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Abstract

Text-to-image generative models have demonstrated great
performance in generating realistic images. These genera-
tions are assumed to reflect a deep understanding of visual
scenes. One interesting question is whether these models
can possess a zero/few shot generalization capabilities that
are known from humans. For example, a human can see
an example of a new object and a word associated with
this object, use their knowledge in a highly general way
to recognize or imagine this novel object in a completely
different setting or context. In this work, we are interested
in testing whether text-image models can possess this same
capability. In this work, we would like to test the hypoth-
esis that text-to-image models may learn familiar objects
better than novel objects. We use prompt tuning methods
to learn soft token representations for those novel concepts
while keeping the text-image models fixed. We prompt tune
the model as well to learn familiar concepts, and evalu-
ate the generalization ability for novel objects compared
to familiar objects by running generation in different con-
texts/environments. In addition, instead of initializing the
embedding vectors with some similar concepts, we use ran-
domly initialized embedding vectors for both familiar and
novel objects. Our human-survey evaluation result demon-
strates that in some settings text-image models learn famil-
iar objects better than novel objects.

1. Introduction

Text-to-image generation has rapidly made significant
progress with the development of large-scale and pre-
trained models [1, 8, 10, 12, 14–17]. These models leverage
extensive training data to create high-quality images from
text description, making them useful in applications ranging
from design to media creation. Despite these achievements,
significant challenges still persist, particularly when deal-
ing with novel objects that are hard to describe in concise
text. The ability to effectively represent and generate such
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novel objects is important for improving the capabilities of
text-to-image models.

This paper tests the hypothesis that text-to-image mod-
els may learn familiar objects better than novel objects by
extending the textual inversion method introduced by Gal
et al. [4]. While the original approach uses a single em-
bedding vector to represent a common object, we propose
an innovative extension that leverages multiple embedding
vectors that allows us to capture more complex objects’ fea-
tures, especially those novel objects that cannot be simply
described in a single token. In addition, instead of initializ-
ing the learnable embedding vector with a single-word de-
scriptor like ”cat”, ”mug”, etc., we initialize the learnable
embedding vector randomly with tokens from the embed-
ding vocabulary, which ensure the results are not retrieved
from similar closely related concepts from the initial de-
scriptors.

We evaluate our approach with the Novel Object and Un-
usual Name (NOUN) Database [6], which provides a di-
verse set of objects with human-annotated familiarity and
name-ability scores. We test our hypothesis on comparing
the performance of our method on high familiar objects with
less familiar (novel) objects in this dataset. To improve the
variation of the objects in the dataset, we apply data aug-
mentation techniques such as scaling, translation, flipping,
and rotation, as detailed in Section 4.1.1, which introduces
more variations for each object. We use the T5X model [11]
as our text encoder. The encoded embedding vectors are fed
into the Imagen model [14] for image generation.

The key contributions of the paper include:
1. We introduce an innovative method for representing ob-

jects in text-to-image models using multiple randomly
initialized embedding vectors.

2. We demonstrate that in some settings the text-to-image
model learns generalization of familiar objects better
than novel objects via a human-survey evaluation.

2. Related Works
Zero/Few-Shot Text-to-Image New Concept Learning
Research of leveraging the autoregressive models[3, 9, 10,
16] and pre-trained text-to-image diffusion models[2, 5, 7,



8, 12–14] has been widely studied for image synthesis. For
example, DALL-E [10] has demonstrated the capability of
doing text-to-image generation with zero-short. Textual
Inversion[4] and Dreambooth[13] can generate new con-
cepts with a few provided images by finetuning the text-
to-image diffusion model.

Textual Inversion and Prompt Tuning Previous
work[4] using textual inversion has shown that text-image
models can learn soft input tokens from a few examples
and generalize the generation of concepts in those examples
to different settings. However, it is unclear if the learned
objects are truly novel or just close to existing objects in
the training set. Additionally, the learned tokens were ini-
tialized with token embedding similar to the concept being
learned (e.g. initialized with ‘cat’ token while learning ‘cat
statue’), which could mean the observed generations are re-
trieved rather than generalized. Besides doing text-based
tuning, [18] achieves text-free image generations by tuning
the CLIP[9] embedding space to a shared text-image em-
bedding.

