 2000 tasks 1. Due to a
significant increase in computational complexity, we avoid
fine-tuning the models on some of the bigger augmented
ARC training sets from Table 1. For the same reason, we
only train LLMs with parameters ranging from 7 to 13 bil-
lion.

Reflection System
A previous promising approach which solves 40.25% of
the ARC evaluation tasks combines solutions from differ-
ent ARC solvers (Bober-Irizar and Banerjee 2024). This ap-
proach utilizes a voting ensemble of systems that “votes” for
the predictions of an LLM, a Program Synthesis solver and
a Neuro-symbolic model (Bober-Irizar and Banerjee 2024).
The voting ensemble outperforms systems that are solely
based on Program Synthesis such as DSL Search (Icecuber
2023).

The encouraging result of the voting ensemble motivates
further research into combining different architectures into a
complex system for enhanced ARC performance. Although
the voting ensemble achieves promising ARC accuracy, it
lacks any “intelligent” analysis of potential solutions and in-
stead uses a weighting algorithm (Bober-Irizar and Banerjee



2024). In order to build upon this limitation and combine
multiple previous attempts into a new complete approach,
we propose a Reflection System for ARC.

Our approach relies on solvers that could have various ar-
chitectures - for example, LLMs or Domain Specific Lan-
guages using Program Synthesis. When predicting the cor-
rect solution to an ARC task, the Reflection System executes
in two main stages, as visualised in Figure 3.

Predictions in the Reflection System

In the first stage, each solver makes a prediction on the given
ARC task. Each solver solver independently and cannot ac-
cess the outputs of other solvers. Once a solver has produced
a prediction for the ARC task, it passes the solution to the re-
flection model.

Reflection over all Prediction

The second stage of our approach is inspired by previous
studies on self-reflection (Lee et al. 2024a; Renze and Guven
2024), in which LLMs refine their responses based on feed-
back against previous outputs and, in this way, achieve more
accurate predictions. In our system, the reflection model pro-
cesses all generated predictions from all the ARC solvers.
Conditioning on the given ARC task, the reflection model
chooses the prediction from the solver that is most likely to
be correct.

Flexibility of the Reflection System

In the Reflection System, an ARC solver can be any model
including LLMs, program synthesis approaches or neuro-
symbolic models. Any number of solvers can be used, as the
reflection model can easily process the outputs of various
solvers. This makes our approach customisable, as each of
its components - the ARC solvers and the reflection model,
can easily be changed. This architectural design allows the
Reflection System to be easily tested with various ARC
solvers for finding the optimal ARC configuration.

Experiments
We perform all experiments on the ARC evaluation set
which consist of 400 tasks. By design, the ARC evaluation
set is significantly more challenging than the training set
(Chollet 2019). The creator of ARC, François Chollet, em-
phasised that the performance of intelligent systems should
be measured by the fraction of tasks solved on the evaluation
set (Chollet 2019). Therefore, we perform our experiments
on the evaluation set and use 3 shots per task, as set out in
the ARC design (Chollet 2019).

To present fully reproducible results, all experiments are
executed on the complete evaluation set. Some previous
solvers have been evaluated on a subset of the ARC eval-
uation data, making it difficult to understand the true per-
formance of the solver. Our testing approach ensures that
future studies could easily use our results for direct compar-
ison with new ARC solvers.

Performance on base ARC and AugARC
We start our experiments with LLMs on the base ARC
benchmark, shown in Table 2. The ARC accuracy across 7-
13 billion models ranges from 5 to 9 correctly solved ARC
evaluation tasks. Bigger LLMs solve slightly more ARC
tasks, from 7 to 20 solved tasks, with Gemini Pro achiev-
ing the highest accuracy (20).

Model ARC AugARC Increase

Llama-2 7B 5/400 7/400 29%
Mistral 7B 9/400 15/400 67%
Llama-2 13B 5/400 8/400 100%
Llama-2 70B 7/400 14/400 100%
Mixtral 8x7B 9/400 18/400 125%
Gemini Pro 20/400 33/400 65%

Table 2: Performance of LLMs on ARC and AugARC (on
the evaluation set). There is a consistent increase of the ac-
curacy of LLMs when using the AugARC inputs compared
to using the base ARC ones (29-125%).

Using the same LLMs, we evaluate the performance on
AugARC. For all LLMs, there is a clear accuracy improve-
ment on AugARC compared to base ARC. The increase
varies from 29% for Llama-2 7B up to 125% for Mixtral
8x7B, with the majority of models achieving at least 60%.

