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ABSTRACT

The idea of conservatism has led to significant progress in offline reinforcement
learning (RL) where an agent learns from pre-collected datasets. However, it
is still an open question to resolve offline RL in the more practical multi-agent
setting as many real-world scenarios involve interaction among multiple agents.
Given the recent success of transferring online RL algorithms to the multi-agent
setting, one may expect that offline RL algorithms will also transfer to multi-agent
settings directly. Surprisingly, when conservatism-based algorithms are applied to
the multi-agent setting, the performance degrades significantly with an increasing
number of agents. Towards mitigating the degradation, we identify that a key issue
that the landscape of the value function can be non-concave and policy gradient
improvements are prone to local optima. Multiple agents exacerbate the problem
since the suboptimal policy by any agent could lead to uncoordinated global fail-
ure. Following this intuition, we propose a simple yet effective method, Offline
Multi-Agent RL with Actor Rectification (OMAR), to tackle this critical chal-
lenge via an effective combination of first-order policy gradient and zeroth-order
optimization methods for the actor to better optimize the conservative value func-
tion. Despite the simplicity, OMAR significantly outperforms strong baselines
with state-of-the-art performance in multi-agent continuous control benchmarks.

1 INTRODUCTION

Offline reinforcement learning (RL) has shown great potential in advancing the deployment of RL
in real-world tasks where interaction with the environment is prohibitive, costly, or risky (Thomas,
2015). Since an agent has to learn from a given pre-collected dataset in offline RL, it becomes chal-
lenging for regular online RL algorithms such as DDPG (Lillicrap et al., 2016) and TD3 (Fujimoto
et al., 2018) due to extrapolation error (Lee et al., 2021).

There has been recent progress in tackling the problem based on conservatism. Behavior regulariza-
tion (Wu et al., 2019; Kumar et al., 2019), e.g., TD3 with Behavior Cloning (TD3+BC) (Fujimoto
& Gu, 2021), compels the learning policy to stay close to the manifold of the datasets. Yet, its
performance highly depends on the quality of the dataset. Another line of research investigates
incorporating conservatism into the value function by critic regularization (Nachum et al., 2019;
Kostrikov et al., 2021), e.g., Conservative Q-Learning (Kumar et al., 2020), which usually learns a
conservative estimate of the value function to directly address the extrapolation error.

However, many practical scenarios involve multiple agents, e.g., multi-robot control (Amato, 2018),
autonomous driving (Pomerleau, 1989; Sadigh et al., 2016). Therefore, offline multi-agent rein-
forcement learning (MARL) (Yang et al., 2021; Jiang & Lu, 2021) is crucial for solving real-world
tasks. Observing recent success of Independent PPO (de Witt et al., 2020) and Multi-Agent PPO (Yu
et al., 2021), both of which are based on the PPO (Schulman et al., 2017) algorithm, we find that on-
line RL algorithms can be transferred to multi-agent scenarios through either decentralized training
or a centralized value function without bells and whistles. Hence, we naturally expect that offline
RL algorithms would also transfer easily when applied to multi-agent tasks.

Surprisingly, we observe that the performance of the state-of-the-art conservatism-based CQL (Ku-
mar et al., 2020) algorithm in offline RL degrades dramatically with an increasing number of agents
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as shown in Figure 1(c) in our experiments. Towards mitigating the degradation, we identify a
critical issue in CQL: solely regularizing the critic is insufficient for multiple agents to learn good
policies for coordination in the offline setting. The primary cause is that first-order policy gradi-
ent methods are prone to local optima (Nachum et al., 2016; Ge et al., 2017; Safran & Shamir,
2017), saddle points (Vlatakis-Gkaragkounis et al., 2019; Sun et al., 2020), or noisy gradient esti-
mates (Such et al., 2017). As a result, this can lead to uncoordinated suboptimal learning behavior
because the actor cannot leverage the global information in the critic well. The issue is exacerbated
more in the multi-agent settings due to the exponentially-sized joint action space (Yang et al., 2021)
as well as the nature of the setting that requires each of the agent to learn a good policy for a suc-
cessful joint policy. For example, in a basketball game, where there are two competing teams each
consisting of five players. When one of the players passes the ball among them, it is important
for all teammates to perform their duties well in their roles to win the game. As a result, if one
of the agents in the team fails to learn a good policy, it can fail to cooperate with other agents for
coordinated behaviors and lose the ball.

