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Abstract

Deep neural networks have been shown vulnera-
ble to adversarial examples. Even though many
defense methods have been proposed to enhance
the robustness, it is still a long way toward provid-
ing an attack-free method to build a trustworthy
machine learning system. In this paper, instead
of enhancing the robustness, we take the investi-
gator’s perspective and propose a new framework
to trace the first compromised model copy in a
forensic investigation manner. Specifically, we
focus on the following setting: the machine learn-
ing service provider provides model copies for a
set of customers. However, one of the customers
conducted adversarial attacks to fool the system.
Therefore, the investigator’s objective is to iden-
tify the first compromised copy by collecting and
analyzing evidence from only available adversar-
ial examples. To make the tracing viable, we de-
sign a random mask watermarking mechanism to
differentiate adversarial examples from different
copies. First, we propose a tracing approach in
the data-limited case where the original example
is also available. Then, we design a data-free ap-
proach to identify the adversary without accessing
the original example. Finally, the effectiveness of
our proposed framework is evaluated by extensive
experiments with different model architectures,
adversarial attacks, and datasets. Our code is
publicly available at https://github.com/
rmin2000/adv_tracing.git.

1. Introduction

It has been shown recently that machine learning algorithms,
especially deep neural networks, are vulnerable to adversar-
ial attacks (Szegedy et al., 2014; Goodfellow et al., 2015).
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Figure 1. Illustration of the threat model where the malicious user
conducts adversarial attacks through model query and uses the
generated adversarial examples to attack other users’ copies.

That is, given a victim neural network model and a correctly
classified example, an adversarial attack aims to compute a
small perturbation such that the original example will be mis-
classified with this perturbation added. To enhance the ro-
bustness against attacks, many defense strategies have been
proposed (Madry et al., 2018; Zhang et al., 2019; Cheng
et al., 2020a). However, they suffer from poor scalability
and generalization on other attacks and trade-offs with test
accuracy on clean data, making the robust models hard to
deploy in real life. Therefore, in this paper, we turn our
focus on the aftermath of adversarial attacks, where we take
the forensic investigation to identify the first compromised
model copy for generating the adversarial attack. In this
paper, we show that given only a single adversarial example,
we could trace the source copy that the adversary based
for conducting the attack. As shown in Figure 1, we con-
sider the following setting: a Machine Learning as a Service
(MLaaS) provider will provide online model query access
for a set of customers. The copy could also be distributed to
every customer locally if deployed in time-sensitive appli-
cations such as auto-pilot systems. The model architecture
and weight details are encrypted and hidden from the cus-
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tomers for the consideration of intellectual property (IP)
protection and maintenance. In other words, every customer
could only access the input and output of the provided copy
but not the internal configurations. On the other side, the
service provider has full access to every detail of all copies,
including the training procedure, model architecture, and hy-
perparameters. However, there exists a malicious user who
aims to fool the system by conducting adversarial attacks
and gaining profit from the generated adversarial examples.
Since all copies are based on the same model, adversarial
examples generated by the adversary could be transferred to
the other users’ copies with a very high probability, 100% if
all copies are the same. Thus it is critical for the interested
party to conduct the investigation and trace the malicious
user by identifying the compromised model copy. Taking
the auto-pilot systems on the self-driving car as an example,
the malicious user could conduct adversarial attacks on a
road sign by querying his own vehicle model copy and then
create an adversarial sticker to fool other vehicles using the
same detection system. Also, online ML service provider
such as ChatGPT could be compromised by malicious users
conducting adversarial attack through model query and uti-
lizing the generated examples to disseminate hate crimes
and gain profits.

Only given adversarial examples as evidence, in order to
make the tracing possible, adversarial examples generated
by different copies have to be unique so that we are able to
find the source copy and trace the malicious user in the end.
To achieve this goal, we design a random mask watermark-
ing strategy which embeds the watermark to the generated
adversarial samples without sacrificing performance. At
the same time, the proposed strategy is efficient and scal-
able that only needs a few iterations of fine-tuning. In the
presence of the original example, a high-accuracy tracing
method is proposed, which compares the adversarial per-
turbation with every model copy’s masked pattern and the
adversarial example’s output distribution among different
copies. Because it is not always practical to have the original
example as a reference, in the second part, we further dis-
cuss the most challenging and practical attack setting where
only the adversarial example is available to the investigator.
Observing that the model copy’s probability predictions on
the same adversarial example would change significantly
with a different watermark applied, we derive an effective
rule to find the compromised copy. Specifically, based on
the property that adversarial example is not robust against
noise, we redesign the tracing metric based on the change
in the predicted probabilities when applying different water-
marks, which we expect the compromised model copy to
minimize.

