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ABSTRACT

Keystroke inference attacks are a form of side-channels attacks in which an at-
tacker leverages various techniques to recover a user’s keystrokes as she inputs
information into some display (for example, while sending a text message or en-
tering her pin). Typically, these attacks leverage machine learning approaches, but
assessing the realism of the threat space has lagged behind the pace of machine
learning advancements, due in-part, to the challenges in curating large real-life
datasets. This paper aims to overcome the challenge of having limited number
of real data by introducing a video domain adaptation technique that is able to
leverage synthetic data through supervised disentangled learning. Specifically, for
a given domain, we decompose the observed data into two factors of variation:
Style and Content. Doing so provides four learned representations: real-life style,
synthetic style, real-life content and synthetic content. Then, we combine them
into feature representations from all combinations of style-content pairings across
domains, and train a model on these combined representations to classify the con-
tent (i.e., labels) of a given datapoint in the style of another domain. We evaluate
our method on real-life data using a variety of metrics to quantify the amount of
information an attacker is able to recover. We show that our method prevents our
model from overfitting to a small real-life training set, indicating that our method
is an effective form of data augmentation.

1 INTRODUCTION

We are exceedingly reliant on our mobile devices in our everyday lives. Numerous activities, such
as banking, communications, and information retrieval, have gone from having separate channels
to collapsing into one: through our mobile phones. While this has made many of our lives more
convenient, this phenomena further incentivizes attackers seeking to steal information from users.
Therefore, studying different attack vectors and understanding the realistic threats that arise from
attackers’ abilities to recover user information is imperative to formulating defenses. The argument
for studying these attacks is not a new one. A rich literature of prior works studying both attacks and
defenses has assessed a wide array of potential attack vectors. The majority of these attacks utilize
various machine learning algorithms to predict the user’s keystrokes, (Raguram et al., 2011; Cai &
Chen, 2012; Xu et al., 2013; Sun et al., 2016; Chen et al., 2018; Lim et al., 2020), but the ability
to assess attackers leveraging deep learning methods has lagged due to the high costs of curating
real-life datasets for this domain, and the lack of publicly available datasets.

Despite all the recent attention to keystroke inference attacks, numerous questions have gone unan-
swered. Which defenses work against adversaries who leverage deep learning systems? Which
defenses are easily undermined? Are there weaknesses in deep learning systems that we can use to
develop better defenses to thwart state-of-the-art attacks? These questions capture the essence of
the underlying principles for research into defenses for keystroke inference atttacks. Given the back-
and-forth nature of researching attacks and defenses, these questions can not be addressed because
of the current inability to assess attacks with deep learning methods.

This paper aims to overcome the challenge of having limited number of labeled, real-life data by in-
troducing a video domain adaptation technique that is able to leverage abundantly labeled synthetic
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Figure 1: An example to highlight the discrepancies between the Synthetic Data (Rows 1 and 3) and
Real-Life Data (Rows 2 and 4). In rows 1 and 2, we show sequences of the word order being typed
with the same number of frames between keypresses sampled. The frames with green boxes indicate
ones in which a key was pressed, i.e, in the first frame for first two rows, the key o was pressed.
While the content between the two sequences is the same, the style is different, e.g., the texture, and
trajectory in between keypresses are different. To further highlight the temporal distribution shift,
we show the thumb trajectory between w and h for both synthetic and real sequences in rows 3 and
4. While the finger is linearly interpolated in the synthetic domain, the real-life one has a more
complex one that is challenging to model with a simulator. We highlight the thumb tip in red and
the trajectories in blue.

data. We show that by disentangling our data into separate style and content representations, we can
subsequently create style-content pairs across both domains, and combine them into representations
that contain the content in the style of its inputs, i.e., style transfer in the feature space. This is espe-
cially attractive in the case of pairs of real-life style and synthetic content, as this is an effective data
augmentation scheme. Style representations need to be well separated between domains whereas
content needs to be indistinguishable. To do this, we introduce auxiliary losses on the latent spaces
to enforce disentanglement. Through a series of ablations, we show that doing so improves perfor-
mance. In our context, Content answers the question: What was typed?. For example, the sentence
that a user types. Style answers the question: How was it typed?. For example, the texting pattern.

The majority of visual domain adaptation methods do not work well in our problem setting because
they mainly focus on tasks in which the domain shift is limited to a shift in texture, e.g., image clas-
sification, semantic segmentation, etc. (Ganin & Lempitsky, 2014; Shrivastava et al., 2016; Tzeng
et al., 2017; Hoffman et al., 2017; Motiian et al., 2017). When predicting keystroke sequences,
addressing the domain shift with respect to texture is not sufficient. While there is a clear differ-
ence in texture, we have to also address the temporal domain shift, e.g., different finger motions,
speeds, etc. Notice the difference between the trajectories of thumbs in the two example videos
displayed in Figure 1. The synthetic thumb is linearly interpolated whereas the real one moves in a
more complex fashion. Our pairing mechanism is inspired by the one introduced by Motiian et al.
(2017). They devise a training regime that pairs the scarce data in the target domain with the data
from the source domain. This strategy aims to augment the data in the target domain on the order
of the source domain. In our work, we loosen the restriction of needing pairs with the same label to
adapt to our setting of not having paired sentences. This makes our pairing mechanism more gen-
eral and applicable to other settings. To summarize, our main contributions are: 1) A framework for
low-resource video domain adaptation using supervised disentangled learning. 2) A novel method
to assess the threat of keystroke inference attacks by an attacker using a deep learning system while
having limited real-life data.