In this paper, we propose a surprisingly simple yet effective method for offline multi-agent contin-
uous control, Offline MARL with Actor Rectification (OMAR), to better leverage the conservative
value function via an effective combination of first-order policy gradient and zeroth-order optimiza-
tion methods. Towards this goal, we add a regularizer to the actor loss, which encourages the actor
to mimic actions from the zeroth-order optimizer that maximizes Q-values so that we can combine
the best of both first-order policy gradient and zeroth-order optimization. The sampling mechanism
is motivated by evolution strategies (Such et al., 2017; Conti et al., 2017; Mania et al., 2018), which
recently emerged as another paradigm for solving sequential decision making tasks (Salimans et al.,
2017). Specifically, the zeroth-order optimization part maintains an iteratively updated and refined
Gaussian distribution to find better actions based on Q-values. Then, we rectify the policy towards
this action to better leverage the conservative value function. We conduct extensive experiments in
standard continuous control multi-agent particle environments and the complex multi-agent loco-
motion task to demonstrate its effectiveness. On all the benchmark tasks, OMAR outperforms the
multi-agent version of offline RL algorithms including CQL (Kumar et al., 2020) and TD3+BC (Fu-
jimoto & Gu, 2021), as well as a recent offline MARL algorithm MA-ICQ (Yang et al., 2021), and
achieves the state-of-the-art performance.

The main contribution of this work can be summarized as follows. We propose the OMAR al-
gorithm that effectively leverages both first-order and zero-order optimization for solving offline
MARL tasks. In addition, we theoretically prove that OMAR leads to safe policy improvement.
Finally, extensive experimental results demonstrate the effectiveness of OMAR, which significantly
outperforms strong baseline methods and achieves state-of-the-art performance in datasets with dif-
ferent qualities in both decentralized and centralized learning paradigms.

2 BACKGROUND

We consider the framework of partially observable Markov games (POMG) (Littman, 1994; Hu
et al., 1998), which extends Markov decision processes to the multi-agent setting. A POMG with N
agents is defined by a set of global states S , a set of actions A1, . . . ,AN , and a set of observations
O1, . . . ,ON for each agent. At each timestep, each agent i receive an observation oi and chooses
an action based on its policy ⇡i. The environment transits to the next state according to the state
transition function P : S ⇥ A1 ⇥ . . . ⇥ AN ⇥ S ! [0, 1]. Each agent receives a reward based
on the reward function ri : S ⇥ A1 . . . ⇥ AN ! R and a private observation oi : S ! Oi. The
initial state distribution is defined by ⇢ : S ! [0, 1]. The goal is to find a set of optimal policies
⇡ = {⇡1, . . . ,⇡N}, where each agent aims to maximize its own discounted return

P1
t=0 �

trti with
� denoting the discount factor. In the offline setting, agents learn from a fixed dataset D generated
from the behavior policy ⇡� without interaction with the environments.

2.1 MULTI-AGENT ACTOR CRITIC

Centralized critic. Lowe et al. (2017) propose Multi-Agent Deep Deterministic Policy Gradi-
ents (MADDPG) under the centralized training with decentralized execution (CTDE) paradigm
by extending the DDPG algorithm (Lillicrap et al., 2016) to the multi-agent setting. In CTDE,
agents are trained in a centralized way where they can access to extra global information dur-
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ing training while they need to learn decentralized policies in order to act based only on lo-
cal observations during execution. In MADDPG, for an agent i, the centralized critic Qi is
parameterized by ✓i. It takes the global state action joint action as inputs, and aims to min-
imize the temporal difference error defined by L(✓i) = ED [(Qi (s, a1, . . . , an)� yi)

2], where
yi = ri + �Q̄i(s0, a01, · · · , a

0
n)|a0

j=⇡̄j(o0j)
and Q̄i and ⇡̄i denote target networks. To reduce

the overestimation problem in MADDPG, MATD3 (Ackermann et al., 2019) estimates the tar-
get value using double estimators based on TD3 (Fujimoto et al., 2018), where yi = ri +
�mink=1,2 Q̄k

i (s
0, a01, · · · , a

0
n)|a0

j=⇡̄j(o0j)
. Agents learn decentralized policies ⇡i parameterized by

�i, which take only local observations as inputs, and are trained by multi-agent policy gradients ac-
cording to r�iJ(⇡i) = ED

⇥
r�i⇡i(ai|oi)raiQi (s, a1, . . . , an) |ai=⇡i(oi)

⇤
, where ai is predicted

from its policy while a�i are sampled from the replay buffer.