Comprehensive experiments are conducted on multiple ad-
versarial attacks and datasets. When there is only a single
adversarial example available, the results demonstrate that

the two proposed methods could successfully trace the sus-
pect model copy with over 74% accuracy on average with
the data-limited case and data-free case. The tracing accu-
racy increases significantly to around 97% when there are
two adversarial examples available.

Our contributions are summarized below:

* To the best of our knowledge, we are the first to pro-
pose a novel and scalable framework to make it pos-
sible to trace the compromised model copy by only
using a single sample and its corresponding adversarial
example.

* In the absence of samples used to generate adversarial
examples, we further utilize the prediction difference
of each copy with different watermarks to identify the
adversary without any requirement on the original sam-
ple.

» Extensive experiments were conducted to demonstrate
the effectiveness of the proposed framework to trace
the compromised copy that the malicious users utilize
to conduct different black-box adversarial attacks un-
der different network architectures and datasets. We
showed that the adversary could be traced with high
accuracy in different scenarios, and the proposed frame-
work has good scalability and efficiency.

2. Related Work

Adversarial Attack Since the discovery of adversarial
example (Szegedy et al., 2014), many attack methods have
been proposed. Roughly speaking, based on the different
levels of information accessibility, adversarial attacks can be
divided into white-box and black-box settings. In the white-
box setting, the adversary has complete knowledge of the
targeted model, including the model architecture and param-
eters. Thus, back-propagation could be conducted to solve
the adversarial object by gradient computation (Goodfellow
et al., 2015; Kurakin et al., 2017; Madry et al., 2018; Carlini
& Wagner, 2017). On the other hand, the black-box setting
has drawn much attention recently, where the attacker could
only query the model but has no direct access to any internal
information. Based on whether the model feedback would
give the probability output, the attacks could be soft-label
attacks or hard-label attacks. In the soft-label setting, ZOO
attack (Chen et al., 2017) first proposed using a finite dif-
ference to estimate the gradient coordinate-wise and then
conducted the gradient descent. It was then improved by
selecting a better prior distribution (Ilyas et al., 2018b) and
compressing the search space (Tu et al., 2019). To further
increase the query efficiency, instead of calculating the full
gradient, gradient-sign-based methods (Liu et al., 2018)
have been proposed, and the attacks could still achieve a
good success rate. Also, random-search-based methods
such as Square attack (Andriushchenko et al., 2020) and
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SimBA (Guo et al., 2019) have found that the attacks could
be more successful in other domains such as frequency, and
the square pattern could further improve the query efficiency.
On the other hand, boundary attack (Brendel et al., 2017)
first proposed the hard-label setting and used the random
search method to find the adversarial attacks. It was then
improved by (Chen et al., 2020) by finding a better sam-
pling prior. OPT attack (Cheng et al., 2018) and Sign-OPT
attack (Cheng et al., 2020b), on the other hand, formalized
the hard-label attack into an optimization framework and
used the zeroth-order method to solve it.

Watermarking Model watermarking is introduced in in-
tellectual property protection on machine learning systems.
It could be roughly divided into two categories: white-box
and black-box watermarking, depending on the accessibility
to the model and its parameters in order to extract the wa-
termark. For the white-box watermarking, the first scheme
for DNN (Uchida et al., 2017) tended to embed the water-
mark into the training process. Later, because of the extra
capacity available in the state-of-art neural networks, Deep-
Marks (Chen et al., 2018) encoded the watermark to be a
binary vector in the probability density function of trainable
weights. However, it is not always convenient for the model
owner to do the formal verification in the white-box water-
marking, and the white-box watermark is also vulnerable to
statistical attacks (Wang & Kerschbaum, 2019). Black-box
methods are then proposed to solve the limitations men-
tioned above. DeepSigns (Darvish Rouhani et al., 2019)
has done some improvement over (Uchida et al., 2017) and
proposed a framework to incorporate the black-box case.
Utilizing backdoor attacks to do watermarking is another
big trend and has drawn much attention recently (Zhang
et al., 2018; Adi et al., 2018). Adversarial examples are
used to enable extraction of the watermark without requir-
ing model parameters (Chen et al., 2019; Le Merrer et al.,
2020). However, the forensic investigation of adversarial ex-
amples has a major difference from the model watermarking
as the model watermarking must be shown in the generated
adversarial examples. Also, it requires the tracking to be
attack-agnostic. In other words, the tracing mark should
be robust across different attacks simultaneously. However,
the current watermarking methods in (Zhang et al., 2018;
Adi et al., 2018) are either attack-dependent or have limited
effect on the generated adversarial examples, which is not
suitable for this task.

