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Abstract

End-to-end Automatic Speech Recognition
(ASR) models often face challenges in accu-
rately transcribing contextually relevant key-
words, such as proper nouns or user-specific
entities. Existing approaches leverage large
language models (LLMs) to improve keyword
recognition through token-level or phrase-level
biasing. However, token-level approaches
struggle to ensure holistic generation of key-
word phrases, while phrase-level approaches
may compromise the accuracy of non-keyword
transcriptions. To overcome these limita-
tions, we propose a novel joint approach that
integrates token-level and phrase-level bias-
ing, leveraging their complementary strengths.
Our approach incorporates LLMs using a late-
fusion mechanism, combining ASR and LLM
outputs at both token and phrase levels. Experi-
ments on Chinese and English datasets demon-
strate that our approach achieves state-of-the-
art performance on keyword-related metrics
while preserving the high accuracy on non-
keyword text. Ablation studies also confirm
that the token-level and phrase-level compo-
nents both significantly contribute to the im-
provement, complementing each other in our
joint approach. The code and models will be
publicly available at https://github.com/.

1 Introduction

Current end-to-end Automatic Speech Recognition
(ASR) models, such as Whisper (Radford et al.,
2022; Gandhi et al., 2023), have demonstrated
impressive performance in transcribing common
words. However, these models often struggle with
accurately transcribing contextually relevant key-
words (Alon et al., 2019; Yang et al., 2024b; Zhou
et al., 2024b). Such keywords may include proper
nouns or user-specific entities, such as contact
names from a phone’s address book. These key-
words often convey important semantics, which are
essential for understanding a sentence’s meaning
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Figure 1: An example that illustrates the wrongly tran-
scribed keywords by the ASR model.

and performing related tasks accurately. In many
scenarios, contextual keywords frequently occur
within predefined contexts, such as contact names
stored in a phone or previously searched terms.
This contextual information is typically readily ac-
cessible. To improve the recognition of these key-
words during transcription, prior researches have
explored the use of contextual keyword dictionaries
(Pundak et al., 2018; Alon et al., 2019; Lakomkin
et al., 2024).

Large language models (LLMs) have recently
demonstrated exceptional capabilities in contex-
tual modeling and reasoning across diverse tasks
(OpenAl, 2023; Touvron et al., 2023; Yang et al.,
2023; Abdin et al., 2024). These strengths align
closely with the demands of contextual ASR, where
the accurate recognition of user-relevant keywords
heavily depends on contextual information. Con-
sequently, there has been growing interest in lever-
aging LLMs to help ASR model better recognize
keywords (Sun et al., 2024; Lakomkin et al., 2024;
Yang et al., 2024b). Typically, contextual keyword
dictionaries are provided to LLMs in the form of
a prompt C. Based on this, Sun et al. (2024)
proposed a two-pass approach. In the first pass,
the ASR model generates multiple transcriptions.
These candidates are then fed into the LLM, which
computes second-pass scores conditioned on C.
The LLM calculates the likelihood of each token
sequentially during decoding and aggregates these
token-level scores to produce an overall score for
each candidate. The candidate with the highest
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score is selected as the final result. In addition,
Lakomkin et al. (2024) and Yang et al. (2024b)
proposed early-fusion based methods. Beyond pro-
viding the contextual prompt C, these methods
directly feed audio input into the LLM via adapters
and train the model to predict transcription text.
Similar to the two-pass approach, the decoding pro-
cess in early-fusion methods operates at the token
level, where the LLM generates transcription text
in a token-by-token, autoregressive manner. Both
approaches share the characteristic of relying on
token-level operations during decoding. For this
reason, we categorize them as token-level biasing
methods in this paper.

However, keywords are often multi-token
phrases, and token-level biasing approaches lack a
holistic understanding of the entire keyword phrase.
This limitation can result in incomplete generation
of keywords. To address this issue, Zhou et al.
(2024b) proposed a phrase-level biasing approach,
introducing a phrase-level copy loss to guide the
ASR model in selecting the correct keyword phrase.
This approach allows the model to directly copy
all tokens of a keyword phrase from a predefined
dictionary, significantly improving the overall re-
call of keywords. However, the effectiveness of
the phrase-level approach depends on the accurate
selection of keywords from the dictionary. Zhou
et al. (2024b) relied exclusively on speech informa-
tion from the ASR model for keyword selection,
which may result in incorrect choices. This, in turn,
may adversely affect the recognition accuracy of
non-keyword text.

