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ABSTRACT

Inferring interactions among entities is an important problem in studying dynamical
systems, which greatly impacts the performance of downstream tasks, such as
prediction. In this paper, we tackle the relational inference problem in a setting
where each entity can potentially have a set of individualized information that other
entities cannot have access to. Specifically, we represent the system using a graph
in which the individualized information become node-specific information (NSI).
We build our model in the framework of Neural Relation Inference (NRI), where
the interaction among entities are uncovered using variational inference. We adopt
NRI model to incorporate the individualized information by introducing private
nodes in the graph that represent NSI. Such representation enables us to uncover
more accurate relations among the agents and therefore leads to better performance
on the downstream tasks. Our experiment results over real-world datasets validate
the merit of our proposed algorithm.

1 INTRODUCTION

Our world includes many different types of systems that involve multiple entities interacting with each
other, from biology to sports, from social media to driving situations. Modelling the behaviour of such
dynamical systems is a challenging task, which requires uncovering different types of interactions
among the entities and how they affect each other.

Recent approaches in machine learning learn the interactions among the entities through graph-based
models and attention-based models, in which the representation of an entity is updated through its
relationship with other entities. Such relationships are usually either predefined or uncovered by
learning. Kipf et al. (2018) proposed neural relational inference (NRI) for relationship uncovering in
the framework of variational inference (Kingma & Welling, 2013; Rezende et al., 2014). NRI has an
encoder-decoder structure in which the latent codes represent different types of interactions among
the entities. The distributions over the latent variables are inferred based on the input features of the
entities and a graph structure is formed by sampling from these distributions. The decoder of the
model is a GNN-based algorithm that runs over the uncovered graph to update the features of entities.
The model shows prominent performance over many synthetic and real-world datasets.

Uncovering the interaction among entities in NRI and other models in the GNN literature is studied in
problems where the features of the entities are completely observable and the GNN-based algorithm
is also run on the observable features. However, in many real-world problems there is a set of hidden
features that affect the way entities interact with each other. For example consider the problem of
predicting the future position of vehicles in a driving scenario. In order to uncover the relation of
a target vehicle with other vehicles not only should we consider the features extracted from the
observations from vehicles, e.g. their trajectories up to the current time, but also we should take
into account the intention of the target vehicle. In fact, intention, which can be an immediate action
or a longer term goal, forms a set of features that is only accessible by the target vehicle and other
vehicle cannot know it. In this paper we call such feature the individualized features or Node-Specific
Information (NSI) in a graph representation of the system. Formally, NSI is a set of features that is
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only accessible by one node in a graph structure but affects the interactions of that node with other
nodes. Our goal is to efficiently exploit NSI to build more accurate graph structures and consequently
achieve better performance in the downstream tasks. Towards this goal, the first step is to find a
proper representation for NSI in our graph structure. We propose introducing a new set of nodes in
the graph that carry NSI and call them private nodes. Observable features of the entities are then
denoted by public nodes. Therefore each entity can be represented by a public and private node.
We introduce our model in the framework of NRI, i.e. a variational inference model that uncovers
different types of interaction among the entities. We carefully design the encoder and decoder part
of our model to ensure that NSI remains an individual feature for one entity and does not affect the
interaction modelling of the other entities. At the same time, through experiment we show that such
modelling of NSI is very efficient and can result in significant improvement on the performance on
downstream tasks. The main contributions of this work are the followings:

• To the best of our knowledge the problem of having individualized features for each entity has
not been previously studied in the framework of relational inference. We tackle this problem
by introducing a new set of nodes in a graph structure that represents the individualized
information. These nodes are used during the process of relational inference as well as
performing the downstream task, i.e. trajectory prediction in our case.

• We show that our proposed model can exploit NSI efficiently by introducing minimum
additional computational complexity compared to the original NRI model and its variants.

• The results of our experiments on real-world datasets show that our model can outperform
the baselines and achieve the state-of-the-art results on the defined tasks.

2 RELATED WORK

Interaction modelling: Relational learning is a popular approach for the problems with dependency
structure among the data points. Such dependency can be predefined in some domains. But in many
domains it has to be learned. For example approaches like locally linear embedding (LLE) (Roweis &
Saul, 2000) and Isomap (Tenenbaum et al., 2000) use kNN for forming such relationships based on
different measures of similarities among the data points. More recently, neural networks have become
the dominant tools for learning these dependencies based on different architectures and paradigms
(Kipf & Welling, 2017; Hamilton et al., 2017; Garcia Duran & Niepert, 2017; Monti et al., 2017;
Veličković et al., 2017; Franceschi et al., 2019).

The most relevant works to our proposed model are NRI (Kipf et al., 2018) and dynamic NRI (dNRI)
(Graber & Schwing, 2020), which are discussed in more details in the next section. Recently, Li et al.
(2020) introduced similar ideas for multi-modal trajectories prediction. Extensions of NRI in other
directions than ours also appeared in the literature. For example, Li et al. (2019) tries to uncover
interactions by imposing some structural constraints on the prior and Webb et al. (2019) introduces
the idea of factorized graph for NRI.

The other common approach for uncovering relationships among the entities is based on the idea of
attention. This idea has been used in Narasimhan et al. (2018); Hoshen (2017); Van Steenkiste et al.
(2017); Garcia & Bruna (2017); Monti et al. (2017); Veličković et al. (2017), where the attention
mechanism is the main tool for interaction uncovering, however, it is also used as a building block for
GNNs.

