
Under review as a conference paper at ICLR 2024

FUSPLACE: THE FINE-GRAINED CHIP PLACEMENT
WITH HYBRID ACTION SPACES AND FEATURE FUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Chip placement is an essential and time-consuming step in the physical design
process. Deep reinforcement learning, as an emerging field, has gained prominent
attention due to its ability to replace weeks of expert model design. However,
the current AI-based methods in chip design are still facing momentous chal-
lenges. We propose a fusion-based reinforcement learning framework to address
the limited representation problem of both graph networks and CNN networks.
Furthermore,the structure of PDQN in the hybrid action space allows for precise
coordinate placement, compared to other RL-based structures in placement. The
experimental results can demonstrate the effectiveness of our model.

1 INTRODUCTION

Physical design is crucial in Electronic Design Automation (EDA) (Markov et al., 2012) due to the
exponential growth in scale and the increasing complexity of constraints. Placement is one of the
most time-consuming stages in physical design. A well-executed placement process not only saves
time but also ensures a successful final design outcome. The principle of 2D placement involves
mapping amount macros and a millions of standard cells from a netlist to a specific location on
a chip canvas, while minimizing total wirelength subject to constraints such as density and timing
closure. A netlist is a structured data file that describes the logical relationships between components
(such as standard cells, macros, etc.) in a chip and their interconnections (referred to as nets).

Placement approaches can be classified into two main categories: traditional placement methods
and learning-based methods. Traditional placement techniques, which include simulated anneal-
ing (Vashisht et al., 2020), partitioning (Liu et al., 2019), and analytical algorithms (Lu et al., 2015),
are all utilized in the field. In particular, analytical algorithms are widely used due to their ro-
bustness and quick computation abilities, as demonstrated by applications such as RePlAce (Cheng
et al., 2018), ePlace (Lu et al., 2014), and DREAMPlace (Lin et al., 2019). Although traditional
methods have achieved considerable progress, they still face many open challenges. On one hand,
traditional placement techniques can lead to overlaps among components, which require resolution
in the post-placement phase. On the other hand, common methods incorporating analytical ap-
proaches necessitate the modeling of optimization problems as differentiable functions to perform
computations.

Methods based on deep learning and reinforcement learning are attracting increasing attention be-
cause they can leverage prior experience and simplify processes. In chip design, numerous RL-based
approaches, such as those employed by Graph Placement (Mirhoseini et al., 2021), MaskPlace (Lai
et al., 2022), and other researchers have achieved promising results by treating the placement prob-
lem as a sequential decision-making problem. However, these methods also have some inherent
challenges and limitations.

Firstly, the conventional RL representation in chip design brings inconvenience and significant re-
dundancy. For example, Graph Placement models chip location and connectivity information as a
graph network (Scarselli et al., 2008), defined as G = (V,E) where V represents the cells and E
represent its nets. However, graph neural network(GNN) typically handle static features, and this
approach requires passing all modeling information in each placement process. In reality, each
placement is primarily influenced by the blocks connected to only its nets, and the global density
only provides a simple constraint. Therefore, modeling unnecessary relationships between other
networks results in significant redundancy in representation and computations.

1



Under review as a conference paper at ICLR 2024

Moreover, the placement problem in MaskPlace and ChiPFormer (Lai et al., 2023), which divided
chip canvas into 224 × 224 and 84 × 84 grid sizes respectively, is solved by using CNN visual
representations for circuit modules at the pixel level. When using a reinforcement learning model for
action selection, each grid is considered equivalent to the center point of placing a macro. However,
when dealing with large-scale components placement problem in industrial-level, the precision may
be compromised. In the case of chip placement, inaccurate placement centers in local areas can lead
to component overlaps, resulting in a failed physical design process.

To address the mentioned issue, we proposes a hybrid action space RL framework called Fusplace.
By incorporating the original information of the chip, Fusplace enables more accurate chip place-
ment and avoids issues such as component overlapping. By refining the definition of the action
space, Fusplace can exert finer control over the placement position, thereby enhancing the precision
and accuracy of the placement.

The highlight of our paper are:

• We use a hybrid action structure (P-DQN) to addresses the limitations of the original
model’s coarse-grained approach.

• We propose the feature fusion representation addresses the lack of interpretability in neural
networks by decomposing netlist information into local and global parts and incorporating
prior knowledge.