Gap in studying novelty Previous methods found that
it is possible to inject new concepts and object, but few
studies have systematically evaluated whether there is a gap
on how text-to-image models handle common vs. novel
objects. Our work addresses this by proposing a multi-
vector embeddings approach for learning newly introduced
objects—using randomly initialized embedding rather than
reusing existing tokens to more accurately measure genuine
learning instead of retrieval from the already learned con-
cepts during training. Moreover, we compare performance
on objects with high familiarity against those that are highly
novel, studying systematic differences in the model’s ca-
pacity to learn and compose them in diverse contexts. This
investigation provides new insights into how familiarity in-
fluences few-shot learning within text-to-image systems.

3. Methods
Our approach is inspired by the Text Inversion method in
[4], where a single embedding learnable vector is used to
represent a given object. We propose a novel extension that
leverages multiple-vector embeddings to represent novel
objects from the Novel Object and Unusual Name (NOUN)
Database [6] shown in Figure 1. Specifically, we utilize five
embedding vectors for each object, which balances image
quality and computational efficiency. Using multi-vector
embeddings allows the model to better capture the diverse
attributes of objects, particularly for the less familiar and
name-able objects in the NOUN database.

Unlike [4], where the learnable token embedding is
initialized with a single-word descriptor of the input ob-
ject(e.g., ’mug,’ ’cat’), we initialize our learnable embed-
ding vectors by randomly selecting from the text encoder
vocabulary. This randomization approach not only ad-

“A Photo of S*”

T5 tokenizer Random tokens

T5 embedding

v1, v2, v3 vx1, vx2,..., vx5

Learnable vectors

Imagen model

Source Image

Update learnable vectors

step 0 step nstep k. . . . . .step i . . .

Generated Image

Figure 1. Overview of our approach: A prompt tokenized by the
T5 encoder vocabulary. The learnable ”words” (S*) in the prompt
are initialized with randomly selected token IDs from the T5 vo-
cabulary space. Then, these tokens are transformed into embed-
ding vectors via T5, and fed into the Imagen model to generate the
image. We utilize the Imagen loss function to evaluate the gener-
ated image against the source image, which is used to guide the
updates of the learnable vectors.

dresses the challenge of using a single general descriptor
to summarize novel objects, but also ensure the generations
are retrieved from similar concepts.

We adopt the T5X model [11] as the embedder for the
textual encoding step. Like other text encoder models,
each input word is transformed into an index that corre-
sponds to a unique dense embedding vector in a pre-defined
dictionary. The input prompts are processed using the
Transformer-based self-attention mechanism within T5X,
generating the text embedding vectors. This embedding
space also serves as the basis for finding new embedding
vectors to represent objects the NOUN database. The gen-
erated embedding vectors are passed to the downstream pre-
trained text-to-image model.

We use the Imagen model [14] as the text-to-image
model to generate the images. To optimize the quality of
the generated images, we minimize the loss function asso-
ciated with Imagen Model, which evaluates the similarity
between the source image and generated image. The loss
result guides the updates for the learnable embedding vec-
tors. We use adafactor optimizer to optimize the learnable
embedding vectors.

4. Experiments

4.1. Dataset

We utilize the Novel Object and Unusual Name (NOUN)
Database [6], which contains 64 principle novel objects.
Each object is annotated with two key metrics: a Familiar-
ity Score and a Name-ability Score, both scores are collected
by human surveys. The Familiarity Score reflects how fa-
miliar the objects are to people, and the Name-ability Score



measures how consistently people can name them. For this
study, we selected 40 objects from the database, which are
divided into two groups. The first group contains the top
20 objects with the highest Familiarity Score, representing
the most familiar items in the database. The second group
is the bottom 20 objects with the lowest Familiarity Score,
representing the least familiar and more novel items. The
selected objects are listed in Supplementary Table 6. Each
object’s image was augmented using the data augmentation
process described in Section 4.1.1 before being passed to
the pipeline.