Future trajectory prediction as evaluation metric: We define our problem as uncovering the
interactions of entities in a multi-agent dynamical system, where the evaluation is based on the
accuracy of future trajectory prediction. Trajectory prediction is in fact an important problem in many
multi-agent systems, including the ever growing area of autonomous driving. In fact, our approach
falls into the category of multivariate time-series prediction (Yu et al., 2018; Wu et al., 2019; Sen
et al., 2019; Salinas et al., 2020; Rangapuram et al., 2018; Li et al., 2018; Bai et al., 2018), in which
the prediction is based on the relationship among the series. Specifically we use the relationship
of the entities in the GNNs framework. GNN has been widely used in the trajectory prediction,
especially in the application of autonomous driving and significantly improved the performance in
this area. For example, Salzmann et al. (2020) uses GNN to capture the relationship among different
road users (vehicles and pedestrian), Gao et al. (2020) uses graph attention networks (GATs) to learn
the relationship among agents and different components of map data, and Liang et al. (2020) uses
graph convolutional networks (GCNs) to learn the interaction among lanes and vehicles.
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In our experiment we consider scenarios in which the goal (final) position of the entities is given as
the individualized information. In the context of goal-aware prediction, there have been some effort
in the area of autonomous driving that are not based on explicit relational learning (Rhinehart et al.,
2019; 2018). In these papers, the prediction is based on an autoregressive flow-based model that
considers a collective observation of all entities to make prediction for each of them. The goal is then
added at the inference time and the latent codes are optimized in a way that the target entity reaches
its goal.

3 BACKGROUND: NEURAL RELATIONAL INFERENCE (NRI)

NRI is an unsupervised model that learns to infer the interaction types among entities in a multi-agent
systems in order to model the dynamics of the system. The model is defined as the problem of
predicting the future trajectory of entities given the past trajectories. Formally, the trajectories of
N entities are given for T time steps. Entity i is denoted by xi = (x1

i ,x
2
i , ...,x

T
i ). The set of all

trajectories at time t is denoted by xt = {xt1,xt2, ...,xtN} and x = (x1,x2, ...,xT ) denotes the
whole trajectories for all agents. NRI tries to model the system by maximizing the log-likelihood of
the observations, log p(x), in the framework of variational inference, i.e. maximizes the evidence
lower-bound (ELBO):

L(θ, φ) = Eqφ(z|x)[log pθ(x|z)]− KL
[
qφ(z|x)||p(z)

]
, (1)

where latent variable z has a categorical distribution and represents the interaction among entities.
More specifically, zij is a K-dimensional vector that denotes the type of interaction between entities
xi and xj . The entities in the NRI model are represented using nodes of a graph1 and therefore the
interactions are directed edges on this graph. Parameters of p(.) and q(.) models are denoted by θ
and φ, respectively. The three probability distributions in Eq. 1 are:

• The variational posterior, qφ(z|x), is implemented using amortized inference parameter-
ized by a neural network, namely the encoder network. Given the input trajectories, the
encoder network predicts the type of edges on the graph. The latent variable z is assumed
to have a categorical distribution. Samples from this distribution form the edges of the
graph. In order to backpropagate the error signals to the encoder layers, we need to make
the sampling process differentiable. In NRI this is done by approximating the posterior
distribution and reparamterezation of Gumbel distribution (Jang et al., 2017; Maddison et al.,
2017):

zij = softmax((h2
(i,j) + g)/τ) (2)

where h2
(i,j) is the last output of the encoder before the softmax layer and g ∈ RK shows i.i.d.

samples drawn from Gumbel(0, 1) and τ is a hyperparameter that controls the smoothness
of the distribution.

• The prior, p(z) =
∏
i 6=j p(zij), is assumed to be a factorized uniform categorical distribu-

tion over the edges.

• The likelihood, pθ(x|z), is implemented by the decoder network and predicts the future
trajectories given the uncovered structure of the graph.

The prediction in NRI is done in an autoregressive fashion. However, the ground truth trajectory is
fed to the model for few steps during the training to improve the performance of the decoder (teacher
forcing). NRI in its original form has two main shortcomings:

1. The latent variable z, which defines the edge types, is fixed for the whole prediction horizon.
That is, the uncovered interactions among the agents are assumed to be fixed over the next
time steps. This is not necessarily a valid assumption as the agents can dynamically change
their interactions in the system.

1Throughout the paper, entities and nodes as well as interactions and edges are used interchangeably, based
on the context.
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2. The prior distribution is assumed to be uniform and not conditioned on the previous obser-
vations. Both of these assumptions can degrade the performance of the model in longer
prediction horizons since samples from the prior provides minimum information about the
input.

More recently, Graber & Schwing (2020) pointed out the above issues and addressed them in dynamic
neural relation inference (dNRI) model. The conditional prior distribution in dNRI is defined as:

p(z|x) :=
T∏
t=1

p(zt|x1:t, z1:t−1), (3)

which is implemented by another set of MLP and LSTM layers that form the encoder of the pθ(.)
model. The experiments show that, by resolving those issues, dNRI achieves better prediction
performance than NRI.