Traitor Tracing The proposed adversary tracing shares a
lot of similarity with traitor tracing (Chor et al., 1994; Boneh
& Franklin, 1999; Chor et al., 2000; Boneh & Naor, 2008) in
cryptography where personal decryption keys are designed
to trace the source of illegitimate keys. Although both meth-
ods use watermarking technology to distinguish distributed
content and forensically trace compromised targets, the key

difference is that in traitor tracing, the watermark embedded
in the metadata is fixed and can be extracted by a predefined
watermark extractor. However, in our proposed setting, the
metadata would be the model copy, and we need to ensure
that the generated adversarial examples display the water-
mark so that they can be traced.

Forensic investigation in Machine Learning: Although
machine learning methods have already been used in foren-
sic science (Carriquiry et al., 2019), there are a few studies
on building trustworthy machine learning from a forensic
perspective. Most papers focus on how to identify the model
stealing attack by introducing the watermarking approaches
to protect the intellectual property of the deep neural net-
works. That is to say, a unified and invisible watermark is
hidden into models that can be extracted later as special
task-agnostic evidence. However, to the best of our knowl-
edge, we are the first paper to study the adversarial attack
from a forensic investigation perspective.

3. Problem Setting

We formalize the identification of the compromised copy in
the following setting. The machine learning service provider
(owner) provides model query access to m customers (users)
for the K -way classification task. Each user would be as-
signed a unique user ID ¢ and we denote the model copy
for user i to be f;. As inference efficiency is critical in
time-sensitive applications such as auto-pilot systems, these
model copies could be also first encrypted for intellectual
protection and security concerns and then distributed to the
m customers (users). Therefore, in both cases, the cus-
tomers only have black-box access to their own copies. In
other words, the user ¢ could only query his own copy f; to
get the prediction results without any access to the internal
information about the model copy.

Unfortunately, a malicious user (adversary) exists who aims
to fool the whole system, including other users’ model
copies, by conducting black-box adversarial attacks. Specifi-
cally, let the malicious user’s copy be f,;+ (the compromised
copy). As the attacker does not have access to query other
users’ copies, he/she then chooses to perform black-box
attacks to his copy f,:+ to generate an adversarial example
Tadv- As all model copies are trained with the same dataset
for the same classification task, the generated adversarial
example could successfully lead to the misclassification of
other users’ copies. Our task is to find the compromised

copy fatt-

To be noted, there could be multiple malicious users con-
ducting colluded adversarial attack to fool the system. The
investigator then aims to find all the attack participants. For
the simplicity, we only focus on the single adversary setting
and we will leave the multiple malicious users case in our
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future work.

4. Methodology

If the same model copy is distributed to every customer,
the generated adversarial examples from different users’
copies will be identical to each other, and it thus becomes
impossible to trace the adversary by only giving adversarial
examples. In the following section, we propose our frame-
work which consists of two parts shown in Figure 2. First,
we design a simple random mask watermarking method that
would have a limited effect on the model copy’s accuracy
while embedding distinctive features in adversarial exam-
ples, distinguishing them from those generated from other
copies. We further design a tail and head mechanism to
make the training process scalable and efficient. Depending
on the availability of the original example as a reference,
we then propose two detection scenarios to identify the
adversary from adversarial examples.

4.1. Random Mask Watermarking

Since we need to identify the compromised model from
a large pool of customer copies, it requires us to assign a
unique identification mark for every customer copy, and
the mark should be reflected in the generated adversarial
example.

In this section, we design a simple but effective method
by applying a random watermark on each of the m model
copies. As shown in Figure 2, for each copy f;(1 <1i < m),
we randomly select a set of pixels w’ as the watermark
on the training samples. Formally, denote the input as
x € RVXHXC For every copy f;, we randomly generate a
binary matrix w? € {0, 1} >*#*C¢ by sampling uniformly.
We call the w? mask for copy f;, deciding the set of masked
pixels. When 'wfl’b’c = 1 for a specific pixel (a, b) at chan-
nel ¢, the value is set to be 0; otherwise, when wi)bw =0,
the original pixel value is not modified. That is to say, for
every input x, the input after the mask & on copy f; would
be &, ;. := Tap.e - (1 —wl, ) for each pixel (a,b) at
each channel c. For simplicity, we use ' = z ® (1 — w?)
to denote the masked sample x; in the whole paper, where
© represents the element-wise product.