4.1.1 Data Augmentation

To enrich the variation of each object in the selected dataset,
we applied various data augmentation techniques:
• Scaling: Each object image was randomly resized to a

scale ranging from 50% to 100% of its original size.
• Translation: The object’s position within the image was

randomly shifted along both the x and y axes.
• Horizontal Flipping: The object’s left-right orientation

was randomly flipped.
• Rotation: Each object was randomly rotated at varying

angles.
These transformations produced 12 variations of each

object, resulting in a more diverse set of augmented data.
More examples are shown in Supplementary 7.

4.2. Experimental setup

We began by running experiments to determine the opti-
mal number of embedding vectors to use to represent ob-
jects in the dataset. Details of the experiments setup and re-
sults can be found in Supplementary 8. We then evaluated
whether our method can re-create the objects with the neu-
tral prompt ”A photo of S*”. Sample outputs are shown in
Supplementary 9.1. Next, to test generalization of the new
learned objects in new contexts, we generated images with
three distinct styles and seven distinct backgrounds using
the new learned embedding for each object. The selected
styles and backgrounds are shown in Table 1. We used the
prompt template, ”A or An {style} of a S* in the center
of {background}” to guide the Imagen model’s image gen-
eration, where S* was replaced by the learned representa-
tive embedding vectors during the text encoding process.
For each combination of the style and the background, 16
images were, provided for evaluating how effectively the
model recreates the novel and familiar objects over differ-
ent contexts.

4.3. Qualitative examples

Figure 2 shows some examples that’s generated with our
method under new scenes. We observed that when generat-
ing images with different scenes and styles, the object inte-

Style DSLR photo, oil painting, surreal digital art
Background beach, city, park, rain, river, snow, space

Table 1. 3 styles and 7 backgrounds that are used to compare the
ability to recreate images in various contexts for both familiar and
novel objects.

Oil painting Surreal digital art

Novel
Objects

Familiar
Objects

2023

river snowrain beach cityspace

2003

2025 2022 2026 2056 2029

2024 2038 2010 2047 2053

DSLR

2018 20292013

2061 2059 2060

park city snow

Figure 2. Selected Sample outputs for images generated for dif-
ferent scenes. The images are generated with prompt ”A or An
{style} photo of S* in the {background}”, where the left part
shows sample outputs from DSLR style, the middle is the sam-
ple outputs for the oil painting style, and the right part shows the
sample outputs for the surreal digital art style. The top half is the
sample outputs for novel objects and the bottom half shows the
examples for familiar objects.

grates better with relatively simple backgrounds like beach,
rain, river and snow. However, with more complicate back-
grounds such as city, park, and space, the results are incon-
sistent. The image generation model fails in some cases for
both novel and familiar objects in these complicate back-
grounds, where the model may attempt to replace a similar
object that can be better fit in these backgrounds. The model
successfully generates DSLR style images for both familiar
and novel objects; however, for the oil painting and surreal
digital art styles, it tends to produce higher-quality results
for familiar objects. More successful and failure examples
and discussions are included in the Supplementary 9.2.

4.4. Evaluation

To evaluate and compare the generated images for both
familiar and novel objects, we conducted a human rating
study. Participants were asked to express their preferences
between paired generated images, each containing one ob-
ject from the familiar set and one from the novel set, gen-
erated in the same style and background. The survey form
was structured as follows:

For each style listed in Table 1, we randomly shuffled the
familiar and novel objects lists to ensure the randomization
before creating the pairs. After pairing, the paired list was
shuffled again to ensure a randomized presentation. Also,
to minimize potential bias from human associations, we en-
sured that identical objects were not shown consecutively



Figure 3. Sample question presented in the survey form, where
participants rate two generated images based upon the text prompt
and the original objects shown at the beginning.

in the survey. This approach ensured a well-distributed and
unbiased presentation order. For each pair of objects, the
familiar and novel objects were randomly assigned to ei-
ther the left or right position, and one pair of style and
background was randomly selected for each pair of objects.
Based upon the style, background, and object, we randomly
chose one generated image. We also ensured that no gener-
ated image was repeated in the same form during the study.