2 BACKGROUND

Keystroke Inference Attacks Some of the early works in (vision-based) keystroke inference attacks
have focused on direct line of sight and reflective surfaces (i.e., teapots, sunglasses, eyes) (Backes
et al., 2008; 2009; Raguram et al., 2011; Xu et al., 2013; Yue et al., 2014; Ye et al., 2017; Lim et al.,
2020) to infer sensitive data. The attackers train models that account for various capture angles
by aligning the user’s mobile phone to a template keyboard. Collectively, these works showed that
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attackers are able to successfully recover pins and full sentences. In this work, we advance the state-
of-the-art under the direct line of sight model wherein the attacker uses a mobile camera to record a
victim’s mobile phone usage. None of these works adequately explore the capabilities of an attacker
that leverages deep learning systems because of the costs to collect large scale datasets. Lim et al.
(2020) created a simulator that generates synthetic data for keystroke inference attacks and showed
that training with both synthetic and real data, in a supervised domain adaptation framework, yielded
a CNN that generalized to a real-life test set, despite having limited labels in the real domain. This
work is limited due to the restricted threat scenario of inferring single keypresses. In our work, we
assess the ability of an attacker to recover complete sequences. Predicting entire sequences from an
input video is not only a more challenging task, but also it is a more realistic threat scenario.

Style and Content Disentanglement in Videos Tenenbaum & Freeman (1997); Tenenbaum & Free-
man (2000) observe that by learning to factor observations of data into two independent factors of
variation, style and content, models learn separate representations that can extrapolate style into
novel content, classify content in different styles, and translate new content into new styles. This
framework has been extended to videos and has been explored in a variety of settings. Prior works
have disentangled videos into a time-dependent style representation and time-independent content
with adversarial training (Denton & Birodkar, 2017; Villegas et al., 2017) or with variational au-
toencoders (Li & Mandt, 2018; Hsieh et al., 2018). In our setting, style and content are both time-
dependent. Style encapsulates the trajectory of the finger in between keys or speed of the user typing.
The difference in texture on a per-frame basis is also encapsulated by style. Content represents the
entire trajectory as that determines the sentence that was typed. These methods are all unsupervised
methods to disentangle style and content. Since we have labels, we are able to leverage the obser-
vation made by Locatello et al. (2018; 2019), arguing that learning disentangled representations is
impossible without supervision, and that the unsupervised methods leveraging temporal inductive
biases do not lead to improved disentangled representations.

Low Resource Domain Adaptation We are operating in a low resource setting in which we have
abundant labels in the source domain and have very few, albeit labeled, data points in the target
domain. Hosseini-Asl et al. (2019) extend the CyCada (Hoffman et al., 2017) and CycleGAN (Zhu
et al., 2017) frameworks to the low resource domain adaptation setting by adding a semantic consis-
tency loss. Motiian et al. (2017) addresses this problem by learning a feature space that is domain
invariant, but is semantically aligned across both domains by introducing a pairing process that pairs
feature samples in the training set into four groups: 1) both samples from domain A with same la-
bels; 2) a sample from each domain with same labels; 3) both samples from domain A with different
labels; 4) a sample from each domain with different labels. They use adversarial training to learn a
feature representation such that a discriminator can’t distinguish samples from groups 1 and 2, and
also from groups 3 and 4. We extend this pairing mechanism by relaxing the constraint of needing
the same labels in both domains, i.e., pairs of synthetic and real sentences. Since we are effectively
transferring different styles onto the content latent space, we do not need labels in the target domain
so long as they are effectively disentangled.

3 METHODS

We first give a brief introduction to keystroke inference attacks and define the problem setup. Then,
we describe our proposed framework to disentangle the style and content latent spaces to train on all
style-content pairs An overview of our method is in Figure 2 and in Algorithm 1.

3.1 KEYSTROKE INFERENCE ATTACKS

We model the keystroke inference attack as a Seq2Seq (Sutskever et al., 2014) problem where the
input X = {x1, x2, ..., xk} is a video with k frames and Y = {y1, y2, ..., yj} is a sequence of j
characters. The videos are of users typing on their mobile phones that are cropped and aligned to a
template image. The tokens are a sequence of characters of the sentence the user typed. We do not
use any paired data (i.e. the synthetic and real-life datasets do not contain the same sentences), and
do not have access to any auxiliary labels such as the exact frame in which a key was pressed. Our
goal is to learn the parameters of a model that maximizes the conditional probability of Y given X .
We use a Transformer (Vaswani et al., 2017) encoder-decoder as our model. In our setting we have
a dataset of synthetic videos, Ds = {(Xs

i , Y
s
i )}, and a dataset of real-life videos Dt = {(Xt

i , Y
t
i )},
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Figure 2: An overview of our training procedure. A single training iteration takes a pair of syn-
thetic and real-life videos. We disentangle them into style and content representations, and create
four combinations of feature representations. For example, real style paired with synthetic content.
Style disentanglement, shown in Red, removes style information from the content space. Content
disentanglement, shown in Blue, removes content information from the style space. The Green paths
indicate the different ways in which we can combine the style and content representations from the
two domains. Finally, we further apply a semantic alignment discriminator to the combined space,
shown in Yellow, to ensure the content remains constant, regardless of style. (Best viewed in color)

where the number of real-life videos is significantly less than the synthetic (Figure 3). While a large
synthetic dataset can be easily generated, there exists a distribution shift between the two domains
(Figure 1). When the amount of labeled data is scarce, it becomes difficult to train neural networks
that generalize to samples out of the training set.