In this paper, we propose a joint approach that in-
tegrates token-level and phrase-level approaches to
improve ASR keyword recognition. Figure 2 illus-
trates the framework of our joint approach. Unlike
previous works that utilize LLMs through two-pass
or early-fusion strategies, we introduces a novel
late-fusion based approach to incorporate LLMs.
The overall process is as follows: the keyword
list is first provided to the LLM in the form of a
prompt. During transcription, the knowledge of
ASR and LLM is fused in a late-fusion manner to
improve keyword recognition. Specifically, in our
token-level biasing, we fuse the token-level logit
scores from the ASR and LLM to guide the model
in generating tokens. In phrase-level biasing, we
further fuse the hidden representations of the ASR
and LLM to enable the model to select the correct
keyword phrase from the dictionary. Finally, the
results from token-level and phrase-level biasing

are jointly considered through a re-normalization
process to produce the final result.

We conduct experiments on both Chinese and
English datasets (Chen et al., 2022; Zhou et al.,
2024a; Wang et al., 2024). Experiments demon-
strate that our proposed approaches achieve perfor-
mance comparable to state-of-the-art methods, par-
ticularly on keyword-related metrics, while main-
taining the accuracy on non-keyword text. Ab-
lation studies show that both the token-level and
phrase-level components play crucial roles in the
joint framework. The joint strategy effectively inte-
grates the strengths of both approaches, achieving
further improvements. The contributions can be
summarized as follows:

* We propose a joint approach that integrates
token-level and phrase-level approaches,
leveraging the strengths of both to improve
ASR keyword recognition.

* Unlike previous works that utilize LLMs
through two-pass or early-fusion strategies,
our joint approach introduces a late-fusion
based approach to incorporate LLMs with
ASR.

* We evaluate our joint model on both Chinese
and English datasets. The results show that
our approach achieves performance on par
with previous approaches and even surpasses
them on keyword-related metrics. Additional
analysis further confirms the effectiveness of
our joint strategy. The codes and models will
be released at https://github.com/.

2  Proposed Approach

The core idea of our approach is biasing the model
to transcribe contextual keywords more accurately
through LLM intervention. We achieve this by first
injecting the knowledge of contextual keywords
into the LLM. Then, we incorporate LLM-derived
contextual information to bias the ASR model to
transcribe the keywords in the speech input. Specif-
ically, we propose a joint biasing framework that
leverages LLMs to assist ASR models from both
token-level and phrase-level perspectives. Our ap-
proach comprises four main components: knowl-
edge injection, token-level biasing, phrase-level
biasing, and joint modeling. Following sections
will introduce each of these components in detail.
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Figure 2: An example of transcribing the speech "send a message to elisa toffoli". Here, X is the speech input. C is
the contextual prompt. y; is the previously generated text. s., h} and s¢, h¢ are the logit score and hidden state of

the LLM and ASR model, respectively.

2.1 Konwledge Injection

For a given keyword list K = (ky, ko, ..., kx) with
N keywords, we concatenate the keywords into a
single contextual prompt C' and instruct the LLM
to pay more attention to the keywords during the
subsequent transcription process. Specifically, the
prompt C is formulated as follows: Transcribe the
speech into text. The following keywords are likely
to appear in the transcribed text output. Use rele-
vant keywords to improve transcription accuracy
and ignore irrelevant ones. The keywords are ki,
ko, ..., kn. The text corresponding to the speech is:

In both two-pass (Li et al., 2023; Sun et al., 2024)
and early-fusion (Lakomkin et al., 2024; Yang et al.,
2024b) approaches, the keyword list is also pro-
vided to the LLM in the form of a prompt. How-
ever, in addition to the keyword prompt, two-pass
approach requires candidate transcriptions as input
to the LLM, while early-fusion approach requires
audio representations to be processed by the LLM.
In contrast, our approach only provides the key-
word list as prior knowledge to the LLM. This
design not only enables a highly efficient one-pass
process but also eliminates the need for fine-tuning
the model to handle audio inputs.