2 PRELIMINARIES

Chip Placement

The objective of placement achieved by minimizing HPWL (Chen et al., 2006) and subject to
constraint which included congestion and overlap in the given netlist. The objective function is
represented as follows.

min
x,y

WL(x, y) s.t. Overlap(x, y) = 0 and Cong(x, y) ≤ C

Markov Decision Process

A standard Markov Decision Process (MDP) {ref} is model as a quintuple M = {S,A,P,R, γ}
where S is a state set, A is a action set, the transition function P : S × A × S → R, the reward
function R : S × A → R and γ ∈ [0, 1) means the discounted factor. The policy function π(a|s)
maps the state s ∈ S into a action a ∈ A. The action-value function Qπ of policy π is defined by

Qπ(s, a) = Eπ(Rt|s0 = s, a0 = a)

The aim of an RL agent is to find a policy to maximize the expected total discount reward

J(π) = Eπ[

T∑
t=0

γtrt]

Parameteried Deep Q-Networks

Parameterized Deep Q-Networks (P-DQN){ref} extends the model from Markov Decision Process
(MDP) to Parameterized Action Markov Decision Process (PAMDP) (Masson et al., 2016), and
then build the architecture of P-DQN (Casgrain et al., 2022) to handle the problem of hybrid action
space. The action space transformed by

A = {(a, xk)|xk ∈ X for all a ∈ Ad}

where Ad = {a1, a2, · · · , ak} represents a discrete action set, and for each ai, i ∈ k, there exists a
corresponding continous parameter space X . We use a tuple (a, xk) describes the action. Then the
related action-value function Qπ of policy π is devised by

Qπ(s, a, xk) = Eπ(Rt|s0 = s, a0 = a, x0 = xk)

2



Under review as a conference paper at ICLR 2024

3 METHOD

3.1 MODEL ARCHITECTURE OVERVIEWS

When placing a macro module, the RL environment detects the chip nets make sure that other
macros module is located and extracts all relevant macro units as local information. This information
is then modeled as a matrix and fed into a feature extraction network. Then the feature network
performs feature fusion on the original variable-length vector matrix, mapping it to a fixed-length 32-
dimensional vector. The global information includes bin centers,chip meta-data and the congestion
of each bin are separately fed into three MLP networks for feature extraction. The output results of
all networks are concatenated to form an embedding vector. The policy network (DDPG and DQN)
receives the embedding vector and output the hybrid action (a, xk). The related MDP specified as
follows:

• State: An n-dimensional matrix containing information about the block and pin related
to the current placement, as well as the global information under the current state. The
advantage of multi-dimensional information representation in the state is that it allows for
more accurate feature extraction and avoids the issue of the state space becoming too large
when using feature fusion in the feature network, thus circumventing the need for CNN or
GCN-based action representation.

• Action: The action space consists of a tuple (a, xk), which is formed by the combination
of the continuous action space and the discrete action space. Here, a represents the number
of partitions in the grid, and xk represents the offset coordinates. This setup not only
reduces the size of the action space but also allows for more precise placement centers to
be obtained.

• Reward: To address the issue of sparse solutions, the reward consists of both internal re-
wards and a global reward based on the placement and congestion.

3.2 FEATURE EXTRACTION AND REPRESENTATION

Although GNN and CNN are effective feature extraction techniques, when it comes to chip place-
ment problems. However, using GNN results in a large state space and significant information
redundancy. Treating the problem solely as a computer vision task with CNN leads to insufficient
network partitioning accuracy, ultimately resulting in failure in the overall physical design process.
Hence, this paper proposes a solution by integrating the relationship between blocks and the net-
work through feature fusion representation to address the problem found in previous works. The
state space is divided into two categories: (1) local information and (2) global information. The
overall flow of feature extraction is illustrated in Figure 1.

3.2.1 LOCAL INFORMATION

The placement position of a newly placed block primarily depends on the placement of all the
modules corresponding to the nets in the block.

To effectively model and capture the important information related to the placement of mod-
ules, we extract the most important 7-dimensional features for each block. These features in-
clude the center coordinates, width, height, area, and pin coordinates, which are represented as
xid = (oix, o

i
y, o

i
w, o

i
h, o

i
area, o

i
pinx, o

i
piny) to compose a matrix Xd. Since the blocks to be placed in

the canvas correspond to different numbers of nets, and each net corresponds to a different number
of placed blocks, our network architecture must be able to handle variable-length data.

To address this, we perform information fusion on the dynamically changing length in the feature
space. We map the matrix Xd to a high-dimensional embedding space Zl and sum it up, output a
fixed 32-dimensional vector. The overall feature embedding obtained from local information is as
follows:

Zl =
1

n

n∑
i=1

ψ1(x
i
d) (1)

3



Under review as a conference paper at ICLR 2024

3.2.2 GLOBAL INFORMATION

Global information consists of bin centers (coordinates of x and y in the bin) Xg1, bin densities
(number of actions in each bin) Xg2, and meta-data Xg3.

The global information is individually mapped into 32 dimensional vectors using MLP networks
with network parameters ψ2, ψ3 and ψ4. This approach helps to extract information more accurately.

3.3 DRL MODEL FOR THE PROCESS OF CHIP PLACEMENT

This section introduces the rationale and structure of using P-DQN to solve the chip placement
problem. Traditional RL methods for chip placement divide the canvas into grids and treat the
placement action as a discrete action space. The advantage of this approach is that the canvas can
be directly considered as an image and fed into the RL policy network, benefiting from the use of
computer vision techniques for problem solving. However, when dealing with real chip placement
problems on a large canvas, simply treating the center as a single grid leads to low accuracy and fails
to address issues like chip overlapping in later stages of placement.