Each participant was asked to evaluate 60 pairs of im-
ages in total, with 20 pairs for each style. Participants were
shown the original objects, along with the text prompt that
is used to generate the images for each question. Then, we
ask participants to provide their preferences for ”Which im-
age more faithfully reflects its description, A or B?” as il-
lustrated in Figure 3.

We generated 4 distinct survey forms with different ini-
tial random states. We collected responses from 16 partici-
pants. In the evaluation, participant responses were scored
as follows: ”Strongly left/right” was assigned a score of
1, ”Slightly left/right” was assigned 0.5, and ”About the
Same” was scored as 0. The ”About the Same” option
indicates that the paired images were considered as either
equally good or equally bad. Figure 4 presents the distribu-
tion of the weighted results of the participants’ preferences
for the generated images of both novel and familiar objects.

Figure 4. The distribution of weighted results based upon partici-
pants’ preferences, grouped by the generated images’ styles, with
standard deviation as error bars, reflecting the for each style that
participants agree that the generated images of familiar objects are
better than the novel ones.

Style Wilcoxon p-value

DSLR photo 0.7209
oil painting 0.0342
surreal digital art 0.0587

Table 2. P-values from the Wilcoxon signed-rank test comparing
participants ratings for generated images of familiar and novel ob-
jects grouped by styles.

We performed the Wilcoxon signed-rank test to analyze
the statistical differences between the generated images of
novel and familiar objects. The results are summarized in
Table 2. For ”oil painting” style, participants rated that the
generated images for familiar objects are significantly better
than those of novel objects. For ”surreal digital art” style,
the generated images of familiar objects tends to be better
than those of novel objects. For ”DSLR photo” style, the
quality of the generated images tends to be the same. These
quantitative analysis results match the observations in the
qualitative examples in Section 4.3.

Taken together, those results demonstrate that the Text-
to-image generative models we studied here learns to gener-
alize concepts and objects that are familiar better than those
that are more novel.

5. Conclusion
In this work, we extend Textual Inversion[4] by using mul-
tiple randomly initialized embedding vectors to represent
an object. By testing on the NOUN dataset, we examine
the hypothesis that the text-to-image model we used learns
generalization of familiar objects better than novel objects.
Human rating surveys confirm that these models generalize
familiar concepts more effectively than novel ones. In fu-
ture work, we aim to enhance the model’s performance in
handling complex backgrounds, such as city, park, etc. and
investigate strategies to improve the generation quality of
novel objects.
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Selected Categories

Familiar 2003, 2004, 2009, 2010, 2012, 2017, 2024
2032, 2034, 2036, 2038, 2042, 2047, 2051, 2052

2053, 2059, 2060, 2061, 2062
Novel 2001 ,2005, 2013, 2018, 2021, 2022

2023, 2025, 2026, 2028, 2029, 2030, 2033
2035, 2044, 2048, 2049, 2054, 2055, 2056

Table 3. 20 familiar and 20 novel objects’ categories from the
NOUN database that are used in our experiments.

Source Image Variances generated by data augmentation

Figure 5. Examples of the source image of Object 2033 and vari-
ances generated via data augmentation.

6. Selected Familiar and Novel Objects’ Cate-
gories

Table 3 lists the 20 familiar and 20 novel objects selected to
use in our study.

7. Data Augmentation Sample Outputs
Figure 5 shows several variations generated via our data
augmentation method for Object 2033.