3.2 DISENTANGLING STYLE AND CONTENT

Our method to address the lack of real-life data is to train on combinations of style and content
representation pairs from the synthetic and real domains. We introduce auxiliary losses to enforce
disentanglement of style and content, ensuring that the style latent space does not contain any in-
formation about the content, and vice versa. Our training framework consists of a Content Encoder,
EC , a Style Encoder ES , a Decoder G, a Feature Aggregation Module, M , a Style Discriminator
DS , a Content Discriminator DC , and a Domain-Class Discriminator DM .

Pretraining Synthetic Model We first pretrain an Encoder-Decoder Transformer on only synthetic
data. We train this network with a multi-class cross entropy loss where the goal is to predict the
correct sentence for a given video. Then EC , ES , and DC are initialized with the weights of the
pretrained Encoder, and G is initialized with the weights of the pretrained Decoder.

Style Disentanglement Style disentanglement ensures that style information is removed from the
content latent space. The content latent space is defined as zfcontent = EC(X

f
i ; θEC

) where f ∈
{s, t} where fs and f t represent the synthetic and real domains, respectively. Similar to the setup of
GANs (Goodfellow et al., 2014) the Style Discriminator, DS is trained to classify whether zfcontent
is real or synthetic. Next, EC is trained to spoof DS and generate a content feature representation
that is domain invariant. DS is trained using Equation 1. EC is trained using the same equation, but
the labels are flipped and DS is not updated.

LAdvDS
= −E[log(DS(EC(X

s
i )))− log(1−DS(EC(X

t
i )))] (1)

Content Disentanglement Content disentanglement ensures that content information is removed
from the style latent space. The style latent space is defined as zfstyle = ES(X

f
i ; θES

) where f ∈
{s, t}. The Content Discriminator, DC , is a Transformer Decoder, and is trained to predict the
correct sentence given the input style representation. ES is trained to spoof DC and generate a style
feature representation, zfstyle, such that DC can not predict the correct sentence. This is done by
maximizing the entropy, H , of the predictions of DC . DC is trained by minimizing Equation 2. ES

is trained by maximizing Equation 3 with the weights of DC kept frozen.

LAdvDC
= − log p(Y z

i |DC(ES(X
f
i ))) (2)
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LAdvES
= H(Y z

i |DC(ES(X
s
i ))) (3)

Feature Aggregation A Feature Aggregation Module, M , combines the disentangled representa-
tions from the previous two steps. For any given pair of style and content representations we have:

M(zfstyle, z
f ′
content) = m(zfstyle + zf ′content) (4)

In Equation 4, m is the LayerNorm operation (Ba et al., 2016), f ∈ {s, t} and f ′ ∈ {s, t}. There
are four different possible pairs that can be the input to our model, since there are two factors of
variation (style and content) and two domains (synthetic and real-life). For any given input pair, the
output feature representation ofM can be thought as the content in the style of the specified domain.
We denote this as hff ′ where f is the style and f ′ is the content.

Prediction The Decoder, G, takes in the output of M , hff ′, and outputs the predicted sentence Ŷ f ′,
and is trained with the cross-entropy loss using the labels Y f ′. The objective is:

Lcls = − log p(Y f ′|G(M(ES(X
f ), EC(X

f ′)))) (5)

At test time, the model outputs the most likely sentence given a real-life video:

argmax
Y

p(Y t|G(htt)) (6)

Semantic Aligment We extend the framework of Motiian et al. (2017) to create training pairs to
compensate for limited data in one domain. Rather than train on pairs of feature samples, we train on
the outputs of a feature aggregation module that takes in as input style-content pairs. Furthermore,
we do not need to have the same labels for both domains, i.e., we do not need to have the same
synthetic and real sentences. We create four pairs Gk, k ∈ {1, 2, 3, 4}. G1 and G2 are outputs of
M that share synthetic content: (Synthetic Style, Synthetic Content) and (Real Style, Synthetic
Content). G3 and G4 share real content: (Synthetic Style, Real Content) and (Real Style, Real
Content). A multi-class discriminator, DM , is trained using Equation 7 to correctly identify which
group every output of M belongs to. lk is the corresponding label for a given Gk. EC , ES , and M
are updated with Equation 8 such that DM can’t distinguish outputs of M that are in G1 and G2 and
outputs of M that are in G3 and G4.

LAdvDM
= −E[

4∑
k=1

lk log(DM (M(Gk)))] (7)

LAdvM
= −E[l1 log(DM (M(G2)))− l3 log(DM (M(G4)))] (8)

The final loss function to train our model is show in Equation 9 where the weightings for each term
are tuned using a validation set. An overview of the training procedure is shown in Algorithm A.9.