Decentralized critic. Although using centralized critics is widely-adopted in multi-agent actor-
critic methods, it introduces scalability issues due to the exponentially sized joint action space w.r.t.
the number of agents (Iqbal & Sha, 2019). On the other hand, independent learning approaches
train decentralized critics that take only the local observation and action as inputs. It is shown
in de Witt et al. (2020); Lyu et al. (2021) that decentralized value functions can result in more robust
performance and be beneficial in practice compared with centralized critic approaches. de Witt et al.
(2020) propose Independent Proximal Policy Optimization (IPPO) based on PPO (Schulman et al.,
2017), and show that it can match or even outperform CTDE approaches in the challenging discrete
control benchmark tasks (Samvelyan et al., 2019). We can also obtain the Independent TD3 (ITD3)
algorithm based on decentralized critics, which is trained to minimize the temporal difference error
defined by L(✓i) = ED

h
(Qi (oi, ai)� yi)

2
i
, where yi = ri + �mink=1,2 Q̄k

i (o
0
i, ⇡̄i(o0i)).

2.2 CONSERVATIVE Q-LEARNING

Conservative Q-Learning (CQL) (Kumar et al., 2020) adds a regularizer to the critic loss to address
the extrapolation error and learns lower-bounded Q-values. It penalizes Q-values of state-action
pairs sampled from a uniform distribution or a policy while encouraging Q-values for state-action
pairs in the dataset to be large. Specifically, when built upon decentralized critic methods in MARL,
the critic loss is defined as in Eq. (1), where ↵ denotes the regularization coefficient and ⇡̂�i is the
empirical behavior policy of agent i.

EDi

⇥
(Qi(oi, ai)� yi)

2
⇤
+ ↵EDi

"
log

X

ai

exp(Qi(oi, ai))� Eai⇠⇡̂�i
(ai|oi)[Qi(oi, ai)]

#
(1)

3 PROPOSED METHOD

In this section, we first provide a motivating example where previous methods, such as CQL (Kumar
et al., 2020) and TD3+BC (Fujimoto & Gu, 2021) can be inefficient in the face of the multi-agent
setting. Then, we propose a method called Offline Multi-Agent Reinforcement Learning with Actor
Rectification (OMAR), where we effectively combine first-order policy gradients and zeroth-order
optimization methods for the actor to better optimize the conservative value function.

3.1 THE MOTIVATING EXAMPLE

We design a Spread environment as shown in Figure 1(a) which involves n agents and n landmarks
(n � 1) with 1-dimensional action space to demonstrate the problem and reveal interesting findings.
For the multi-agent setting in the Spread task, n agents need to learn how to cooperate to cover all
landmarks and avoid colliding with each other or arriving at the same landmark by coordinating
their actions. The experimental setup is the same as in Section 4.1.1.

Figure 1(b) demonstrates the performance of the multi-agent version of TD3+BC (Fujimoto & Gu,
2021), CQL (Kumar et al., 2020), and OMAR based on ITD3 in the medium-replay dataset from the
two-agent Spread environment. As MA-TD3+BC is based on behavior regularization that compels
the learned policy to stay close to the behavior policy, its performance largely depends on the quality
of the dataset. Moreover, it can be detrimental to regularize policies to be close to the dataset in
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multi-agent settings due to decentralized training and the resulting partial observations. MA-CQL
outperforms MA-TD3+BC, which pushes down Q-values of state-action pairs that are sampled from
a random or the current policy while pushing up Q-values for state-action pairs in the dataset.

Figure 1(c) demonstrates the performance improvement percentage of MA-CQL over the behavior
policy with an increasing number of agents ranging from one to five. From Figure 1(c), we observe
that its performance degrades dramatically as there are more agents.

(a) (b) (c) (d)

Figure 1: Analysis of MA-TD3+BC, MA-CQL, and OMAR in the medium-replay dataset from
Spread. (a) Spread. (b) Performance. (c) Performance improvement percentage of MA-CQL over
the behavior policy with varying number of agents. (d) Visualization of the Q-function landscape.
The red circle represents the predicted action from the agent using MA-CQL. The green triangle and
blue square represent the predicted action from the updated policy of MA-CQL and OMAR.