4 MODEL DESCRIPTION

4.1 PROBLEM STATEMENT

We define our problem in the setting of NRI. However, we assume that, in addition to the observable
feature set x, each entity i can potentially have access to a set of individualized features cti at each time
step t. cti cannot be observed by other entities 2. Similar to the observable features, we denote the set
of individualized features for each agent by ci = (c1i , c

2
i , ..., c

T
i ), set of individualized features for all

agents at time t by ct = {ct1, ct2, ..., ctN}, and set of all individualized features by c = (c1, c2, ..., cT ).
We still study the problem of modelling the dynamics of the system through predicting the future
trajectories of the entities. However, we aim to exploit the individualized features in a way that the
interaction among the entities are inferred more accurately and, therefore, provide a better model for
the underlying dynamics of the system, which can lead to better prediction performance.

4.2 REPRESENTATION OF INDIVIDUALIZED FEATURES IN THE GRAPH: PRIVATE VS PUBLIC
NODES

Entity 1

Figure 1: Blue dots and black dots show the
public and private nodes, respectively. Dif-
ferent type of interactions among entities are
depicted as directed edges among the nodes
with different colors.

In order to build the interaction inference model, we need
to first represent the individualized features in the graph.
Note that simply augmenting the observation features xi
with the individualized features and building a new set of
features, e.g. yi = f(xi, ci), is not a solution here, as this
will affect the interaction uncovering among the agents,
which is in contrary with our initial assumption about the
accessibility of individualized features.

Here, we propose adding a new set of nodes to represent
the individualized features and we call these nodes pri-
vate nodes. We also refer to the nodes that represent the
observable nodes as public nodes for clarification. There-
fore each entity i at each time t can be shown using a
public node and private node corresponding to xti and cti,
respectively. A private node is only accessible by its corre-
sponding public node while a public node is accessible by all other public nodes. Interaction among
public nodes and their corresponding private node is always fixed, while interaction among public
nodes are learned. Fig. 1 shows the uncovered graph of an example system at time step t. Note
that there is always an edge between the public node and its corresponding private node, which
is shown in black in the figure. This edge represents all types of interactions. Representing the
individualized features using the private nodes allows us to employ a unified framework to uncover
the graph, without creating a computational overhead.

2Although, in some cases the effect of individualized features might be observed in the future times steps
through xt+ki (k > 0). For example the intention of a driver is a hidden feature but its effect can be observed
through the future trajectory of the car. Note that not all hidden features have this property. Whether this property
holds or not does not affect the performance of our model
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Figure 2: Proposed model. Encoded observable and individualized features are fed to GNN model to update
the node features. The output of the GNN is fed to both pθ(.) and qφ(.) encoders to provide the uncovered
interactions among the agents. The parameter of pθ(.) and qφ(.) distributions are learned to minimize their
KL divergence. Moreover, during the training the edges are randomly drawn from the pθ(.) encoder to better
optimize the parameters of this model. The sampled edges together with the input features are fed to the decoder
model to output the prediction at each time step.

4.3 MODEL COMPONENTS

In order to learn the interactions in our model we maximize the ELBO of the following form:

LNRI-NSI(θ, φ) = Eqφ(z|x,c)[log pθ(x|z, c)]− KL
[
qφ(z|x, c)||pθ(z|x, c)

]
. (4)

The conditional probability distributions are parameterized by neural networks and factorized as:

qφ(z|x, c) =
T∏
t=1

qφ(z
t|x1:T , z1:t−1, c1:T ) =

N∏
i=1

N∏
j=1
j 6=i

T∏
t=1

qφ(z
t
ij |x1:T , z1:t−1, c1:Tj ), (5)

pθ(z|x, c) =
T∏
t=1

pθ(z
t|x1:t, z1:t−1, c1:t) =

N∏
i=1

N∏
j=1
j 6=i

T∏
t=1

pθ(z
t
ij |x1:t, z1:t−1, c1:tj ), (6)

pθ(x|z, c) =
T∏
t=1

pθ(x
t+1|x1:t, zt, c1:t) =

N∏
j=1

T∏
t=1

pθ(x
t+1
j |x

1:t, zt, c1:tj ). (7)

Note that at each time step, the edge uncovering and prediction for each public node depend only on
its own private node. Here we describe the details of each component.

4.3.1 CONDITIONAL PRIOR NETWORK pθ(z|x, c)

The prior distribution forms the different types of interactions given the past and current status of
public and private nodes at each time step using the autoregressive model in Eq. 6. We use a GNN
architecture for message passing where the graph is fully-connected for the set of public nodes and
for the private nodes there is only an edge towards their corresponding public node.