L = λ1Lcls + λ2LAdvM
+ λ3LAdvDM

+ λ4LAdvES
+ λ5LAdvDC

+ λ6LAdvDS
(9)

4 EXPERIMENTS

In this section, we detail the datasets, the motivation and interpretation of our evaluation metrics, and
experimental results. Further details regarding data collection, network architectures, and training
details are located in section Appendix A.

Datasets Figure 3 shows different statistics for the synthetic and real datasets. We set aside 10%
of the training set as a validation set. The real-life dataset was collected by recording participants
typing sentences into a mobile phone. Three different participants were asked to type conversational
text messages into their mobile devices while we recorded them in both indoor and outdoor settings.
We used a mobile camera and captured from a distance of 3 meters. The details to preprocess
and align the real data is detailed in A.2. The synthetic data was generated using the simulator by
Lim et al. (2020). It generates aligned videos of a synthetic thumb typing various sentences. We
generated sentences from the “A Million News Headlines” dataset released by Kulkarni (2018). We
add a START and STOP token to the beginning and end of a sentence, respectively. In total, there are
30 tokens in which the decoder can predict: 26 letters and 4 special tokens (START, STOP, SPACE,
PAD).
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Figure 3: Distribution of phrase and video lengths for our datasets. The number of real-life data-
points (229) is significantly less than synthetic (60,409).

Evaluation Metrics We propose to use a variety of metrics to quantify the amount of information
the attacker is able to recover from the user as there is no single, agreed-upon metric for keystroke
inference attacks. In the first scenario, we postprocess the outputs of our model with a language
model, similar to the methodologies of Raguram et al. (2011); Xu et al. (2013); Sun et al. (2016);
Chen et al. (2018). Appropriate metrics for this scenario are Bleu-n (Papineni et al., 2002), ROUGE
(Lin, 2004), and METEOR (Banerjee & Lavie, 2005). Bleu-n scores are scored on n-gram precision,
i.e., the n-grams in the predicted sentence that are also in the ground truth sentence. For brevity, we
do not report Bleu-2 and Bleu-3. ROUGE scores are scored on n-gram recall, i.e., the n-grams in
the ground truth that are also in the predicted sentence. METEOR is a metric that is scored on the
harmonic mean of unigram precision and recall and was developed to address some of the drawbacks
of ROUGE and Bleu-n. METEOR scores range from 0 to 1. Scores above 0.5 reflect understandable
translations and scores above 0.7 reflect fluent ones (Lavie, 2010).

While these scores have merit in the context of keystroke inference attacks, they are not without
shortcomings. These scores are especially harsh for predictions that contain slight typographical
errors (e.g., “hello” vs. “hellp”), and there is no guarantee that the previously mentioned postpro-
cessing steps will address every error. Also, there are settings in which the applicability of these
metrics does not make sense — e.g., recovering alphanumeric passwords. Thus, we also need eval-
uation metrics for the raw outputs of our model. Two appropriate metrics are Translation Edit Rate
(TER) (Snover et al., 2006) and a QWERTY-keyboard-based edit distance. Both metrics measure
the number of edits required for a hypothesis sentence to be translated to the ground truth. The latter
is a form of the Damerau–Levenshtein (DL) distance (Damerau, 1964) that penalizes the edit oper-
ations (i,e., insertions, deletions, substitutions, character swapping) conditioned on the QWERTY
keyboard layout. For example, if ”hello” was the ground truth word, ”hellp” should be less penalized
than ”hellv” as the former is a more likely output than the latter given the assumed keyboard layout.

Synthetic Data Experiments Table 1 shows the results for a model trained and tested on synthetic
data. The model performs very well on the synthetic test set across all proposed evaluation metrics.
To lessen the compute cost of processing over 45k raw videos, we extract a fixed 128-dimensional
feature representation as a preprocessing step by training a CNN for single key press classification.
We use the simulator to generate single key press images and train a CNN to predict the correct key.
Further details for this step are available in A.4.

Method Bleu-1 ↑ Bleu-4 ↑ METEOR ↑ ROUGE ↑ TER ↓ Qwerty-D ↓
Synthetic 0.90 0.79 .9 0.91 0.03 1.87

Finetuning 0.15 0 0.06 0.13 0.81 45.6
ADDA (Tzeng et al., 2017) 0.15 0 0.07 0.16 0.78 46.1

CycleGAN (Zhu et al., 2017) 0.17 0 0.07 0.17 0.7 45.6
Ours (Base) 0.73 0.52 0.74 0.75 0.12 7.4

Ours (No LM) 0.78 0.57 0.75 0.76 0.09 5.3
Ours 0.81 0.62 0.8 0.81 0.09 5.3

Table 1: We report various metrics to quantify the attacker’s ability to recover information.
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4.1 BASELINE RESULTS

We compare our work against finetuning, Adversarial Discriminative Domain Adaptation, ADDA,
(Tzeng et al., 2017) and CycleGAN (Zhu et al., 2017). All methods are evaluated on the real-life
test set and use the model trained on synthetic data.