Each input is first applied with the mask and then fed into
the model copy in both the training and inference phases. To
speed up the training process and make the pipeline scalable
to thousands of users, we add each model copy with a few
network layers as the head part h;. The output of the head
part will directly feed into a shared tail model ¢. In other
words, we have each model copy as

fi(x) = t(hi(x)), (D

Specifically, in the pretraining phase, we first train a model

without the watermark from scratch as the base model. Then
each model copy is assigned a unique copy head for the
added specific watermark and shares a big common tail
inherited from the base model. During the fine-tuning pro-
cess, we freeze the parameters in the tail and embed the
watermark to every customer copy by only fine-tuning the
weights in the head part with a few epochs. Our following
experiments will show it is sufficient to embed watermark
to a few layers in DNNs without sacrificing accuracy. To be
noted, the proposed method could be easily adapted to the
new user case as we could just create a unique watermark
and fine-tune the new head with a few epochs.

Since the distributed copy’s detail is encrypted and not ac-
cessible in the black-box setting, users are unaware that
their copies and the generated adversarial examples are
watermarked. Moreover, as the watermarks are generated
uniformly at random, each user’s copy can be assigned a
unique watermark even when the number of users is large.
Furthermore, since deep neural networks have been shown
to be robust against random noise (Fawzi et al., 2016; Co-
hen et al., 2019), the proposed watermarking would have a
very limited effect on the performance, as shown in Table 1,
when the masking ratio ||w?||; is not too large.

In this paper, we only show a straightforward random mask
watermarking scheme, which could already provide us with
satisfactory tracing accuracy without hurting the perfor-
mance. We leave the design of the better watermarking
methods under this framework to future works.

4.2. Data-limited Adversary Identification

With the watermarking scheme described in Section 4.1, we
can exploit the information embedded in the watermarked
adversarial example (and the corresponding original exam-
ple) to identify the compromised copy.

We first introduce the data-limited case where the corre-
sponding original example a, on which the given adversarial
example x4, is based, is available. A natural example of
this setting is that the malicious user generates an adversarial
sticker based on a road sign using his own self-driving car.
As the self-driving system is built by the service provider
and shared, the adversarial stickers would fool other pass-
ing vehicles. Then, as the investigator, we aim to trace the
adversary by analyzing the road sign and the adversarial
sticker. We now discuss the design of the detector in the
data-limited case, which is inspired by the mechanism of ad-
versarial attacks. Specifically, since the adversarial attack is
formalized as an optimization problem, the adversary takes
the gradient of the designed loss function £ with respect to
the input @ to find the most effective perturbation.

Adversarial Perturbation: Formally, for the model f;,
the gradient of the designed loss function £ with respect to
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Figure 2. Proposed framework of identifying compromised model copy from adversarial examples.

the given sample x is

=0 ifw),,. =1, )
Since the black-box attacks are designed to approximate the
gradients used in the white-box attacks, we could expect
that the approximated gradients at the masked pixels would
have a value close to O or be smaller in magnitude than
the other pixels. The reason lies in the fact that the pixels
within the watermark have zero contribution to the overall
loss. Based on this observation, since we have access to
the original example x, we could calculate the adversarial
perturbation § = x,4, — «. If the adversarial example is
generated by the compromised copy f,¢, values in § should
be much smaller in those coordinates in the corresponding
watermark i.e coordinate that w?? = 1. Notably, since
different copies are embedded with individual watermarks,
different adversarial examples generated by diverse copies
would be distinguished in the region with low perturbation
values. Therefore, given x,4, and @, we thus calculate a
score for each copy by summing up the absolute values of
the adversarial perturbation overall masked pixels (of the
corresponding model), i.e.,

o' = Z wfl,b’c © |£L'adv - w|a,b,c (3)

a,b,c

Adversarial Stability: Moreover, we also observe that the
cross-entropy loss between the prediction output of adversar-
ial examples and the ground-truth label of clean examples
differs among different copies. Since adversarial examples
should be identical to original examples visually, the ground-
truth label could be easily inferred. Specifically, with intro-
duced masking watermark, some model copies prediction
on the adversarial example will change even towards the
label instead of deviating from it. That is, if the adversarial
example x4, is generated from copy f; , the cross entropy
loss Log(fi(®adv),y) is smaller than Lo (f;(Tadv), Y)
if fj(®adw) # y ,VJ # i, where y is the ground truth label
of x.