node embedding: mt
j = fxemb(x

t
j) , ntj = fcemb(c

t
j), (8)

v → e : ht(i,j),1 = f1e ([m
t
i,m

t
j ]), (9)

e→ v : htj = f1v (
∑
i 6=j

ht(i,j),1), (10)

v → e : ht(i,j),2 = f2e ([h
t
i,h

t
j ]) ◦ f3e ([hti,htj ,ntj ]), (11)

where ◦ denotes Hadamard product and v and e represent nodes and edges of the graph, respectively.
Note that using our proposed represenetation, we can handle the general setting in which not all
entities necessarily have individualized features. In the case that these features are not provided for
an entity, f3e (.) is masked out and replaced by an all one vector. By using two levels of message
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passing we make sure that all observable nodes are considered to infer an edge. In the first level only
the observable features are used so that the final relationship uncovering for each entity is not affected
by other entities’ individualized features. We use multilayer perceptron (MLP) layers for all of the
f(.) functions. In order to take into account the previous interactions, the embedding ht(i,j),2 at each
time step is fed to layers of LSTM followed by MLP and softmax to output the actual conditional
prior distribution:

ht(i,j),p = LSTM(ht(i,j),2,h
t−1
(i,j),p), (12)

pθ(z
t
ij |x1:t, z1:t−1, c1:ti ) = softmax

(
fp(h

t
(i,j),p)

)
. (13)

4.3.2 VARIATIONAL POSTERIOR NETWORK qφ(z|x, c)

The variational posterior approximates the true posterior. During the training the graphs are con-
structed based on the samples from this distribution. According to Eq. 5, we use the whole set of x
and c from time 1 to T to infer the edges from qφ(z|x, c). This will result in predicting more accurate
edge types during training, compared to the prior model pθ(z|x, c). Minimizing the KL divergence
in Eq. 4 allows us to transfer knowledge about the future to the prior model by minimzing the gap
between pθ(z|x, c) and qφ(z|x, c). We employ two ideas to help this minimization:

• Parameter sharing between qφ(z|x, c) and pθ(z|x, c): We use the same networks in Eq.
8-11 to obtain the edge information. Then a bi-directional LSTM is used to combine this
information from previous and future time steps. The output goes to an MLP layer followed
by softmax. This will allow identical representation learning for the shared part and the KL
divergence minimization should be only applied to the unshared parts of the two models.
Note that this is essentially different from the model in Graber & Schwing (2020), in which
pθ(z|x, c) is basically a sub-module of qφ(z|x, c) and therefore variational posterior cannot
contribute in learning a better edge uncovering beyond the prior model. Our variational
distribution is given by:

ht(i,j),q = Bi-LSTM(ht(i,j),2,h
t−1
(i,j),q,h

t+1
(i,j),q) (14)

qφ(z
t
ij |x1:t, z1:t−1, c1:ti ) = softmax

(
fq(h

t
(i,j),q)

)
. (15)

We use reparameterization trick with Gumbel distribution to backpropagate error during the
training.

• Sampling from the prior during the training: In order to further close the gap between the
two distributions, α% of the time the edges are sampled from the prior distribution and fed
to the decoder. Therefore the parameters of the prior encoder are trained with the prediction
loss as well as the KL divergence loss.

4.3.3 DECODER NETWORK pθ(x|z, c)

The decoder network, takes the uncovered graph as the input and makes predictions by running a
GNN-based algorithm on different edge types. The outputs are then concatenated and go through a
decoder function, fd(.), which is an LSTM for autoregresive prediction. Note that at each time step
the private nodes affect both edge uncovering in the encoder and updating nodes states for prediction
in the decoder. Similar to NRI, in order to improve the optimization of the decoder parameters
during the training, we use teacher forcing and feed the model with ground truth (instead of previous
predictions) for the first 10 time steps.

v → e : ĥt(i,j),k = zij,k
(
f̂k1 ([x

t
i,x

t
j ]) ◦ f̂k2 ([xti,xtj , ctj ])

)
, (16)

e→ v : ĥtj,k = f̂kv (
∑
i 6=j

ĥt(i,j),k), (17)

µt+1
j = xtj + LSTM(Concatk[ĥtj,k],µ

t
j), (18)

pθ(x
t+1
j |x

1:t, zt, c1:tj ) = N (µt+1
j , σ2I). (19)

where k is the type of interaction, σ is a fixed variance and is set during the training using the
validation set, and all f̂(.) functions are implemented by layers of MLP.

6



Published as a conference paper at ICLR 2022

5 EXPERIMENTS

We perform our experiments on two different tasks, i.e. goal-conditional prediction and action-
conditional prediction. For both tasks we consider a multi-agent system in which at least one agent
has access to its individualized features. Both of these tasks are of great interest in the context
of trajectory prediction, with important downstream applications such as planning. For the goal-
conditional task the individualized feature is the final goal (position) of the agent. Therefore, this
information is fixed for the whole prediction horizon or at least for multiple time steps, ct:t+li = gti for
l > 1. For the action-conditional task the individualized feature is the next action of the agent, which
changes at every time step, cti = uti. We refer to our model as NRI-NSI. In all of our experiment we
use ADAM optimizer (Kingma & Ba, 2015) with learning rate 0.0001.

Metrics: Since our final task is trajectory prediction of the entities, we use minimum average
displacement error (minADE) and minimum final displacement error (FDE) as the evaluation metrics.
ADE: average mean square error (MSE) over all time steps between the ground truth future trajectory
and the predicted trajectory. FDE: MSE between the final ground truth position and the predicted
final position. Note that since we are using a stochastic model in the decoder, the minADE and
minFDE are the closest sample to the ground truth over 20 different sampled predictions. We follow
this scheme for all of the baselines, too.

Baselines: For both action-conditional and goal-conditional prediction, we compare our model with
NRI and dNRI where the individualized features are fed to the model at the last stage of decoder for
each of the entities, i.e. before outputting the distribution of the predictions.