Towards mitigating the performance degradation, we identify a key issue in MA-CQL that solely
regularizing the critic is insufficient for multiple agents to learn good policies for coordination. In
Figure 1(d), we visualize the Q-function landscape of MA-CQL during training for an agent in a
timestep, with the red circle corresponding to the predicted action from the actor. The green triangle
represents the action predicted from the actor after the training step, where the policy gets stuck
in a bad local optimum. The first-order policy gradient method is prone to local optima (Dauphin
et al., 2014; Ahmed et al., 2019), where the agent can fail to globally leverage the conservative
value function well and thus leading to suboptimal, uncoordinated learning behavior. Note that the
problem is exacerbated more in the offline multi-agent setting due to the exponentially sized joint
action space w.r.t. the number of agents (Yang et al., 2021). In addition, it usually requires each of
the agent to learn a good policy for coordination to solve the task, and the suboptimal policy by any
agent could result in uncoordinated global failure.

Tables 1 and 2 show the performance of MA-CQL by increasing the learning rate or the number of
updates for the actor. The results illustrate that, to solve this challenging problem, we need a better
solution than blindly tuning hyperparameters. In the next section, we introduce how we tackle this
problem by combining zeroth-order optimization with current RL algorithms.

Table 1: Performance of MA-CQL with
larger learning rate for the actor.

Learning rate 1e� 2 5e� 2 1e� 1

Performance 267.9 202.0 100.1
±19.0 ±38.9 ±36.4

Table 2: Performance of MA-CQL with
larger number of updates for the actor.

# Updates 1 5 20

Performance 267.9 278.6 263.7
±19.0 ±14.8 ±23.1

3.2 OFFLINE MULTI-AGENT REINFORCEMENT LEARNING WITH ACTOR RECTIFICATION

Our key identification as above is that policy gradient improvements are prone to local optima given
a bad value function landscape. It is important to note that this presents a particularly critical chal-
lenge in the multi-agent setting since it is sensitive to suboptimal actions. Zeroth-order optimization
methods, e.g., evolution strategies (Rubinstein & Kroese, 2013; Such et al., 2017; Conti et al., 2017;
Salimans et al., 2017; Mania et al., 2018), offer an alternative for policy optimization and are also
robust to local optima (Rubinstein & Kroese, 2013).

We propose Offline Multi-Agent Reinforcement Learning with Actor Rectification (OMAR) which
incorporates sampled actions based on Q-values to rectify the actor so that it can escape from bad
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local optima. For simplicity of presentation, we demonstrate our method based on the decentralized
training paradigm introduced in Section 2.1. Note that it can also be applied to centralized critics,
as shown in Section 4.1.4. Specifically, we add a regularizer to the policy objective:

EDi

h
(1� ⌧)Qi(oi,⇡i(oi))� ⌧ (⇡i(oi)� âi)

2
i

(2)

where âi is the action provided by the zeroth-order optimizer and ⌧ 2 [0, 1] denotes the regulariza-
tion coefficient. Note that TD3+BC (Fujimoto & Gu, 2021) uses the seen action in the dataset for
âi. The distinction between optimized and seen actions enables OMAR to perform well even if the
dataset quality is from mediocre to low.

We borrow intuition for sampling actions from recent evolution strategy (ES) algorithms, which
show a welcoming avenue towards using zeroth-order method for policy optimization. For example,
the cross-entropy method (CEM) (Rubinstein & Kroese, 2013), a popular ES algorithm, has shown
great potential in RL (Lim et al., 2018), especially by sampling in the parameter space of the ac-
tor (Pourchot & Sigaud, 2019). However, CEM does not scale to tasks with high-dimensional space
well (Nagabandi et al., 2020). We therefore propose to sample actions in a softer way motivated
by Williams et al. (2015); Lowrey et al. (2018). Specifically, we sample actions according to an it-
eratively refined Gaussian distribution N (µi,�i). At each iteration j, we draw K candidate actions
by aji ⇠ N (µj

i ,�
j
i ) and evaluate their Q-values. The mean and standard deviation of the sampling

distribution is updated and refined by Eq. (3), which produces a softer update and leverages more
samples in the update (Nagabandi et al., 2020). The OMAR algorithm is shown in Algorithm 1.