The significant improvement in all LLMs on AugARC
compared to ARC suggests that changing the grid struc-
ture of the tasks for the second and third shots leads to in-
creased accuracy. LLMs process the ARC tasks sequentially,
and thus are directly influenced by the exact order of the
grids. Based on the results, we conclude that the proposed
AugARC benchmark is well suited for LLMs.

Since AugARC results are directly comparable to ARC,
we proceed to use AugARC for the remainder of our exper-
iments.

ARC accuracy across LLMs
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Figure 4: ARC evaluation tasks solved by LLMs. Claude 3
Opus solves the most ARC tasks (74).

The ARC accuracy of LLMs ranges between 7 up to 74
solved tasks, as visualised in Figure 4. The best performance



of a small model is achieved by Llama-3 8B (21). Some big-
ger open-source LLMs can solve more than 30 ARC tasks,
with Llama-3 70B achieving 36. The highest number of
solved ARC task, 74, is by Claude 3 Opus.

The ARC results demonstrated some variability in perfor-
mance across LLMs. Bigger models appear to be more accu-
rate on ARC compared to smaller ones. Most LLMs achieve
an accuracy in the range of 10-35 tasks, with the only excep-
tion being Claude 3 Opus with 74.

Performance of Fine-tuned LLMs on ARC
To observe whether we can reduce the performance gap be-
tween smaller and bigger LLMs on ARC, we fine-tune the 7
and 13B models. The models are fine-tuned on the training
set only using a single Nvidia A100 80GB GPU.

The results in Table 3 show that the fine-tuned LLMs
solve between 18 and 34 ARC evaluation tasks. Training
benefited all the models substantially - the small fine-tuned
Llama-2 7B and 13B achieved a performance on par with
the base versions of the significantly bigger models such as
Llama-2 70B. After fine-tuning, Mistral 7B outperforms the
standard Mixtral 8x7B by 5 correct tasks. The highest result
of 34 correct solutions after fine-tuning by Llama-3 8B is
impressive, as it outperforms Gemini Pro.

Model Base Fine-tuned Increase

Llama-2 7B 7/400 21/400 200%
Mistral 7B 15/400 23/400 53%
Llama-2 13B 8/400 18/400 125%
Llama-3 8B 21/400 34/400 62%

Table 3: Results of base and fine-tuned LLMs on the ARC
evaluation set. The increase column shows the improvement
in accuracy from a base LLM compared to its fine-tuned
version. All LLMs consistently show improved ARC per-
formance after fine-tuning, ranging from 62% to 200%.

The results in Table 3 demonstrate a significant increase in
ARC performance across all fine-tuned LLMs compared to
their base versions. The accuracy improvement after training
varies between 53% in Mistral 7B up to 200% in Llama-
2 7B. While Llama-2 7B and 13B both achieve more than
100% improvement - 125% and 200% respectively, Mistral
7B and Llama-3 8B improved in the range of 50% to 65%.

Our results suggest that training small LLMs on the Au-
gARC dataset consistently improves their performance. In
particular, fine-tuning smaller LLMs (7-13B parameters) is
so effective that it can lead to better ARC performance than
significantly larger base LLMs.

Solution Overlap and Gain Measure
To motivate our reflection approach to ARC, we show the
benefit of combining ARC solutions from base and fine-
tuned LLMs together with Program Synthesis solvers.

The ratio of overlapping solutions between different ARC
solvers is visualised in Figure 5a. The numbers in Figure
5a refer to the proportion of overlapping tasks solved by
the systems on the left and on the bottom. For each pair

of LLMs, there is an overlap between 0.5 and 0.9 in their
correct ARC solutions. A lower overlap can be observed be-
tween the base LLMs and the fine-tuned ones. For exam-
ple, a fine-tuned Mistral 7B has an overlap of only 0.52
with standard models such as Mixtral 8x22B and Llama-3
70B. The low overlap in the solutions between fine-tuned
and base LLMs indicates that training the models leads to
correct solutions to new ARC tasks, which have previously
not been solved by the base LLMs. The solution overlap be-
tween LLMs and a Program Synthesis solver, DSL Search
(Icecuber 2023), ranges between 0.69 and 0.9.

We also measure the gain from adding a second system
when testing the models on ARC. Figure 5b shows how
much the base systems on the left would benefit from adding
the solutions from the models at the bottom. We visualise
how much the base systems can gain from utilizing new cor-
rect solutions from the second systems. For most LLMs, the
gain of adding the solutions from another LLM is between
3 and 24. The gain between every two LLMs is slightly
skewed by Claude 3 Opus due to its substantially better per-
formance than any other LLM.