8. Determining the Optimal Number of Em-
bedding Vectors for Object Representation

To ensure the number of embedding vectors can effectively
capture the variability of objects with different levels of fa-
miliarity and name-ability scores, we selected three object
categories from the NOUN database: Category 2038, Cate-
gory 2044, and Category 2053, as shown in Figure 6. These
categories were chosen based on their distinct scores. Cate-
gory 2038 has the highest familiarity score (56%); Category
2053 has the highest name-ability score (79%); Category
2044 has the lowest familiarity score (6%) and the lowest
name-ability score (27%).

We trained the model for 5000 steps, repeating this pro-
cess for 10 times for each configuration of embedding vec-
tors (1, 5 and 10 vectors). At the first step, the embedding
vectors were randomly initialized. To constrain the gener-
ated images, we randomly sample 27 neutral prompts from

Figure 6. Objects from the NOUN database that are used to deter-
mine the optimal number of embedding vectors for representing
objects in the dataset.

the CLIP ImageNet templates [9]. Here is the full list of
neutral prompts that we used:
• a photo of a S*.
• a rendering of a S*.
• a cropped photo of the S*.
• the photo of a S*.
• a photo of a clean S*.
• a photo of a dirty S*.
• a dark photo of the S*.
• a photo of my S*.
• a photo of the cool S*.
• a close-up photo of a S*.
• a bright photo of the S*.
• a cropped photo of a S*.
• a photo of the S*.
• a good photo of the S*.
• a photo of one S*.
• a close-up photo of the S*.
• a rendition of the S*.
• a photo of the clean S*.
• a rendition of a S*.
• a photo of a nice S*.
• a good photo of a S*.
• a photo of the nice S*.
• a photo of the small S*.
• a photo of the weird S*.
• a photo of the large S*.
• a photo of a cool S*.
• a photo of a small S*.
We generated one 256 x 256 image for each prompt, which
then are mapped to the CLIP space using the VIT B32
model. We evaluated the generated images by computing
the pairwise cosine similarity between the generated images



Figure 7. Averaged cosine similarity across 10 repeated experi-
ments for each number of embedding tokens that is used for repre-
senting the object, with error bars representing the 95% confidence
interval.

and the original source images, and use the averaged score
as the final measurement for performance.

This thorough evaluation allows us to assess how well
different numbers of embedding vectors performed across
objects with varying familiarity and name-ability scores,
which ensures our method is robust across a diverse range of
objects types. The experimental results are shown in Figure
7.

To statistically evaluate the differences of varying the
number of embedding vectors, we performed an one-way
ANOVA (Analysis of Variance) on the results obtained us-
ing 1, 5, and 10 embedding vectors for Category 2038,
2044, and 2053. The p-values from the ANOVA in Table
4 indicate that there at least one pair is significantly dif-
ferent from the other pairs in each category. As shown in
Figure 7, both 5 and 10 embedding vectors yield better re-
sults compared to using just 1 vector. To further investigate
the differences, we conducted independent t-tests between
using 5 and 10 embedding vectors of each category. The
t-test results in Table 4 show significant differences in per-
formance for categories 2038 and 2053, which represents
more familiar and easily name-able objects. This suggests
that increasing the number of embedding vectors improves
representation for these categories. However, for Category
2044, which represents more novel and less familiar objects,
there was no significant improvement when increasing the
number of embedding vectors.

Given the goal of this study is to find a balanced and
general approach for both familiar and novel objects, we
conclude that using 5 embedding vectors provides a suffi-
cient trade-off between the performance and computational
efficiency for both familiar and novel objects. Employing 5
vectors effectively captures objects variability while mini-
mizing the computation time and resource costs. Addition-
ally, using more tokens may affect the model’s capabilities
of generalization. A larger number of tokens could intro-
duce noisy or redundant information, which may impact

Category one-way ANOVA t-test(5 and 10 vectors)

2038 2.847e-11 0.0402
2044 1.153e-10 0.4852
2058 3.026e-14 0.0056

Table 4. P-values from the one-way ANOVA analysis comparing
the use of 1, 5, and 10 embedding vectors across Category 2038,
2044, and 2053, alongside p-values from the t-test comparing the
use of 5 and 10 embedding vectors for the same categories.