µj+1
i =

PK
k=1 exp(�Q

k
i )a

k
iPK

m=1 exp(�Q
m
i )

, �j+1
i =

vuut
KX

k=1

⇣
aki � µj

i

⌘2
. (3)

Besides the algorithmic design, we also prove that OMAR gives a safe policy improvement guaran-
tee. Let J(⇡i) denote the discounted return of a policy ⇡i in the empirical MDP M̂i which is induced
by transitions in the dataset Di, i.e., M̂i = {(oi, ai, ri, o0i) 2 Di}. In Theorem 1, we give a lower
bound on the difference between the policy performance of OMAR over the empirical behavior
policy ⇡̂�i in the empirical MDP M̂i. The proof can be found in Appendix A.
Theorem 1. Let ⇡⇤

i be the policy obtained by optimizing Eq. (2). Then, we have that
J(⇡⇤

i ) � J(⇡̂�i) �
↵

1��Eoi⇠d⇡⇤
i (oi)

[D(⇡⇤
i , ⇡̂�i)(oi)] + ⌧

1�⌧ Eoi⇠d⇡⇤
i (oi)

⇥
(⇡⇤

i (oi)� âi)2
⇤
�

⌧
1�⌧ Eoi⇠d

⇡̂�i (oi),ai⇠⇡̂�i

⇥
(ai � âi)2

⇤
, where D(⇡i, ⇡̂�i)(oi) = 1

⇡̂�i
(⇡i(oi)|oi) � 1, and d⇡i(oi) is

the marginal discounted distribution of observations of policy ⇡i.

As shown in Theorem 1, the difference between the second and third terms on the right-hand side
is the difference between two expected distances. The former corresponds to the gap between the
optimal action and the action from our zeroth-order optimizer, while the latter corresponds to the
gap between the action from the behavior policy and the optimized action. Since both terms can be
bounded, we find that OMAR gives a safe policy improvement guarantee over ⇡̂�i .

Figure 2: Performance
improvement percentage
of OMAR over MA-
CQL with varying num-
ber of agents.

Discussion of the effect of OMAR in the Spread environment. We
now investigate whether OMAR can address the identified problem and
analyze its effect in the Spread environment introduced in Section 3.1. In
Figure 1(d), the blue square corresponds to the action from the updated
actor using OMAR according to Eq. (2). In contrast to the policy update
in MA-CQL, OMAR can better leverage the global information in the
critic and help the actor to escape from the bad local optima. Figure 1(b)
further validates that OMAR significantly improves MA-CQL in terms
of both performance and efficiency. Figure 2 shows the performance
improvement percentage of OMAR over MA-CQL with varying number
of agents, where OMAR always outperforms MA-CQL. We also notice
that the performance improvement of OMAR over MA-CQL is much
more significant in the multi-agent setting in the Spread task than the
single-agent setting, which echoes with what is discussed above that the problem becomes more
critical in scenarios with more agents that requires each of the agents to learn a good policy to
cooperate for solving the task.
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Algorithm 1 Offline Multi-Agent Reinforcement Learning with Actor Rectification (OMAR).

1: Initialize Q-networks Q1
i , Q2

i and policy networks ⇡i with random parameters ✓i1, ✓i2, �i, and
target networks with ✓̄1i  ✓1i , ✓̄2i  ✓2i , and �̄i  �i for each agent i 2 [1, N ]

2: for training step t = 1 to T do

3: for agent i = 1 to N do

4: Sample a random minibatch of S samples (oi, ai, ri, o0i) from B

5: Set y = ri + �min
�
Q̄1

i (o
0
i,⇡i(o0i + ✏)), Q̄2

i (o
0
i,⇡i(o0i + ✏))

�

6: Update critics ✓i to minimize Eq. (1)
7: Initialize N (µi,�i)
8: for iteration j = 1 to J do

9: Draw a population with K individuals Âi = {âki ⇠ N (µi,�i)}Kk=1

10: Estimate Q-values for K individuals in the population {Q1
i (oi, â

k
i )}

K
k=1

11: Update µi and �i of the distribution according to Eq. (3)
12: Obtain the picked candidate action âi = argmaxâi2Âi[⇡i(oi)

Q1
i (oi, âi)

13: Update the actor �i  max�i
1
S

P
(1� ⌧)Q1

i (oi,⇡i(oi))� ⌧ (⇡i(oi)� âi)
2

14: Update target networks: ✓̄ji  ⇢✓ji + (1� ⇢)✓̄ji and �̄i  ⇢�i + (1� ⇢)�̄i

4 EXPERIMENTS

In this section, we conduct a series of experiments to study the following key questions: i) How
does OMAR compare against state-of-the-art offline RL and offline MARL methods? ii) What
is the effect of critical hyperparameters and the sampling scheme? iii) Does the method help in
both centralized training and decentralized training paradigms? iv) Can OMAR scale to the more
complex continuous multi-agent locomotion tasks?