• Finetuning. We finetune a model trained only on synthetic with the real-life training set.
• ADDA. Our goal with ADDA is to have the Encoder output feature representations that are do-

main invariant to a Discriminator, but also be discriminative for the Decoder.
• CycleGAN. This method learns a pixel-wise transformation that transforms data from one do-

main to another. We apply this transformation to every real frame to a synthetic one. Then, we
finetune the synthetic model with the transformed real training set and test on the transformed
real test set. Finetuning is needed because this method does not address the temporal shift as the
transformations are conducted on a per-frame basis.

It is important to note that in Lim et al. (2020), the authors were successful in applying ADDA to the
task of single key press classification when the number of labeled data is scarce. Simply applying
ADDA to our sequence prediction task leads to severe overfitting due to the limited real-life data, in-
dicating that this task is more challenging than the single keypress classification task studied by Lim
et al. (2020). While these are common approaches used in domain adaptation, we found that these
approaches are not suitable in our problem setting. We carried out extensive experiments to tune
our baselines and maximize their performance; a full listing of these experiments and corresponding
hyperparameters is available in Appendix A. Despite an extensive search of hyperparameters, we
still overfit. We report the best results in Table 1.

4.2 ADAPTING TO REAL-LIFE VIDEOS

Our method, unlike the above baselines, does not overfit to the real-life training set. Our results
show that training with our pairing mechanism with disentangled representations across domains is
an effective form of data augmentation. We outperform the baselines in both raw output evaluations
and post-processed evaluations as shown in Table 1. We found that our training was not sensitive to
the hyperparameters and weightings of the loss terms in 9, and use the same hyperparameters for all
experiments. Additional training details are in A.12.

While a direct comparison to the state of the art in direct line of sight attacks is difficult due to the
differences in datasets, it is worth noting how our model performs relative to current methods. Ragu-
ram et al. (2011) achieve a METEOR score of 0.89 whereas Xu et al. (2013) achieve a score of 0.71,
but recording from much farther distances. To measure an attacker’s ability to recover passwords,
Raguram et al. (2011) report precision and recall for individual word units and characters. They
achieve word-level precision and recall of 75% and 78%, respectively, and character-level scores of
94% and 98%. We achieve a word-level precision and recall of 78% and 79%, respectively, and a
precision and recall of 96% and 95%, respectively, for characters. They do not report METEOR
scores for this scenario; we do so in Table 1 under “No LM”

Method Bleu-1 ↑ Bleu-4 ↑ METEOR ↑ ROUGE ↑ TER ↓ Qwerty-D ↓
I - Base 0.73 0.52 0.74 0.75 0.12 7.4

II - Base + Style 0.77 0.56 0.76 0.77 0.1 6.3
III - Base + Content 0.77 0.53 0.76 0.78 0.11 5.9

IV - Base + Style + Content 0.76 0.57 0.75 0.76 0.12 7.0
V - Base + (Motiian et al., 2017) 0.77 0.57 0.76 0.79 0.11 5.7

VI - Full w/o LayerNorm 0.82 0.61 0.8 0.83 0.09 5.2
VII - Full 0.81 0.62 0.8 0.81 0.09 5.3

I - Base (100) 0.58 0.33 0.56 0.6 0.2 13.1
II - Base + Style (100) 0.65 0.38 0.62 0.65 0.18 11.2

III - Base + Content (100) 0.62 0.37 0.57 0.61 0.2 11.3
IV - Base + Style + Content (100) 0.69 0.4 0.65 0.69 0.15 9.3

V - Base + (Motiian et al., 2017) (100) 0.65 0.34 0.6 0.65 0.18 11.3
VI - Full w/o LayerNorm (100) 0.67 0.42 0.64 0.68 0.18 10.8

VII - Full (100) 0.65 0.42 0.63 0.67 0.21 13.2

Table 2: We conduct ablation studies to evaluate the effectiveness of each loss component. We also
evaluate performance when the number of real training videos is dropped to 100 instead of 175.
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Figure 4: t-sne plots for the outputs of ES (Left), EC (Center), and M (Right).

Feature Visualization The t-sne (Maaten & Hinton, 2008) plots, in Figure 4, for the feature repre-
sentations ofES , EC , andM on synthetic and real test data show that sentences with different styles
have a noticeable separation, whereas the content representations are intertwined. The last figure on
the right shows outputs of our feature aggregation module, M , and shows the transfer of styles in
the feature space. There is a clear separation between styles, while the datapoints within one style
cluster are mixed. To obtain inputs suitable for t-sne, we perform a max pooling operation along the
temporal dimension of the outputs of the networks.

Ablation Next, we conduct a series ablation studies to explore the effectiveness of our proposed
framework. We introduce seven different models: I is our base method without the use of any
adversarial losses, just the pairing mechanism. II uses style disentanglement, i.e., I + style disen-
tanglement. III uses content disentanglement, i.e., I + content disentanglement. IV uses both style
and content disentanglement. V is the base method with only the semantic alignment loss (Motiian
et al., 2017). VI uses style and content disentanglement, along with the semantic alignment, but
does not use LayerNorm inM . VII uses style and content disentanglement, along with the semantic
alignment. This is our proposed method trained with Algorithm 1, i.e., IV + semantic alignment.