A photo of S*

Category

2033

2001

2005

2021

Source Image

Novel objects

A photo of S*Source Image

Familiar objects

Category

2052

2009

2012

2042

Figure 8. Sample outputs for images generated by neutral prompt
”A photo of S*” for both familiar and novel categories. In general,
we can recreate high-similar objects for both familiar and novel
categories.

the robust generalization across the diverse objects in the
dataset. For simpler objects, this could potentially result in
overfitting. As part of future work, we plan to conduct a
more thorough investigations in comparing the impacts of
using longer and shorter token representations.

9. Supplementary for Qualitative Examples

9.1. Generated Images from Neural Prompts

In Figure 8, we show some sample results generated by
prompt ”A photo of S*” from both novel and familiar cate-
gories, where our methods can successfully recreate similar
objects for both familiar and novel categories. The varied
orientations result from the diverse orientations in our aug-
mented training data.

9.2. More Examples of Generated Images for Dif-
ferent Styles

Figure 9 shows some examples that evaluate our method
ability to compose objects into new scenes with prompt ”A
DSLR photo of S* in the center of {background}”. The
list of backgrounds is list in Table 1. For relatively sim-
ple backgrounds like beach, rain, river, and snow, most
times the model is able to consistently generate high-quality
images of both novel and familiar objects. However, with



2013

Source image A DSLR photo of 
S* in the beach

A DSLR photo 
of S* in the city

A DSLR photo of 
S* in the park

A DSLR photo 
of S* in the rain

A DSLR photo of 
S* in the river

A DSLR photo of 
S* in the snow

A DSLR photo of 
S* in the space

2018

2029

2061

2059

2032

Novel 
Objects

Familiar 
Objects

Figure 9. Select sample outputs for images generated for different scenes with prompt ”A DSLR photo of S* in the {background}”, where
Category 2013, 2018 and 2029 are labeled as novel objects and Category 2061, 2059, and 2032 are labeled as familiar objects

more complicate backgrounds such as city, park, and space,
we observe the results are inconsistent. The image genera-
tion model fails in some cases for both novel and familiar
objects in these complicate backgrounds, where the model
may attempt to replace a similar object that can be better fit
in these backgrounds. For example, it replaces Object 2032
with a camera tripod for generating ”A DSLR photo of S*
in the center of city”. Similarly, it re-constructs Object 2061
to a sphere shape instead of the original donuts shape when
generating ”A DSLR photo of S* in the center of space”.
We further assess the results generated for the combination
of different scenes and different styles using prompt ”A or
An {style} photo of S* in the center of {background}”.

Figure 10 and Figure 11 show more selected samples
from the generated images of familiar objects and novel ob-
jects with oil painting and surreal digital art styles. We
observed that the model tends to generate higher-quality re-
sults for familiar objects in both styles, especially in the
surreal digital art style, which aligns with the human sur-
vey results in Section 4.4. Similar to the observations for
the DSLR style, we also observed that the model generates
inconsistent results for complex backgrounds such as city,

park, and space. Therefore, we believe improving image
generation for complex backgrounds is a promising direc-
tion for future work.



Oil 
painting 2059

2038

2053

2052 2010 2012 2047

Surreal 
digital 
art

2009 2036 2038 2061 2051

2062 2032

Beach Snow City Rain Park River Space

Figure 10. Select sample outputs for familiar objects with ”oil painting” and ”surreal digital art” styles

Oil 
painting 2021

2005

2022

2048 2001 2018 2035

Surreal 
digital 
art

2033 2054 2044 2013 2023

2055 2049

Beach Snow City Rain Park River Space

Figure 11. Select sample outputs for novel objects with ”oil painting” and ”surreal digital art” styles
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