4.1 MULTI-AGENT PARTICLE ENVIRONMENTS

4.1.1 EXPERIMENTAL SETUP

We first conduct a series of experiments in the widely-adopted multi-agent particle tasks (Lowe
et al., 2017) as shown in Figure 5 in Appendix B.1. The cooperative navigation task includes 3
agents and 3 landmarks, where agents are rewarded based on the distance to the landmarks and
penalized for colliding with each other. Thus, it is important for agents to cooperate to cover all
landmarks without collision. In predator-prey, 3 predators aim to catch the prey. The predators need
to cooperate to surround and catch the prey as the predators are slower than the prey. The world task
involves 4 slower cooperating agents that aim to catch 2 faster adversaries, where adversaries desire
to eat foods while avoiding being captured.

We construct a variety of datasets according to behavior policies with different qualities based on
adding noises to the MATD3 algorithm to increase diversity following previous work (Fu et al.,
2020). The random dataset is generated by rolling out a randomly initialized policy for 1 million (M)
steps. We obtain the medium-replay dataset by recording all samples in the experience replay buffer
during the training process until the policy reached the medium level of performance. The medium
dataset consists of 1M samples by unrolling a partially-pretrained policy in the online setting whose
performance reaches a medium level of the performance. The expert dataset is constructed by 1M
expert demonstrations from an online fully-trained policy.

We compare OMAR against state-of-the-art offline RL algorithms including CQL (Kumar et al.,
2020) and TD3+BC (Fujimoto & Gu, 2021). We also compare with a recent offline MARL algorithm
MA-ICQ (Yang et al., 2021). We build all methods on independent TD3 based on decentralized
critics following de Witt et al. (2020), while we also consider centralized critics based on MATD3
following Yu et al. (2021) in Section 4.1.4. All baselines are implemented based on the open-source
code1. Each algorithm is run for five random seeds, and we report the mean performance with
standard deviation. A detailed description of the construction of the datasets and hyperparameters
can be found in Appendix B.1.

1https://github.com/shariqiqbal2810/maddpg-pytorch
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4.1.2 PERFORMANCE COMPARISON

Table 3 summarizes the average normalized scores in different datasets in multi-agent particle envi-
ronments, where the learning curves are shown in Appendix B.2. The normalized score is computed
as 100 ⇥ (S � Srandom)/(Sexpert � Srandom) following Fu et al. (2020) As shown, the performance
of MA-TD3+BC highly depends on the quality of the dataset. As the MA-ICQ method is based on
only trusting seen state-action pairs in the dataset, it does not perform well in datasets with more
diverse data distribution including random and medium-replay datasets, while generally matches the
performance of MA-TD3+BC in datasets with more narrow distribution including medium and ex-
pert. MA-CQL matches or outperforms MA-TD3+BC in datasets with lower quality except for the
expert dataset, as it does not rely on constraining the learning policy to stay close to the behavior pol-
icy. Our OMAR method significantly outperforms all baseline methods and achieves state-of-the-art
performance. We attribute the performance gain to the actor rectification scheme that is indepen-
dent of data quality and improves global optimization. In addition, OMAR does not incur much
computation cost and only takes 4.7% more runtime on average compared with that of MA-CQL.

Table 3: Averaged normalized score of OMAR and baselines in multi-agent particle environments.

MA-ICQ MA-TD3+BC MA-CQL OMAR

R
an

do
m Cooperative navigation 6.3± 3.5 9.8± 4.9 24.0± 9.8 34.4 ± 5.3

Predator-prey 2.2± 2.6 5.7± 3.5 5.0± 8.2 11.1 ± 2.8
World 1.0± 3.2 2.8± 5.5 0.6± 2.0 5.9 ± 5.2

M
ed

iu
m

-r
ep

la
y Cooperative navigation 13.6± 5.7 15.4± 5.6 20.0± 8.4 37.9 ± 12.3

Predator-prey 34.5± 27.8 28.7± 20.9 24.8± 17.3 47.1 ± 15.3
World 12.0± 9.1 17.4± 8.1 29.6± 13.8 42.9 ± 19.5