5.1 ACTION-CONDITIONAL PREDICTION

For this task we further consider FM-MPUR (Henaff et al., 2019) as a baseline. FM-MPUR is also
an action-conditional prediction model based on conditional variational autoencoders (CVAEs) that
aims to maximize the lower bound of log p(xt+1:T |x1:t,ut:T−1ego ). The model uses high-dimensional
features (images) of the environment that help reasoning about the interaction of the agents.

5.1.1 NGSIM I-80 DATASET:

We study this problem in the domain of autonomous driving. The Next Generation Simulation
program’s Interstate 80 (NGSIM I-80) (Halkias & Colyar, 2006) dataset consists of 3 batches of
15-minute recordings from traffic cameras mounted over a stretch of a highway in the US. Driving
behaviours are complex with complicated interactions between vehicles moving at high-speed. We
consider 7 different agents at each time step, where the state of each agent is given by its coordinates
and velocity. We assume that for one of the agents (ego-agent), the action is given for every time
steps. Actions are two-dimensional vectors that represent acceleration and rotation of the steering
wheel. The other 6 vehicles are the closest ones to the ego-agent in different lanes (same lane/left
lane/right lane) at time t = 1. We keep the state of these vehicles until the end of prediction horizon.
We consider 4 relation types for NRI, dNRI, and NRI-NSI.

Table 1 shows the results of different models. We sample the data at 2Hz and perform the prediction
task for different prediction horizons. FM-MPUR performs worse than dNRI and NRI-NSI, due to
the lack of explicit dynamic interaction modelling. To better illustrate the capability of our model, we
consider two different scenarios for NRI, dNRI, and NRI-NSI. First, we use the models without the
actions and then add the actions to see how this affect the results and how efficient is our modelling
of the individualized features. dNRI outperform NRI for both scenarios, but both of models almost
fail to take advantage of the additional information about the actions. On the other hand, NRI-NSI
outperform all of the baselines for both with and without action scenarios and obtain a significant
gain by adding the actions, meaning that our model can predict more accurate interactions given the
actions of the ego-agent. Also our model outperforms dNRI even in the scenario with no actions,
which can be associated to the better learning of the prior encoder, as described in section 4.3.2.
Moreover, to see how this additional information changes the prediction of the agents with and
without the individualized features, we report the results for the set of all agents, which includes
the ego-agent, and the set of other agents which excludes the ego-agent. Given the action of the
ego-agent, approximating the next state of this agent is easy. Therefore we can see that results for all
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Model minADE/minFDE (all - other)
1s 2s 3s 4s

FM-MPUR 0.34/0.84 - 0.38/0.94 0.41/1.06 - 0.45/1.19 0.54/1.43 - 0.61/1.68 0.64/1.75 - 0.70/1.85
NRI no action 0.39/0.95 0.50/1.17 0.68/1.78 0.75/2.01
NRI with action 0.36/0.88 - 0.38/0.91 0.44/1.05 - 0.49/1.19 0.62/1.67 - 0.67/1.83 0.70/1.93 - 0.75/2.02
dNRI no action 0.33/0.85 0.39/1.03 0.49/1.24 0.57/1.65
dNRI with action 0.27/0.66 - 0.32/0.72 0.34/0.95 - 0.38/1.03 0.43/1.18 - 0.48/1.30 0.51/1.34 - 0.57/1.54
NRI-NSI no action 0.28/0.61 0.33/0.90 0.42/1.03 0.49/1.52
NRI-NSI with action 0.20/0.51 - 0.23/0.58 0.26/0.63 - 0.29/0.69 0.34/0.75 - 0.37/0.83 0.42/1.02 - 0.45/1.17

Table 1: Performance of models on action-conditional task for different prediction horizons

Model minADE/minFDE (all - other)
1s 2s 3s 4s

NRI 0.11/0.13 - 0.12/0.16 0.14/0.20 - 0.16/0.24 0.24/0.38 - 0.28/0.43 0.30/0.60 - 0.35/0.68
dNRI 0.09/0.12 - 0.10/0.14 0.12/0.17 - 0.15/0.23 0.20/0.31 - 0.25/0.35 0.27/0.50 - 0.34/0.58
Trajectron++ 0.10/0.13 - 0.10/0.15 0.12/0.18 - 0.14/0.22 0.19/0.33 - 0.23/0.39 0.28/0.54 - 0.34/0.60
PRECOG 0.06/0.08 - 0.06/0.09 0.09/0.15 - 0.10/0.18 0.16/0.25 - 0.18/0.29 0.25/0.48 - 0.29/0.58
NRI-NSI 0.06/0.08 - 0.06/0.09 0.07/0.11 - 0.08/0.12 0.12/0.19 - 0.13/0.21 0.18/0.31 - 0.20/0.36

Table 2: Performance of models on goal-conditional task for different prediction horizons on the Basketball
dataset.