We then combine the two metrics and calculate the final
score for each copy. Then, we take the copy with the small-
est score as the compromised copy, i.e.,

att + argmin(8’ + aLep(fi(Tad), y)) “4)
1<i<m

4.3. Data-free Adversary Identification

The previously introduced data-limited detector requires
access to the original example as a reference, which is not
realistic in many scenarios. Therefore, in the following
section, we relax this constraint and discuss the tracing
under the most challenging yet realistic setting where the
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only evidence available is the generated adversarial example.
We propose a data-free detector based on the different copy
outputs when applying different masks to the adversarial
example.

Formally, for the given adversarial example x,q,, We
first apply every copy’s watermark w®,i € [m] to create
a set of masked adversarial examples {&, }", where
&gy = Taaw © (1 — w?). We then feed the masked ad-
versarial examples set to each copy f; to get its probability
output. For every copy f;, we get a probability output
matrix P’ = [f(&5,)7, ..., fi(@4,)T] € [0,1]m*K,

adv adv

where each element in P* is P, , = [fi(%54,)]s and K is
the number of classes.

Since adversarial examples are very close to the model’s
decision boundary (Brendel et al., 2017; Cheng et al., 2018),
a slight perturbation to it would cause the model’s predic-
tion to change significantly. In other words, adversarial
examples are sensitive to small perturbations, while ordi-
nary examples are relatively more robust. It then inspires
us to propose a metric based on this difference to detect
the compromised model. Specifically, let us still assume
the given adversarial example x4, is from copy f;. Then,
when the corresponding watermark w?’ is applied, the prob-
ability prediction will remain unchanged. However, when
applying another watermark w?, j # i, it is likely that the
watermarked adversarial example would be moved away
from the decision boundary. Therefore, the maximal pre-
dicted class probability is generally larger after applying
w;. At the same time, if the adversarial example is not gen-
erated from the copy, the extent of change would be limited.
Therefore, we propose the max label score S, 4, based on
the extent of change of prediction:

)
g maxcker Py

max

(&)

i
2i<jom MaXi<k<k Py

We further combine the score of adversarial stability pro-
posed in the data-limited case with the max label score to
improve the detection accuracy:

att < argmin(S;,q, + BLcE(fi(Taaw) Y))  (6)

2

5. Experimental Results

In this section, we extensively evaluate the proposed frame-
work on a variety of adversarial attacks, datasets, and mod-
els. We first introduce the experiment setup and implemen-
tation details. In Section 5.1, we show the proposed random
mask watermarking has a limited effect on the performance.
We then test the tracing success rate on adversarial examples
generated by different black-box attacks in the data-limited
case and data-free case in Section 5.2.

Implementation Details We conduct our experiments on
three popular image classification datasets GTSRB (Stal-
lkamp et al., 2012), CIFAR-10 (Krizhevsky et al., 2009) and
Tiny-ImageNet (Le & Yang, 2015). We use two widely
used network architectures VGG16 (Simonyan & Zisser-
man, 2015) and ResNet18 (He et al., 2016). All our experi-
ments were implemented in Pytorch and conducted using an
RTX 3090 GPU. In the pretraining stage, the base model is
trained with Adam optimizer with the learning rate of 103
and a batch size of 128 for 50 epochs. For every copy’s
watermark, we independently randomly sample 100 pix-
els to mask for both CIFAR-10 and GTSRB and increase
the mask size to 400 pixels for Tiny-ImageNet which keep
the masking rate around 3.26%. To embed different wa-
termarks into individual copies efficiently, we separate the
base model by taking the first several layers as the head and
leaving the rest as the tail. We provide the time compar-
ison of training a base model versus fine-tuning a model
head in Appendix A. Specifically for ResNet18, we take
the first residual block as the copy head, and we detach
the first two convolution layers for VGG16. The parameter
percentage of the head for ResNet18 and VGG16 is 1.34%
and 0.26% respectively which is a very small portion of the
whole network weights. We then fine-tune the weights in
the head portion for 10 epochs while freezing the param-
eters of the model tail. More experiments with different
watermark sizes and splits on the model head are conducted
in Appendix B.1 and B.2.