Figure 5: From left to right: the distribution of Qwerty-D, TER, and METEOR scores, respectively.
“Full” is our proposed framework. “Base” is our framework without any adversarial training. We
also compare these two against a model trained and tested on just synthetic data.

First, we find that our base model (I) achieves competitive results without any losses on the latent
spaces. This indicates that training on paired representations across domains is an effective method
for data augmentation. Second, we find that adding auxiliary losses on the latent spaces to enforce
style and content disentanglement improves performance. The performance for models II and III
shows the base model is benefiting from the added loss terms. The results for Model IV aligns with
our hypothesis that explicitly disentangling style and content allows us to overcome the lack of train-
ing data in the target domain by training with all combinations of the factors of variation. Finally, we
trained model V to apply the semantic alignment step on our paired outputs without any additional
adversarial losses. This is quite competitive with IV, but we find the greatest performance boost
when training model VII using both semantic alignment and disentanglement. A closer look into
the distribution of the scores in Figure 5 shows that the distribution of scores for Model VII (Full)
indicates higher overall performance compared to Model I (Base). Our results show that explicitly
disentangling style and content by adding the adversarial losses on the latent spaces, supplements
the pairing mechanism to achieve the highest performance against our evaluation metrics.
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5 CONCLUSION

Our work provides the important initial step needed to formulate defenses for keystroke inference
attacks in the age of deep learning. We provide the first assessment of an attacker’s ability to recover
sentence level information using deep learning systems, demonstrating that this attack is plausible
and a significant threat to users. Such a task has been challenging due to the costs of curating a real-
life dataset. We address this problem by introducing a framework for low resource video domain
adaptation, that disentangles the style and content across both domains, and creates representations
from all pairs of style and content combinations. Our results indicate that training with these pairs,
along with auxillarly losses to explicitly disentangle style and content, serves as an effective form of
data augmentation that prevents overfitting.
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A ADDITIONAL TRAINING DETAILS

A.1 SYNTHETIC DATASET COLLECTION

We use the synthetic dataset generator released by Lim et al. (2020) to generate our synthetic data.
We take the headlines dataset released by Kulkarni (2018) for our sentences. To preprocess every
sentence, we change it to lower case, remove any special characters, and punctuation marks. The
thumb is of only right-handed users. The simulator takes in parameters for the user’s device and the
attacker’s camera. We use the iPhone 6 as the camera parameters and the iPhone XR as the user’s
device.

A.2 REAL-LIFE DATASET COLLECTION

We preprocess the real-life capture data in order to compensate for the various capturing angles and
positions and adversary can take. More specifically, for every video: 1. We crop out the location
of the mobile phone. 2. Manually label the 4 corners of the phone. 3. Calculate a homography H
matrix between the labeled 4 corners and 4 corners of a template image. 4. Warp the captured image
to the template image using H. All aligned images are resized to 200 x 100 and then cropped to
only display the keyboard. We capture from distances up to 3 meters where the attacker is using an
iPhone6 camera and the user is using an iPhone XR.

A.3 ALGORITHM BLOCK

Algorithm 1: Learning Algorithm for Disentangling Style and Content.
Input: EC , ES , M , DS , DC , G, DM , DS , DT

Result: Well-trained ÊC , Well-trained ÊS , Well-trained M̂ , and Well-trained Ĝ
1 while Not Converged do
2 sample mini-batch of b synthetic samples, {(Xs

1 , Y
s
1 ), . . . , (X

s
b , Y

s
b ) } from DS

3 sample mini-batch of b real-life samples, {(Xt
1, Y

t
1 ), . . . , (X

t
b, Y

t
b ) } from DT

4 Style Disentanglement: Remove Style information from the Content Space
5 update DS and EC with LAdvDS

6 Content Disentanglement: Remove Content information from the Style Space
7 update DC with LAdvDC

8 update ES with LAdvES

9 Sequence Prediction
10 update EC , ES , G,M with Lcls

11 Semantic Alignment
12 update DM with LAdvDM

13 update M,EC , andES with LAdvM

14 end
15 return ÊC = EC , ÊS = ES , M̂ =M , Ĝ = G

A.4 SYNTHETIC SINGLE KEY PRESS CLASSIFIER

We train a CNN, φ(·), for the task of single key press classification in order to learn a d−dimensional
(d = 128) feature extractor. Training with almost 50k synthetic videos where the average sequence
length is 387 is computationally expensive. Once this network is fully trained for the task of single
key press classification, we can extract the features of each video on a per-frame basis.

Data Preparation First, we use the simulator (Lim et al., 2020) to generate 70,000 single key
press images. These images contain the synthetic thumb over one of 27 keys on the QWERTY
keyboard (26 letters + the space bar). Once generated, these images are preprocessed in a similar
fashion to the synthetic video dataset. We resize the images to size 200 X 100 and crop the phone
such that only the keyboard is showing. We use 50,000 images for training and 10,000 images for
testing and validation, respectively.
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Training Details and Results We use a CNN where each layer consists of a Convolution Layer,
ReLU activation, and MaxPool operation. We use 3 layers and 2 fully connected layers. We were
able to train a network to achieve 95% accuracy on a held out test set without much hyperparameter
or architecture search, as this is a fairly simple 27-way classification task. We use this final model
to preprocess every frame in our synthetic video dataset. Every video is a now a sequence of these
d−dimensional feature representations. We use the Adam optimizer with a learning rate of 1e−3.