Model minADE/minFDE (all-other)
1s 2s 3s 4s

NRI 0.27/0.54 - 0.31/0.60 0.38/0.80 - 0.42/0.88 0.55/1.24 - 0.63/1.40 0.88/1.98 - 0.98/2.12
dNRI 0.23/0.52 - 0.27/0.54 0.34/0.77 - 0.42/0.84 0.51/1.08 - 0.59/1.22 0.78/1.62 - 0.86/1.80
Trajectron++ 0.24/0.49 - 0.27/0.52 0.35/0.74 - 0.39/0.77 0.48/0.97 - 0.54/1.08 0.76/1.68 - 0.83/1.97
PRECOG 0.21/0.47 - 0.24/0.49 0.33/0.68 - 0.37/0.74 0.44/0.85 - 0.49/0.96 0.73/1.55 - 0.82/1.73
NRI-NSI 0.18/0.37 - 0.18/0.38 0.27/0.54 - 0.29/0.56 0.38/0.78 - 0.40/0.80 0.62/1.34 - 0.64/1.37

Table 3: Performance of models on goal-conditional task for different prediction horizons on the nuScenes
dataset.

models gets worse by removing the ego-agent. Note that for the scenario without the actions these
two results are the same.

5.2 GOAL-CONDITIONAL PREDICTION

We consider the goal-conditional prediction on two different sets of data with different types of
interactions, i.e. a basketball dataset and an autonomous driving dataset. For this task we also
consider two other baselines. Trajectron++ (Salzmann et al., 2020), which uses spatio-temporal
information for relational reasoning. It employs dynamical models for the agents in the scene to
produce feasible trajectories for the entities. For this model we also inject the goal information at
the last level of decoder for each agent. We also consider PRECOG (Rhinehart et al., 2019), which
performs goal-conditional prediction using a flow-based generative model. The goal-conditioned
prediction is done by optimizing the samples of the latent code of a trained model.

5.2.1 BASKETBALL DATASET

We study a basketball players trajectory dataset (Yue et al., 2014). The dataset consists of trajectories
of 5 players in the offensive team. We use the same preprocessing as Graber & Schwing (2020).
The trajectories at each time step consist of position and velocity of the players. The length of each
trajectory is almost 8 seconds, which is sampled at 5Hz (almost 40 frames per trajectory). All models
are trained given 20 frames as the input. The prediction horizon varies from 5 to 20 frames. For this
experiment we randomly choose 2 players and assign them their goal as their individualized features.
The game is very agile, therefore we update the goal every 3 time steps. For this dataset none of the
models use any context information and only use the trajectory of the players. We consider 2 relation
types for NRI, dNRI, and NRI-NSI.

Table 2 shows the results for this dataset. Again, we report the results for both all agents and other
agents (set of agents with no individualized features). For Trajectron++ , their dynamical model
cannot fully capture the motion of the players, therefore we removed this module from the model for
this dataset and directly predict the next state. We report the results for different prediction horizons
and as we can see NRI-NSI outperforms the baselines significantly. PRECOG also performs well
on this task as it also systematically optimize the latent codes for goal-conditional prediction during
inference. However, our model outperforms PRECOG almost across all horizons because in NRI-NSI
the goal-conditional prediction is done systematically during both training and inference time and
also the interaction learning is done explicitly at each time step. Therefore, the performance gap
between our model and other baselines enlarges as the prediction horizon increases.
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Figure 3: Result of action conditional (left column) and goal-conditional (middle and right columns) experiments
on different datasets based on minADE and minFDE for different time horizons. We can see that our model
outperforms other model across all tasks. Specially for the goal-conditional tasks the performance of our model
drops less than other models from the set of all agent to the other agents

5.2.2 NUSCENES DATASET

nuScenes dataset Caesar et al. (2020), is a real-world dataset for multi-agent trajectory prediction. It
consists of 850 episodes of 20 seconds of driving, recorded at 2Hz. The dataset includes the positions
of all agents together with synchronized context information, e.g. map. We encode the context
information using a convolutional neural network (CNN) and use the encoded information as node in
our graph that all entities have access to, similar to Li et al. (2020). This is also done for NRI and
dNRI. We use 2 seconds of past trajectories and predict up to 4 seconds into the future. Individualized
features are assigned to 2 agents in each scene at random. We set the goal as the last position of the
agents for each horizon. Similar to the NGSIM I-80 dataset we use 4 relation types here.

Table 3 shows the results for this model. Similar to the Basketball dataset our model and PRECOG
outperform other baselines. Another interesting observation is that our model performs very similarly
on the set of all and other agents. This means that the additional information provided by the
goal is effectively propagated to the whole set of agents at each time step (through the observable
features from the previous steps) and therefore the interactions for all agents are inferred more
accurately. However, performance of other baselines is heavily biased in favor of the agents with the
individualized features. Therefore, when we remove these agents the values of minADE/minFDE for
other agents drop more. This can be seen across all tasks in Tables 1-3. Fig. 3 better demonstrates
these results.

6 CONCLUSION

We considered a novel problem in the framework of relational inference for multi-agent systems
in which each entity can potentially have access to a set of individualized information that affects
the relationships among the entities. We tackled this problem by assuming a graph structure for the
system and proposed to represent the individualized information using private nodes on this graph,
whereas the observable features of the agents are the public nodes. We then used variational inference
to uncover the edges among the public nodes of the graph. Through experiments with real-world
datasets, we showed that our model is capable of making predictions with high accuracy where the
individualized information is the next action or the goal of the agents. Note that for all of the baselines
the goal of all entities (last position of the entity) is given during the training of the model. However,
we showed here that our model can efficiently and explicitly exploit such information to form better
interaction among the entities, which is reflected in better prediction accuracy.
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A APPENDIX 1: IMPLEMENTATION DETAILS

A.1 ARCHITECTURE DETAILS:

Here we provide the architecture of the networks according to Eq. 8-19.