M
ed

iu
m Cooperative navigation 29.3± 5.5 29.3± 4.8 34.1± 7.2 47.9 ± 18.9

Predator-prey 63.3± 20.0 65.1± 29.5 61.7± 23.1 66.7 ± 23.2
World 71.9± 20.0 73.4± 9.3 58.6± 11.2 74.6 ± 11.5

Ex
pe

rt Cooperative navigation 104.0± 3.4 108.3± 3.3 98.2± 5.2 114.9 ± 2.6
Predator-prey 113.0± 14.4 115.2± 12.5 93.9± 14.0 116.2 ± 19.8

World 109.5± 22.8 110.3± 21.3 71.9± 28.1 110.4 ± 25.7

4.1.3 ABLATION STUDY

The effect of the regularization coefficient. We first investigate the effect of the regularization
coefficient ⌧ in the actor loss in Eq. (2). Figure 3 shows the averaged normalized score of OMAR
over different tasks with different values of ⌧ in each kind of dataset. As shown, the performance
of OMAR is sensitive to this hyperparameter, which controls the exploitation level of the critic. We
find the best value of ⌧ is neither close to 1 nor 0, showing that it is the combination of both policy
gradients and the actor rectification that performs well. We also notice that the optimal value of ⌧
is smaller for datasets with lower quality and more diverse data distribution including random and
medium-replay, but larger for medium and expert datasets. In addition, the performance of OMAR
with all values of ⌧ matches or outperforms that of MA-CQL. This is the only hyperparameter that
needs to be tuned in OMAR beyond MA-CQL.

(a) Random. (b) Medium-replay. (c) Medium. (d) Expert.

Figure 3: Ablation study on the effect of the regularization coefficient in different types of datasets.
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The effect of key hyperparameters in the sampling scheme. Core hyperparameters for our sam-
pling mechanism involves the number of iterations, the number of sampled actions, and the initial
mean and standard deviation of the Gaussian distribution. Figures 4(a)-(d) show the performance
comparison of OMAR with different values of these hyperparameters in the cooperative navigation
task, where the grey dotted line corresponds to the normalized score of MA-CQL. As shown, our
sampling mechanism is not sensitive to these hyperparameters, and we fix them to be the set with
the best performance.

(a) Number of iterations. (b) Number of samples. (c) Mean. (d) Standard deviation.

Figure 4: Ablation study on the effect of key hyperparameters in the sampling mechanism averaged
over different types of datasets.

The effect of the sampling mechanism. We now analyze the effect of the zeroth-order optimiza-
tion methods in OMAR, and compare it against random shooting and the cross-entropy method
(CEM) (De Boer et al., 2005) in the cooperative navigation task. As shown in Table 4, our sam-
pling mechanism significantly outperforms the random sampling scheme and CEM, with a larger
margin in datasets with lower quality including random and medium-replay. The proposed sampling
technique incorporates more samples into the distribution updates more effectively.

Table 4: Ablation study of OMAR with different sampling mechanisms in different types of datasets.

Random Medium-replay Medium Expert

OMAR (random) 24.3± 7.0 23.5± 5.3 41.2± 11.1 101.0± 5.2
OMAR (CEM) 25.8± 7.3 32.6± 5.1 45.0± 13.3 106.4± 13.8

OMAR 34.4 ± 5.3 37.9 ± 12.3 47.9 ± 18.9 114.9 ± 2.6

4.1.4 APPLICABILITY ON CENTRALIZED TRAINING WITH DECENTRALIZED EXECUTION

In this section, we demonstrate the versatility of the method and show that it can also be applied
and beneficial to methods based on centralized critics under the CTDE paradigm. Specifically, all
baseline methods are built upon the MATD3 algorithm (Ackermann et al., 2019) using centralized
critics as detailed in Section 2.1. Table 5 summarizes the averaged normalized score of different
algorithms in each kind of dataset. As shown, OMAR (centralized) also significantly outperforms
MA-ICQ (centralized) and MA-CQL (centralized), and matches the performance of MA-TD3+BC
(centralized) in the expert dataset while outperforming it in other datasets.

Table 5: The average normalized score of different methods based on MATD3 with centralized
critics under the CTDE paradigm.