A.5 REAL-LIFE SINGLE KEY PRESS CLASSIFIER

When extracting the visual features for the real-life videos, we can not use a feature extractor that
was trained only on synthetic data. There is a distribution shift between the synthetic and real-life
data, so the features we extract would be not be informative. Instead of using φ(·) that was trained
for single keypress classification on just synthetic data, we train φ(·) with a combination of synthetic
and real-life data. Specifically, we adopt the ADDA (Tzeng et al., 2017) framework for unsupervised
domain adaptation to train φ(·).

Data Preparation We treat the individual frames for all of the videos in our real-life training set
as unlabeled data. Even though we do not have labels for individual keypresses for real-life data, we
can leverage the fact that we have abundant labels for synthetic data by adopting the unsupervised
domain adaptation technique ADDA.

Training Details and Results We use the CNN for single key press classification on synthetic data
as our pretrained network. The Discriminator is a 1 layer, 128-dimensional fully connected layer
followed by a sigmoid. We follow the same guidelines to train ADDA as the original paper (Tzeng
et al., 2017), and refer the reader to this work for the full description of their training process. We
use the Adam optimizer and a learning rate of 1e−3 for both the Discriminator and CNN.

A.6 NETWORK ARCHITECTURES

For all experiments, the Encoders (EC , ES) and Decoders (DC , G) are both Transformers with 4
layers, 4 attention heads, an embedding size of 128 and a hidden size of 256. DM and DS are
both 1-layer fully connected layers. Since the output of the Encoder is a sequence of n continuous
representations, where n is the input sequence length, we do a max pooling operation along the
temporal dimension so that we have a fixed vector representation. These fixed vector representations
are the direct inputs to DM and DS . The max sequence length is set at 300, and the max phrase
length is set at 70. If an input sequence has more than 300 frames, we randomly sample 300 frames
at each epoch. If a video in the testing or validation set has more than 300 frames, we fix the indices
of the sampled frames to remove any randomness for evaluation. For input sequences that are shorter
than 300 frames, we zero-pad the remaining sequence.

A.7 ADDITIONAL TRAINING DETAILS - SYNTHETIC SEQ2SEQ

We use a dropout value of p = 0.1 and the Adam optimizer with a learning rate 1e−4. We train the
network for 400 epochs.

A.8 ADDITIONAL TRAINING DETAILS - FINETUNING

We use the φ(·) trained on a combination of real-life and synthetic data described in A.5. We do
not fix extract a fixed d-dimensional representation for every frame in the real-life video in order
to preprocess or reduce computational costs. Since we are dealing with such few real-life videos,
handling raw videos is not as computationally expensive. Doing this lets us apply data augmenta-
tion techniques on the image space versus the feature space. Also, we can continue to adjust the
weights of φ(·). Table 3 shows the various configurations we experimented with for finetuning. We
experimented with different combinations of freezing networks and tuning learning rates. We were
unable to discover any combination that did not overfit to the training data. For all experiments, we
use the Adam optimizer.
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Frozen Layers LR-Decoder LR-Encoder LR-φ(·) Bleu-1
None 1e−4 1e−4 1e−4 0.15
None 1e−4 1e−5 1e−5 0.12
None 1e−5 1e−5 1e−5 0.12
φ(·) 1e−4 1e−4 0 0.12
φ(·) 1e−5 1e−5 0 0.15
Encoder 1e−4 0 1e−4 0.14
Encoder 1e−5 0 1e−5 0.14
Decoder 0 1e−4 1e−4 0.12
Decoder 0 1e−4 1e−5 0.08
Encoder, Decoder 0 0 1e−4 0

Table 3: The different hyperparameters we tuned to maximize the performance for finetuning.

A.9 ADDITIONAL TRAINING DETAILS - ADDA

ADDA (Tzeng et al., 2017) is an unsupervised domain adaptation method that learns a feature repre-
sentation that is domain invariant and discriminative. While this framework was originally proposed
for UDA, it can be easily extended to a supervised domain adaptation scenario. To follow the
ADDA framework, we initialize the weights of our Encoder and Decoder with the ones pretrained
on synthetic data. Then, we train on mini-batches of both synthetic and real-life videos such that
the Decoder can predict the input video’s labels, but the Encoder produces representations that are
invariant to domain, i.e., synthetic vs. real. We train in adversarial fashion where the Discriminator
is trained to successfully predict the domain of its input, and the Encoder is trained to spoof the
Discriminator. The Discriminator used in this experiment is the same one we use for our method,
DS . To get the input for DS , we first perform a maxpool operation on the output of the Encoder.
We also tried to use a 1 layer LSTM with hidden size of 256 as our Discriminator. For the LSTM
Discriminator, the input is the entire sequence of the Transformer output — no pooling. The output
for the last time step is used as input to a linear layer followed by a sigmoid for binary classification.
Table 4 highlights the different hyperparameters we tried to maximize performance.