• fxemb : 2 layers of MLP with 256 and 128 units and ELU activation
• fcemb : 2 layers of MLP with 256 and 128 units and ELU activation
• f1e : 2 layers of MLP with 256 and 128 units and ELU activation
• f2e : 2 layers of MLP with 256 and 64 units and ELU activation
• f3e : 2 layers of MLP with 256 and 64 units and ELU activation
• f1v : 2 layers of MLP with 256 and 256 units and ELU activation
• LSTM of pθ(z|x, c): hidden size 64
• fp : 3 layers of MLP with 256, 256, and (number of edge types) units and ELU activation
• Bi-LSTM of qφ(z|x, c): hidden size 64
• fq : 3 layers of MLP with 256, 256, and (number of edge types) units and ELU activation

• f̂k1 : 2 layers of MLP with 256 and 128 units and ELU activation

• f̂k2 : 2 layers of MLP with 256 and 128 units and ELU activation

• f̂kv : 2 layers of MLP with 256 and 256 units and ELU activation
• LSTM of pθ(x|z, c): hidden size 64
• In the case we encode the context information: A CNN with 3 layers of is used with kernel

size 5 followed by flattening and 2 MLP layers with 256 and 128 units.
• We use batch normalization after the layers of our neural networks.

A.2 TRAINING DETAILS:

• Data split:
– For the NGSIM I-80 the training and test data are split according to the preprocessing

of Henaff et al. (2019). The training data is divided to 80% training and 20% validation.
– For the Basketball dataset the data is divided tof 65% training, 10% validation, and

25% test set.
– For the nuScence dataset the training set is divided to 80% training and 20% validation.

The provided validation set is used for test.
• Hyperparameters (chosen by validation):

– Parameter of the Gumbel distribution τ = 0.5

– Percentage of samples from the pθ(z|x, c) model: α = 10%

• batch size: 128
• Number of epochs:

– 50 for the NGSIM I-80 dataset
– 500 for the Basketball dataset
– 50 for the nuScences dataset

• Type of GPU: single TITAN X GPU.

B APPENDIX 2: MORE RESULTS

B.1 ERROR BOUNDS ON THE RESULTS:

Tables below show the results of the experiment with standard deviation. The results are based on
running the models for 3 times. We split the set of all and other agents into two tables.
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Model minADE/minFDE (all)
1s 2s 3s 4s

FM-MPUR 0.34±0.012/0.84±0.024 0.41±0.015/1.06±0.029 0.54±0.018/1.43±0.034 0.64±0.019/1.75±0.050
NRI no action 0.39±0.012/0.95±0.009 0.50±0.018/1.17±0.025 0.68±0.023/1.78±0.035 0.75±0.028/2.01±0.054
NRI with action 0.36±0.012/0.88±0.018 0.44±0.018/1.0±0.019 0.62±0.024/1.67±0.036 0.70±0.020/1.93±0.045
dNRI no action 0.33±0.015/0.85±0.029 0.39±0.015/1.03±0.023 0.49±0.016/1.24±0.039 0.57±0.025/1.65±0.041
dNRI with action 0.27±0.009/0.66±0.012 0.34±0.020/0.95±0.031 0.43±0.014/1.18±0.035 0.51±0.026/1.34±0.037
NRI-NSI no action 0.28±0.010/0.61±0.011 0.33±0.015/0.90±0.019 0.42±0.019/1.03±0.025 0.49±0.025/1.52±0.046
NRI-NSI with action 0.20±0.010/0.51±0.022 0.26±0.013/0.63±0.020 0.34±0.011/0.75±0.012 0.42±0.015/1.02±0.033

Table 4: Performance of models on action-conditional task for different prediction horizons on the NGSIM I-80
dataset.

Model minADE/minFDE (other)
1s 2s 3s 4s

FM-MPUR 0.38±0.011/0.94±0.012 0.45±0.023/1.19±0.030 0.61±0.019/1.68±0.036 0.70±0.028/1.85±0.044
NRI with action 0.38±0.012/0.91±0.030 0.49±0.018/1.19±0.035 0.67±0.019/1.83±0.055 0.75±0.023/2.02±0.061
dNRI with action 0.32±0.010/0.72±0.022 0.38±0.014/1.03±0.039 0.48±0.015/1.30±0.044 0.57±0.024/1.54±0.046
NRI-NSI with action 0.23±0.015/0.58±0.013 0.29±0.015/0.69±0.018 0.37±0.015/0.83±0.025 0.45±0.013/1.17±0.031

Table 5: Performance of models on action-conditional task for different prediction horizons on the NGSIM I-80
dataset.