Adversarial Attack Methods We perform the following
five black-box adversarial attacks to generate the adversarial
example:

¢ Natural Evolutionary Strategy (NES): Ilyas et al.
(2018a) introduced a soft-label black-box adversarial
attack that designed a loss on the output probability
changes and used Neural evolution strategy (NES) to
approximately estimate the gradient.

e Bandits and Priors Attack (Bandit): Ilyas et al.
(2018b) introduced a soft-label black-box attack by
using the bandit algorithm to find a better prior where
the adversarial perturbation could be drawn with high
probability.

e Simple Black-box Attack (SimBA): (Guo et al.,
2019) introduced a soft-label black-box adversarial
attack by sampling the perturbation direction from a
predefined orthonormal basis. The sampled direction
would be either added or subtracted from the target
image to test its success.

¢ Hop-Skip-Jump Attack (HSJ): Chen et al. (2020)
introduced a hard-label black-box attack which is ap-
plied the zeroth-order sign oracle to improve Boundary
attack (Brendel et al., 2017).

* Sign-OPT Attack (SignOPT): Cheng et al. (2020b)
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introduced hard-label black-box attack that uses a sin-
gle query oracle to improve the query efficiency of
OPT attack (Cheng et al., 2018).

For SimBA, HSJ and SignOPT attacks, we use Adversarial
Robustness Toolbox (ART) (Nicolae et al., 2018)’s imple-
mentation. We use the default hyperparameters in the ART
toolbox to conduct the attack. For the NES attack and
Bandit attack, we re-implement them in Pytorch following
the official implementation in https://github.com/
MadryLab/blackbox-bandits. All the attacks are
conducted in the /5 constraints and untargeted setting. The
attack will be stopped when there is a successful adversarial
example generated.

Evaluation Metric To evaluate the effectiveness of the
proposed detection method, for each attack, we generate 10
transferable adversarial examples for every model copy.
An adversarial example x4, is defined as transferable if
and only if the prediction of the compromised copy fu: is
wrong and, at the same time, the prediction of at least one
of the other m — 1 copies is wrong. It is worth noting that it
is rather difficult for the black-box attacks to have a good
transferability over the proposed random mask watermark-
ing so we consider 10 transferable examples are sufficient
to test our detector’s effectiveness. To sum up, for each at-
tack, we have a total of 1000 adversarial examples under the
setting of 100 copies. We then define the tracing accuracy
to evaluate the detection rate defined as follows:

NCOITCC[ (7)

Trace Acc =
N, total

Where Noreet 18 the count of the correct identification of
the compromised copy and N is the total number of the
transferable adversarial example generated.

5.1. Model Performance with Random Mask
Watermarking

In this section, we conduct experiments to verify whether all
model copies could still maintain a good performance after
applying the watermark. Specifically, we train 100 copies on
three datasets CIFAR-10, GTSRB, and Tiny-ImageNet with
two popular architectures VGG16 and ResNet18. We also
add a baseline model without a watermark as a reference. In
Table 1, it could be clearly observed that the accuracy of the
watermarked copies has a similar performance compared
with the baseline model. The worst accuracy drops are only
around 1%, while both mean and median keep a very simi-
lar performance with the baseline. Concerning there exists
randomness in the training procedure, the proposed water-
marking method has a limited effect on the performance.

Table 1. The classification accuracies (%) of model copies with
random mask watermarking on three datasets. We denote V- as
the model trained with VGG16 and R- as the model trained with
ResNet18.

TASK BASELINE MIN MEAN MEDIAN MAX
V-CIFAR10  90.70  89.30 89.71 89.72 90.20
R-CIFAR10 9197 91.10 9149 91.51 91.83
V-GTSRB 97.60  96.10 96.99 97.02 97.48
R-GTSRB 98.50 96.81 97.45 97.47 98.15
V-TINY 4599 45.08 45.52 4555 45.82
R-TINY 52.16  50.94 51.50 51.51 52.02

5.2. Identification Results

For identification in the data-limited setting, we conduct ex-
periments on 100 copies applied with random masks. We set
the hyperparameter « to 0.85 for CIFAR10, 0.5 for GTSRB,
and 5 for Tiny-ImageNet and tested tracing accuracy on dif-
ferent attacks. We also show the results with different « in
Section 5.4. The results in the top half of Table 2 illustrate
that our detection method could identify the compromised
copy successfully in all datasets and network architectures
which achieves an average of 71.33% tracing accuracy with
only one adversarial example. It is worth noting that a
random guess would only result in a 1% tracing accuracy
average with a total number of 100 copies. Specifically,
our detection method is extremely effective to trace HSJ
attack, where the average tracing accuracy is over 88.5%.
However, it could also be seen that our tracing method has a
poor performance on Bandit attack that achieves over 42%
accuracy in the worst case, which may be affected by the
noisy gradient estimation in the dimension reduction pro-
cess. However, we believe it could be solved by introducing
a better watermark design, which we leave as our future
work.