A.10 ALGORITHM BLOCK

Algorithm 2: Learning Algorithm for ADDA.
Input: EC , G, DS , DS , DT

Result: Well-trained Encoder ÊC and Well-trained Decoder ÊS

1 while Not Converged do
2 sample mini-batch of b synthetic samples, {(Xs

1 , Y
s
1 ), . . . , (X

s
b , Y

s
b ) } from DS

3 sample mini-batch of b real-life samples, {(Xt
1, Y

t
1 ), . . . , (X

t
b, Y

t
b ) } from DT

4 Domain Invariance: Make Encoder outputs domain invariant
5 update DS and EC with LAdvDS

6 Sequence Prediction: Make Encoder outputs discriminative
7 update EC and G with Lcls

8 end
9 return ÊC = EC , Ĝ = G

A.11 ADDITIONAL TRAINING DETAILS - CYCLEGAN

CycleGAN (Zhu et al., 2017) learns pixel-wise transformation functions F : S → T andG : T → S
that can transform data from the source domain to the target domain, and vice versa. We take 10,000
random frames from the synthetic and real-life video datasets and train F and G in an unpaired
fashion. We train using the default CycleGAN hyperparameters reported in Zhu et al. (2017) and
train for 200 epochs. We take G and transform every frame in our real-life dataset to the synthetic
space. We found that images transformed under G (i.e, real to synthetic) yielded higher quality
transformations (e.g., the thumb was not malformed, the thumb was placed on the correct key, etc.)
as opposed to the transformed images produced by F . Then, we finetune on the transformed real-
life training set and test on the transformed real-life test set. Simply testing on the transformed
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Frozen Layers D Architecture LR-Decoder LR-Encoder LR-φ(·) Bleu-1
None 128-FC 1e−4 1e−4 1e−4 0.13
None Lstm 1e−4 1e−4 1e−4 0.15
None 128-FC 1e−4 1e−5 1e−5 0.14
None Lstm 1e−4 1e−5 1e−5 0.16
Encoder 128-FC 1e−4 0 1e−4 0.13
Encoder Lstm 1e−4 0 1e−4 0.17
Decoder 128-FC 0 1e−4 1e−4 0.1
Decoder Lstm 0 1e−4 1e−4 0.1
Decoder 128-FC 0 1e−4 1e−5 0.08
Decoder Lstm 0 1e−4 1e−5 0.07
Encoder, Decoder 128-FC 0 0 1e−4 0
Encoder, Decoder Lstm 0 0 1e−4 0

Table 4: The different hyperparameters we tuned to maximize the performance for ADDA.

real-life test set is not sufficient as the CycleGAN approach does not address temporal domain shift
as the transformations are performed independently on a per-frame basis. Thus, we are finetuning
to address this temporal shift. We use the φ(·) from the synthetic key press classifier. Table 5 details
the different configurations of learning rates and weight freezing we experimented on for finetuning.
Despite finetuning on the transformed data, this method still overfits to the training set and is unable
to generalize.

Frozen Layers LR-Decoder LR-Encoder LR-φ(·) Bleu-1
None 1e−4 1e−4 1e−4 0.17
None 1e−4 1e−5 1e−5 0.17
None 1e−5 1e−5 1e−5 0.13
φ(·) 1e−4 1e−4 0 0.13
φ(·) 1e−5 1e−5 0 0.15
Encoder 1e−4 0 1e−4 0.15
Encoder 1e−5 0 1e−5 0.16
Decoder 0 1e−4 1e−4 0.12
Decoder 0 1e−4 1e−5 0.14
Encoder, Decoder 0 0 1e−4 0.13

Table 5: The different hyperparameters we tuned to maximize the performance for CycleGAN.

Figure 6: An example of the outputs of CycleGAN (Zhu et al., 2017). The top is the output of
CycleGAN and the bottom is the original real-life image.

Figure 6 depicts an example of the outputs of the CycleGAN network we train. We show the outputs
ofG : T → S. The top row contains the output ofGwhere the bottom row is the real-life input. The
thumb for the synthetic outputs is, for the most part, on the same location as the rea-life input. While
the thumb being placed on the correct location is important, it is not sufficient to fully address the
domain gap between the synthetic and real. This is because this method does address the temporal
shift. These transformations are done on a per-frame basis. The different thumb colors is an artifact
of this method displaying temporal inconsistency.

A.12 ADDITIONAL TRAINING DETAILS - OURS

We use the Adam optimizer with learning rate of 1e−4 for all of our networks. We train for 60k
iterations with a batch size of 8, and use a dropout value of 0.15. We use the validation set to tune the
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different weightings for our loss function. We set λ1 = 1.0, λ2 = 0.25, λ3 = 1.0, λ4 = 1.0, λ5 =
1.0 and λ6 = 1.0.

16


	Introduction
	Background
	Methods
	Keystroke Inference Attacks
	Disentangling Style and Content

	Experiments
	Baseline Results
	Adapting to Real-Life Videos

	Conclusion
	Additional Training Details
	Synthetic Dataset Collection
	Real-Life Dataset Collection
	Algorithm Block
	Synthetic Single Key Press Classifier
	Real-Life Single Key Press Classifier
	Network Architectures
	Additional Training Details - Synthetic Seq2Seq
	Additional Training Details - Finetuning
	Additional Training Details - ADDA
	Algorithm Block
	Additional Training Details - CycleGAN
	Additional Training Details - Ours