Model minADE/minFDE (all)
1s 2s 3s 4s

NRI 0.11±0.008/0.13±0.009 0.14±0.008/0.20±0.011 0.24±0.012/0.38±0.015 0.30±0.012/0.60±0.025
dNRI 0.09±0.005/0.12±0.007 0.12±0.011/0.17±0.010 0.20±0.011/0.31±0.012 0.27±0.013/0.50±0.016
Trajectron++ 0.10±0.004/0.13±0.008 0.12±0.008/0.18±0.013 0.19±0.018/0.13±0.013 0.28±0.015/0.54±0.019
PRECOG 0.06±0.006/0.08±0.004 0.09±0.005/0.15±0.010 0.16±0.012/0.15±0.011 0.25±0.013/0.48±0.010
NRI-NSI 0.06±0.007/0.08±0.005 0.07±0.009/0.11±0.009 0.12±0.010/0.19±0.014 0.18±0.017/0.31±0.013

Table 6: Performance of models on goal-conditional task for different prediction horizons on the Basketball
dataset.

Model minADE/minFDE (other)
1s 2s 3s 4s

NRI 0.12±0.007/0.16±0.007 0.16±0.009/0.24±0.011 0.28±0.015/0.43±0.010 0.35±0.025/0.68±0.036
dNRI 0.10±0.006/0.14±0.011 0.15±0.007/0.23±0.012 0.25±0.016/0.35±0.011 0.34±0.020/0.58±0.038
Trajectron++ 0.10±0.007/0.15±0.009 0.14±0.010/0.22±0.014 0.23±0.015/0.39±0.010 0.34±0.011/0.60±0.015
PRECOG 0.06±0.004/0.09±0.004 0.10±0.006/0.18±0.009 0.18±0.011/0.29±0.011 0.29±0.015/0.58±0.015
NRI-NSI 0.06±0.005/0.09±0.004 0.08±0.007/0.12±0.006 0.13±0.009/0.21±0.015 0.20±0.014/0.36±0.013

Table 7: Performance of models on goal-conditional task for different prediction horizons on the Basketball
dataset.

Model minADE/minFDE (all)
1s 2s 3s 4s

NRI 0.27±0.012/0.54±0.010 0.38±0.012/0.80±0.023 0.55±0.012/1.24±0.021 0.88±0.022/1.98±0.032
dNRI 0.23±0.012/0.52±0.013 0.34±0.011/0.77±0.022 0.51±0.011/1.08±0.023 0.78±0.018/1.62±0.015
Trajectron++ 0.24±0.018/0.49±0.014 0.35±0.015/0.74±0.011 0.48±0.012/0.97±0.025 0.76±0.038/1.68±0.051
PRECOG 0.21±0.010/0.47±0.012 0.33±0.015/0.68±0.012 0.44±0.019/0.85±0.017 0.73±0.029/1.55±0.043
NRI-NSI 0.18±0.015/0.37±0.012 0.27±0.015/0.54±0.016 0.38±0.016/0.78±0.017 0.62±0.014/1.34±0.028

Table 8: Performance of models on goal-conditional task for different prediction horizons on the nuScenes
dataset.

Model minADE/minFDE (other)
1s 2s 3s 4s

NRI 0.31±0.011/0.60±0.010 0.42±0.010/0.88±0.015 0.63±0.015/1.40±0.018 0.98±0.018/2.12±0.012
dNRI 0.27±0.015/0.54±0.016 0.42±0.017/0.84±0.022 0.59±0.013/1.22±0.019 0.86±0.026/1.80±0.045
Trajectron++ 0.27±0.016/0.52±0.017 0.39±0.010/0.77±0.020 0.54±0.019/1.08±0.033 0.83±0.026/1.97±0.038
PRECOG 0.24±0.011/0.49±0.019 0.37±0.018/0.74±0.015 0.49±0.010/0.96±0.029 0.82±0.024/1.73±0.041
NRI-NSI 0.18±0.010/0.38±0.015 0.29±0.016/0.56±0.010 0.40±0.012/0.80±0.024 0.64±0.011/1.37±0.030

Table 9: Performance of models on goal-conditional task for different prediction horizons on the nuScenes
dataset.
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B.2 RESULTS ON RELATIONAL INFERENCE

The results in the tables 1-3 show that NRI-NSI performs better than other baselines in terms of
trajectory prediction performance. This might implicitly indicate a better relational inference by
NRI-NSI. Nevertheless, here we try to investigate the performance of NRI-NSI compared to NRI and
dNRI in terms of relational inference explicitly using a toy dataset.

Here we use the charged particles dataset. We use 5 and 10 particles in a 2D box with positive and
negative charges {±q} that are sampled uniformly. The force among them follow the Coulomb’s
law. We follow similar procedure by Kipf et al. (2018) to stabilize the generation process, i.e. soft
clipping the force using the softplus function. Similarly, we generate 50k training examples, and
10k validation and test examples. Although the generated data might not exactly follow the physics
rules, we will have explicit relations (force) among the particles and can use this as the ground truth
for our experiments. Our goal is to accurately infer the relation among the particles given that we
know the final position of 1 of the particles for 5-particle experiment and final position of 2 particles
for 10-particle experiment. For all models we use 2 edge types. For both NRI and dNRI the goal
information is fed to the last layer of their encoders. Table below shows the accuracy of different
models in predicting the relations among the particles:

Toy dataset NRI dNRI NRI-NSI
5 particles 82.3 ± 0.5 83.1 ± 0.6 88.5 ± 0.4
10 particles 70.6 ± 0.5 70.9 ± 0.8 76.8 ± 0.6

Table 10: Performance in terms of relational inference accuracy (in %) for the charged particle dataset.

Note that for this results we only used the encoder of different models.
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