The LLMs we tested solved only 3 to 6 new tasks com-
pared to DSL search (Icecuber 2023). Importantly, Claude
3 Opus could contribute 23 new correct solutions to DSL
search, leading to a substantial improvement in ARC ac-
curacy. This encouraging result motivates a new approach,
which can effectively combine solutions from LLMs such
as Claude 3 Opus with prrogram synthesis solvers such as
DSL Search (Icecuber 2023).

Performance of the Reflection System

We experiment with different Reflection System configura-
tions based on two or three ARC solvers and with different
reflection models. We always include the program synthe-
sis solver (DSL Search (Icecuber 2023)) as a solver in all of
our reflection system experiments. We also always include
the LLM with highest ARC accuracy as a solver (Claude 3
Opus). We experiment with base and fine-tuned LLMs for
the reflection models and a potential third solver to find the
reflection system configurations which achieve the highest
ARC accuracy.

Table 4 shows that the ARC performance by different re-
flection system configurations varies between 133 and 166
solved evaluation tasks. In a 2-solver setting, with DSL
Search and Claude 3 Opus, Llama-3 70B struggles as a
reflection model, solving only 133 tasks. GPT-4-turbo and
GPT-4o perform significantly better as reflection models,
solving 165 and 166 ARC tasks respectively. When adding
a fine-tuned Llama-3 8B as a third solver, the reflection sys-
tem solves 163 ARC tasks.

Our best 2-solver and 3-solver configurations both out-
perform the best single LLM, Claude 3 Opus (74), and the
best program synthesis approach, DSL Search (160). Based
on the results, we argue that the proposed reflection system
is an effective approach for combining LLMs and program
synthesis solvers for enhanced ARC performance.
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Figure 5: Overlap of solutions and gain measure between systems. The systems are ordered by how much gain they add. In (a),
the overlap ranges from 0.5 up to 0.9, with lower values between fine-tuned and base LLMs. In (b), Claude 3 Opus could add
23 new solutions to the DSL Search, while the remaining LLMs could add between 3 and 6.

Solver 1 Solver 2 Solver 3 Reflection ARC
Model Correct

DSL Claude - Llama-3 133/400
Search 3 Opus 70B
DSL Claude - GPT-4- 165/400
Search 3 Opus turbo
DSL Claude - GPT-4o 166/400
Search 3 Opus
DSL Claude Fine-Tuned Claude 163/400
Search 3 Opus Llama-3 8B 3.5 Sonnet

Table 4: Correctly solved ARC evaluation tasks in a 3-shot
setting by different reflection system configurations. The
best 2-solver model performance is with DSL Search and
Claude 3 Opus as solvers and GPT-4o as a reflection model
(166). A fine-tuned Llama-3 8B model achieves the top per-
formance among 3-solvers (163).

Previous Approaches
To demonstrate the effectiveness of our reflection system,
we compare the ARC performance of our optimal configu-
ration to previous publicly available approaches. We present
systems that have been tested on the complete ARC eval-
uation dataset and split the categories into LLMs, neuro-
symbolic models and program synthesis solvers. We also
compare to a previous attempt combining different ARC
solvers with a voting ensemble (Bober-Irizar and Banerjee
2024).

Table 5 compares our approach to some publicly available
systems on the ARC evaluation dataset.

System Method ARC
Type Correct

DreamCoder 18/400
Neuro- (Bober-Irizar and Banerjee 2024)
Symbolic CodeIt 59/400

(Butt et al. 2024)
GPT-4 32/400

(Bober-Irizar and Banerjee 2024)
LLM Fine-Tuned Llama-3 8B 34/400

Llama-3 70B 36/400
Claude 3 Opus 74/400

Brute Force 26/400
(Ainooson et al. 2023a)

Program Neurodiversity solver 45/400
Synthesis (Ainooson et al. 2023b)

DSL Search 160/400
(Icecuber 2023)

Ensemble Voting 161/400
(Bober-Irizar and Banerjee 2024)

Multiple Reflection System 166/400
Solvers (Solvers: DSL Search, Claude 3 Opus;

Reflection: GPT-4o)

Table 5: Number of correctly solved ARC evaluation tasks
across different system types. The reflection system achieves
an ARC accuracy of 166.