As we further limit the accessibility, we trace the compro-
mised model with only one adversarial example and show
the tracing accuracy at the bottom half of Table 2. For the
data-free case, we also set the hyperparameter 3 to 0.5 for
three datasets. Although the original example is no longer
available, we could still achieve a similar or even better trac-
ing accuracy against some attacks. Specifically, the average
tracing accuracy is 69.80% among different datasets and
model architectures which is slightly lower than the data-
limited case. However, we could see there is a significant
tracing accuracy (23%) improvement in the SignOPT. It is
because the data-free score is based on the property that
the adversarial examples are more sensitive to a slight per-
turbation by different masks and more robust against noisy
gradient estimation. Therefore, we could further combine
those two scores in practice to have better tracing accuracy
based on the available evidence.


https://github.com/MadryLab/blackbox-bandits
https://github.com/MadryLab/blackbox-bandits
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Table 2. The tracing accuracies (%) in data-limited and data-free scenarios with only a single adversarial example available.

CASE \ TASK BANDIT HSJ NES SIGNOPT SIMBA MEAN
V-CIFARI0 482 934 842 554 853 73.30

R-CIFARI0 542 955 87.4 658 83.0  77.18
DATA-LIMITED | "G sToRB 421  98.7 863  56.9 91.0  75.00
R-GTSRB 438 987 863  61.8 86.0  75.32

V-TINY 475 641 514 542 787 59.18

R-TINY 548  81.0 656  53.4 85.1  67.98

V-CIFARI0 658 839 71.6 857 502 73.24

R-CIFARIO  69.3 894 77.8  90.5 564 76.68

DATA-FREE | '\, GTSRB 624 920 67.5 907 563 73.78
R-GTSRB  61.8 928 732  91.5 527 74.40

V-TINY 552 621 484 587 565  56.18

R-TINY 585 723 592  70.1 624  64.50
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Figure 3. Average tracing accuracy on adaptive attack with differ-
ent random noise levels.

Results on Adaptive Attacks To fully test the robustness
of our proposed detectors, we also conducted an adaptive
attack where the adversary has full access to the specific
watermark embedded in each model. To be noted, it is not
practical because users have only black-box access and it is
not an easy task to directly infer which pixels are masked
because of the noise estimation. Since our tracing method
relies on the specific watermark embedded in individual
model, we assume the adaptive attacker add Gaussian noise
only to the pixels within the watermark without modifying
the other region, which breaks our assumption proposed in
Equation 2. We test the average tracing accuracy across
different noise levels on CIFAR10 with ResNet18 structure.
Our results are shown in Figure 3. We observe a significant
accuracy drop in the data-limited case when adding random
perturbation since we utilize the adversarial perturbation to
identify the compromised model. However, we also notice
that our data-free detector is not sensitive to random noise,
which suggests that our tracing method can still be effective
even if the adversary knows the predefined watermark.

5.3. Results on Multiple Adversarial Examples

In the previous experiments, we considered only one adver-
sarial example, which is the most extreme case for foren-

sic investigation. However, here comes a natural question:
could the proposed method have a better detection rate if
more adversarial examples are collected? In this section, we
conduct experiments to answer this question. We use a sim-
ple strategy to combine multiple adversarial example scores.
That is, we first calculate scores defined in Section 4.2 and
Section 4.3 for each example, and then add up each score
computed over all adversarial examples. Then we take the
copy with the smallest sum as the compromised copy. We
conduct the experiments on 100 copies of the random mask
watermarked ResNet18 and VGG16 models for the CIFAR-
10 dataset in both the data-limited and data-free settings.
It could be seen in Figure 4 that the detection rate keeps
increasing with the number of adversarial examples. We
could get around 97% tracing accuracy on average when
adding only 1 adversarial example to current accessibility.
And the accuracy will reach 100% if given three or more
adversarial examples. It shows our method is quite robust
and has a great potential to be further improved.
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Figure 4. Tracing accuracy with multiple adversarial examples.
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5.4. Results on Different o in Data-limited Identification

Since our objective in Eq. 6 is composed of two parts with
the hyperparameter «, in this section, we conduct experi-
ments to study the impact of «. We demonstrate the results
obtained from ResNetl18 and VGG16 on CIFAR-10 and
GTSRB in Figure 5. From Figure 5, we observe that differ-
ent attacks shows different sensitivity to the choice of « in
terms of tracing accuracy. Although increasing the o would
improve the tracing performance on Bandit and SignOPT, it
will yield a slight performance drop against other types of
attacks.
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Figure 5. Tracing accuracy with different o values.