Treating the canvas as a continuous action space, on the other hand, may cause the DDPG algorithm
(Silver et al., 2014) to get stuck in a local optimum due to its deterministic policy and updates based
on a local value function, making it difficult to converge. P-DQN overcomes this challenge by
simultaneously producing discrete and continuous action values. The canvas is initially divided into
n regions as the discrete action space, with each action representing the coordinate of the center of
a region. The continuous action space is then considered as an offset for the centers of the discrete
actions. The combination of the two parts represents the coordinates of placement macros.

The Parameterized DQN (P-DQN) combines the structures of DQN and DDPG. In the DDPG frame-
work, the actor network with parameter θ1 maps the input state Xd to a continuous parameter vector
xk, which represents the displacement of placing the corresponding discrete position coordinates.
The DQN network, on the other hand, acts as a discrete action network, mapping the concatenated
state and xk to the discrete action space. The resulting hybrid action is represented as (k, xk), where
k represents the chosen action in the discrete action space, and xk represents the corresponding
offset for the chosen action.

The related Bellman euqation as

Q(st, adt , act) = Ert,st+1 [rt + γ max
adt∈A⌈

sup
act∈A⌋

Q(st+1, ad, ac)|st = s,Ad = ad, Ac = ac]

The Q-network and DDPG-network are trained on batch sample form a replay buffer R. The loss
Q-network function of the defined as:

LQ
t (θ1) =

1

2
(Qθ1(st, ad, ac)− yt)

2

The DDPG-network The loss Q-network function of the defined as:

Ld
t (θ2) = −

K∑
k=1

Q(st, ad, ac; θ1)

REFERENCES

Philippe Casgrain, Brian Ning, and Sebastian Jaimungal. Deep q-learning for nash equilibria: Nash-
dqn. Applied Mathematical Finance, 29(1):62–78, 2022.

Tung-Chieh Chen, Zhe-Wei Jiang, Tien-Chang Hsu, Hsin-Chen Chen, and Yao-Wen Chang. A
high-quality mixed-size analytical placer considering preplaced blocks and density constraints.
In Proceedings of the 2006 IEEE/ACM International Conference on Computer-Aided Design, pp.
187–192, 2006.

4



Under review as a conference paper at ICLR 2024

Chung-Kuan Cheng, Andrew B Kahng, Ilgweon Kang, and Lutong Wang. Replace: Advancing
solution quality and routability validation in global placement. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 38(9):1717–1730, 2018.

Yao Lai, Yao Mu, and Ping Luo. Maskplace: Fast chip placement via reinforced visual representa-
tion learning. Advances in Neural Information Processing Systems, 35:24019–24030, 2022.

Yao Lai, Jinxin Liu, Zhentao Tang, Bin Wang, Jianye Hao, and Ping Luo. Chipformer: Transferable
chip placement via offline decision transformer. arXiv preprint arXiv:2306.14744, 2023.

Yibo Lin, Shounak Dhar, Wuxi Li, Haoxing Ren, Brucek Khailany, and David Z Pan. Dreamplace:
Deep learning toolkit-enabled gpu acceleration for modern vlsi placement. In Proceedings of the
56th Annual Design Automation Conference 2019, pp. 1–6, 2019.

Yen-Chun Liu, Tung-Chieh Chen, Yao-Wen Chang, and Sy-Yen Kuo. Mdp-trees: multi-domain
macro placement for ultra large-scale mixed-size designs. In Proceedings of the 24th Asia and
South Pacific Design Automation Conference, pp. 557–562, 2019.

Jingwei Lu, Pengwen Chen, Chin-Chih Chang, Lu Sha, Dennis J-H Huang, Chin-Chi Teng, and
Chung-Kuan Cheng. eplace: Electrostatics based placement using nesterov’s method. In Pro-
ceedings of the 51st Annual Design Automation Conference, pp. 1–6, 2014.

Jingwei Lu, Pengwen Chen, Chin-Chih Chang, Lu Sha, Dennis Jen-Hsin Huang, Chin-Chi Teng,
and Chung-Kuan Cheng. eplace: Electrostatics-based placement using fast fourier transform and
nesterov’s method. ACM Transactions on Design Automation of Electronic Systems (TODAES),
20(2):1–34, 2015.

Igor L Markov, Jin Hu, and Myung-Chul Kim. Progress and challenges in vlsi placement research.
In Proceedings of the International Conference on Computer-Aided Design, pp. 275–282, 2012.

Warwick Masson, Pravesh Ranchod, and George Konidaris. Reinforcement learning with param-
eterized actions. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30,
2016.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement methodol-
ogy for fast chip design. Nature, 594(7862):207–212, 2021.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning, pp.
387–395. Pmlr, 2014.

Dhruv Vashisht, Harshit Rampal, Haiguang Liao, Yang Lu, Devika Shanbhag, Elias Fallon, and
Levent Burak Kara. Placement in integrated circuits using cyclic reinforcement learning and
simulated annealing. arXiv preprint arXiv:2011.07577, 2020.

5


	INTRODUCTION
	PRELIMINARIES
	METHOD
	Model Architecture overviews
	Feature Extraction and representation
	Local Information
	Global Information

	DRL Model for the process of chip placement