Related Work
Most of the previous ARC attempts can be split into two
categories: Program synthesis solvers and methods that rely
on machine learning. In contrast, machine learning imple-



mentations vary from neuro-symbolic models to the latest
LLMs.

Program Synthesis Solvers
A popular program synthesis solver for ARC is the DSL
Search implementation by IceCuber which achieves 40% ac-
curacy on the complete ARC evaluation dataset. The DSL
solution is based on brute-force search. It applies transfor-
mations of varying depth in parallel and greedily stacking
them to fit training samples (Icecuber 2023). The final pre-
diction is ensembled based on the most solved training sam-
ples and least depth.

Another promising program synthesis approach is the
the Generalized Planning for Abstract Reasoning (GPAR)
solver (Lei, Lipovetzky, and Ehinger 2024). It casts an ARC
problem as a generalized planning (GP) problem, where a
solution is formalized as a planning program with point-
ers (Lei, Lipovetzky, and Ehinger 2024). On 160 of the 400
ARC evaluation tasks, GPAR outperforms the DSL Search
by 10% (Lei, Lipovetzky, and Ehinger 2024).

Neuro-symbolic Models
Neuro-symbolic models have emerged as promising AI sys-
tems that aim at integrating the ability to learn from experi-
ence, and the ability to reason from what has been learned
(Garcez et al. 2019). In neuro-symbolic computing, knowl-
edge is represented in symbolic form, whereas learning and
reasoning are computed by a neural network (Garcez et al.
2019).

The first neuro-symbolic approach to solving ARC was
DreamCoder (Alford 2021). It used neural networks to guide
its ability to write programs (Bober-Irizar and Banerjee
2024). An initial implementation of DreamCoder (Alford
2021) solves 2 ARC evaluation tasks, and an updated ver-
sion with a Perceptual Abstraction & Reasoning Language
(PeARL) achieves 18 (Bober-Irizar and Banerjee 2024).

Code Iteration (CodeIt) is a recent neuro-symbolic model
that approaches ARC (Butt et al. 2024) as a programming-
by-examples problem by training a policy to produce pro-
grams when shown demonstration examples (Butt et al.
2024). Experiments on the complete ARC evaluation set
show that CodeIt solves 59 tasks, significantly outperform-
ing previous neuro-symbolic approaches.

Large Language Models
Previous research that explores LLMs on ARC has been pri-
marily focused on OpenAI’s GPT models (Mitchell, Pal-
marini, and Moskvichev 2023; Mirchandani et al. 2023;
Moskvichev, Odouard, and Mitchell 2023).

Complete experiments on the 400 ARC evaluation tasks
show that the best overall LLM is GPT-4 with 32 cor-
rect tasks (Bober-Irizar and Banerjee 2024), while the best
open-source LLM is LLaMa-65B with 13 correct solutions
(Bober-Irizar and Banerjee 2024).

Ensembling Different System Types
A promising approach to ARC is to use a voting ensemble
of systems: each system can propose an ARC solution which

they “vote” for, added to a priority queue (Bober-Irizar and
Banerjee 2024). Using this voting ensemble to combine the
DSL Search (Icecuber 2023), DreamCoder and GPT-4 solu-
tions achieves 161 correct tasks on the ARC evaluation set
(Bober-Irizar and Banerjee 2024).

Limitations
Since we did not have access to the data used for pre-training
the LLMs, we cannot exclude the hypothesis that some mod-
els might have been pre-trained either on ARC tasks or on
other very similar abstract problems. It can be argued that
the significant improvement after fine-tuning demonstrates
that most of the tested LLMs have not been pre-trained on
ARC. Nevertheless, the substantially higher ARC results by
Claude 3 Opus compared to all other LLMs raise some con-
cerns that this model might have been pre-trained on ARC.

Furthermore, our reflection approach lacked communica-
tion and collaboration between solvers. The independence
between the solvers in the Reflection System can limit its
flexibility. Another potential limitation is that most of the
correct solutions generated by our approach are produced
by the DSL search (160 out of 166).

Conclusion
We proposed a Reflection System, which effectively com-
bines ARC solutions from Large Language Models and a
Program Synthesis solver. We demonstrate that the reflec-
tion system can easily be configured to work with a different
number of solvers and various reflection models.

In future work, the reflection system can be extended with
more than 3 solvers. The architecture can be improved by
using the solvers as agents that collaborate and communicate
when solving ARC tasks. Such improvements would allow
the solvers to support each other dynamically and achieve
better performance on complex reasoning tasks.
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