Random Medium-reply Medium Expert

MA-ICQ 5.2± 5.5 10.1± 4.6 27.4± 5.3 96.7± 4.1
MA-TD3+BC 7.9± 2.2 9.3± 9.1 29.4± 3.7 108.1 ± 3.3

MA-CQL 12.8± 4.9 11.2± 6.6 26.3± 13.3 69.5± 15.7
OMAR 21.6 ± 4.6 19.1 ± 9.2 33.7 ± 14.5 105.9 ± 3.6

4.2 MULTI-AGENT MUJOCO

In this section, we investigate whether OMAR can scale to more complex continuous control multi-
agent tasks. Peng et al. (2020) introduce multi-agent locomotion tasks which extends the high-
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dimensional MuJoCo locomotion tasks in the single-agent setting to the multi-agent case. We con-
sider the two-agent HalfCheetah task (Kim et al., 2021) as shown in Appendix B.1, where the first
and second agents control different parts of joints of the robot. Agents need to cooperate to make the
robot run forward by coordinating the actions. We also construct different types of datasets follow-
ing Fu et al. (2020) the same as in Section 4.1.1. Table 6 summarizes the average normalized scores
in each kind of dataset in multi-agent HalfCheetah. As shown, OMAR significantly outperforms
baseline methods in random, medium-replay, and medium datasets, and matches the performance of
MA-TD3+BC in expert, demonstrating its effectiveness to scale to more complex control tasks.

Table 6: Average normalized score of different methods in multi-agent HalfCheetah.

Random Medium-reply Medium Expert

MA-ICQ 7.4± 0.0 35.6± 2.7 73.6± 5.0 110.6± 3.3
MA-TD3+BC 7.4± 0.0 27.1± 5.5 75.5± 3.7 114.4 ± 3.8

MA-CQL 7.4± 0.0 41.2± 10.1 50.4± 10.8 64.2± 24.9
OMAR 15.4 ± 12.3 57.7 ± 5.1 80.7 ± 10.2 113.5 ± 4.3

5 RELATED WORK

Offline reinforcement learning. Many recent papers achieve improvements in offline RL (Wu
et al., 2019; Kumar et al., 2019; Yu et al., 2020; Kidambi et al., 2020) that address the extrapolation
error. Behavior regularization typically compels the learning policy to stay close to the behavior
policy. Yet, its performance relies heavily on the quality of the dataset. Critic regularization ap-
proaches typically add a regularizer to the critic loss that pushes down Q-values for actions sampled
from a given policy (Kumar et al., 2020). As discussed above, it can be difficult for the actor to best
leverage the global information in the critic as policy gradient methods are prone to local optima,
which is particularly important in the offline multi-agent setting.

Multi-agent reinforcement learning. A number of multi-agent policy gradient algorithms train
agents based on centralized value functions (Lowe et al., 2017; Foerster et al., 2018; Yu et al., 2021)
while another line of research focuses on decentralized training (de Witt et al., 2020). Yang et al.
(2021) show that the extrapolation error in offline RL can be more severe in the multi-agent setting
than the single-agent case due to the exponentially sized joint action space w.r.t. the number of
agents. In addition, it presents a critical challenge in the decentralized setting when the datasets for
each agent only consist of its own action instead of the joint action (Jiang & Lu, 2021). Jiang &
Lu (2021) address the challenges based on the behavior regularization BCQ (Fujimoto et al., 2019)
algorithm while Yang et al. (2021) propose to estimate the target value based on the next action from
the dataset. As a result, both methods largely depend on the quality of the dataset.

Zeroth-order optimization method. It has been recently shown in (Such et al., 2017; Conti et al.,
2017; Mania et al., 2018) that evolutionary strategies (ES) emerge as another paradigm for continu-
ous control. Recent research shows that it is potential to combine RL with ES to reap the best of both
worlds (Khadka & Tumer, 2018; Pourchot & Sigaud, 2019) in the high-dimensional parameter space
for the actor. Sun et al. (2020) replace the policy gradient update via supervised learning based on
sampled noises from random shooting. Kalashnikov et al. (2018); Lim et al. (2018); Simmons-Edler
et al. (2019); Peng et al. (2020) extend Q-learning based approaches to handle continuous action
space based on the popular cross-entropy method (CEM) in ES.

6 CONCLUSION

In this paper, we identify the problem that when extending conservatism-based RL algorithms to of-
fline multi-agent scenarios, the performance degrades along increasing number of agents. To tackle
this problem, propose Offline Multi-Agent RL with Actor Rectification (OMAR) that combines
first-order policy gradient with zeroth-order optimization. We find that OMAR can successfully
help the actor escape from bad local optima and consequently find better actions. OMAR achieves
state-of-the-art performance on multi-agent continuous control tasks empirically.
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