6. Conclusion and Limitations

In this paper, we develop the first framework for identify-
ing the compromised model copy from a single adversarial
example for forensic investigation. We first present a water-
marking method to make the generated adversarial example
unique. Depending on the accessibility of the original exam-
ple, two identification methods are presented and compared.
Our results demonstrate that the proposed framework has a
limited effect on the model’s performance and has a high
success rate to find the compromised copy by only giving
a single adversarial example. Our framework could further
improve the detection rate to nearly 100% when two more
adversarial examples are provided. As this study applied
a simple yet effective random mask method to watermark
model copies, future works could comprehensively study
different watermarking methods in search of more efficient
ways to distinguish the copies in the setting of this study.
Moreover, more experiments could be conducted to design
even more effective quantitative scores to identify the adver-
sary in future works.
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A. Scalability

In Section 4.1, we propose an efficient training framework for model copies by splitting the entire model and only fine-tuning
the head portion. To evaluate its effectiveness, we compare the computational time required to train a base model from
scratch versus fine-tuning a model head with a frozen model tail in Table 3. The experimental results demonstrate that by
fine-tuning the model head, our method could accelerate the overall training speed by over 4 times, which demonstrates our
proposed framework are able to achieve a good Scalability.

Table 3. Comparison of computational time (seconds) between training a base model and fine-tuning a model head.

DATASET MODEL TRAINING BASE MODEL FINE-TUNING MODEL HEAD
RESNETI18 596.79 108.90
CIFAR-10 VGG16 841.64 155.25
RESNETI18 1193.67 278.13
GTSRB VGG16 496.45 96.99
TINY-IMAGENET RESNETI18 4245.16 819.84
VGG16 2307.29 454.49

B. Sensitivity Analysis
B.1. Results on different watermark sizes

We explore the potential impact of the watermark size by selecting various numbers of masked pixels. We conduct
experiments with ResNet18 on CIFAR-10 and our results are demonstrated in Table 4. We find that as the watermark
size increases, the tracing accuracy of NES and SimBA gets improved, while other attacks are not heavily affected by the
watermark size. Although utilizing a larger watermark may help slightly enhance the tracing accuracy, they would mask off
more pixels which degrade the model performance.

Table 4. Tracing accuracy (%) with different watermark sizes. The experimental results are conducted with ResNet18 on CIFAR-10.

CASE WATERMARK SIZE | BANDIT HSJ NES SIGNOPT SIMBA
50 52 94 82 73 68
100 51 97 91 68 79
DATA-LIMITED 200 52 97 91 60 97
400 51 99 90 58 96
800 49 98 92 60 100
50 65 88 77 92 55
100 71 85 76 82 59
DATA-FREE 200 72 88 80 86 63
400 70 84 79 89 66
800 74 87 77 86 63

B.2. Results on different split strategy on the model head

We further analyze the split strategy on the model head and conduct our experiments with ResNet18 on CIFAR-10.
Specifically, in our original setting, we split the model by taking the first several layers, including one ResNet block as the
head and the rest as the tail. We then vary the split strategy by moving the ResNet block from the tail to the head each
time. The tracing accuracies (%) on 100 model copies are shown in Table 5. We observe that utilizing a large model part
as the head may slightly increase the overall tracing accuracy. However, a large head part would also increase the overall
fine-tuning time and there exists a trade-off between the watermarking efficiency and the tracing performance. As shown in
Table 5, we find that including only one ResNet block as the head is enough to achieve satisfactory tracing accuracy.
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Table 5. Tracing accuracy (%) with different model heads. The experimental results are conducted with ResNet18 on CIFAR-10.

CASE \NUMBER OF BLOCKS | BANDIT HSJ NES SIGNOPT SIMBA

1 51 97 91 68 79

2 56 94 86 58 77

DATA-LIMITED 3 61 95 90 71 77
4 59 96 90 75 90

1 71 85 76 82 59

2 75 85 76 82 59

DATA-FREE 3 71 89 81 90 56
4 78 89 86 91 67
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