2.2 Token-level Biasing

Token-level biasing integrates the semantic infor-
mation from the LLM and the acoustic information

from the ASR model during the token-by-token
decoding process. We propose a training-free late-
fusion strategy that fuses the information from the
LLM and ASR during the decoding. Specifically, at
decoding step t, the LLM produces the logit score
st for all tokens in the token vocabulary V based on
the contextual prompt C' and the previously gener-
ated text y;. Similarly, the ASR model produces
the logit score s{ for the next token based on y«;
and the speech input X. The s. and s¢ model the
probabilities for the next token from semantic and
acoustic perspectives, respectively.

hi, sl = LLM(y;, C) (1)

t8¢ = ASR(y<¢, X) 2

Here, h! and h¢ are the hidden states of the LLM
and ASR model.

We combine s} and s¢ to compute the final prob-
ability of generating next token. However, since 3%
and s{ originate from different modalities, and the
computation of the two scores relies on different
information, they cannot be directly compared. For
example, the computation of s} depends solely on
y<¢ and C. At the beginning of generation, y;
contains limited information, causing the LLM to
predict within a broad semantic space. Excessive
reliance on s! may lead to the model deviating from
the true transcription corresponding to the speech



input. On the contrary, s{ is based on the speech
input X and y.;, which may align better with the
speech contents. Therefore, inspired by Chen et al.
(2024), we employ a score fusion strategy based on
uncertainty to balance the predictions of the LLM
and ASR. The final token-level fusion formulas are
as follows:

s; = s + sigmoid(u?) - s} 3)

ui = —pj - log(py) )
Prok(Yt|y<t, C, X) = [softmax(sy)],,  (5)

Here, uf represents the uncertainty of the ASR
model. p{ is the probability of the ASR model
obtained from applying softmax to s?. It means
that when the ASR model has high uncertainty, for
example, if a keyword is difficult to distinguish
based on speech information alone, more weight
is given to the LLM’s prediction. Conversely, at
the beginning of the generation, when the ASR
model is more confident, greater weight is assigned
to the ASR’s prediction. s; and pyo (yt|y<t, C, X)
represent the final fused token-level score and prob-
ability, respectively.

2.3 Phrase-level Biasing

Unlike the token-level approach, which applies bi-
asing to each individual token in the vocabulary,
the phrase-level approach biases the model to fo-
cus on entire key phrases, enabling it to transcribe
target keywords as cohesive units.

Specifically, we design a phrase fusion module
to integrate the phrase-level representation of each
keyword, the contextual semantic information from
the LLM, and the speech information from the ASR
to determine the phrase-level probability for each
keyword. At decoding step ¢, the module estimates
the probability of generating a complete phrase
from the keyword list.

First, we obtain the phrase-level representation
r; for each keyword k; in the keyword list K us-
ing a keyword encoder. Following CopyNE (Zhou
et al., 2024b), we use a light-weight LSTM as the
keyword encoder to encode each keyword. We take
the hidden state of the last token as the phrase-level
representation 7.

r; = LSTM(k;) (6)

Then, for contextual semantic information and
acoustic information, we use the hidden states h!
and h{ from the LLM and ASR model, as shown

in equation 1 and 2. With r;, hi, and h{ ob-
tained, we compute the phrase-level probability
Pphr (Kily<t, C, X) for each keyword k; using a
dot-product attention mechanism.

First, h! and h{ are concatenated and passed
through a linear layer to obtain the attention query
g:. Then, we calculate the attention score between
the query g; and each phrase-level representation
r;. Finally, a softmax function is applied to obtain
the phrase-level probability p,, (ki|y<:, C, X).

qi = Linear([h{; h{]) 7

exp(q; - ;)

Pphr (Kily<t, C, X) =
8 S exp(q; - 7))

®)

2.4 Joint Modeling

The token-level probability pior(ye|y<t, C, X)
guides the model on which token to gen-
erate next, while the phrase-level probability
Pphr (Kily<t, C, X) informs the model to pick an
entire keyword phrase. Different choices between
generating individual tokens and entire keywords
can result in varying final outcomes. So it is im-
portant to jointly consider the two probabilities to
make the best transcription. However, it is non-
trivial to directly combine the two probabilities,
as they are computed based on different informa-
tion and have different scales. To make the two
probabilities comparable, we use a simple yet ef-
fective method to normalize them to the same scale
following Zhou et al. (2024b).

Specifically, we add a fake keyword kg to the
keyword list K. When the model should generate
tokens rather than select a keyword, we train it to
predict kq. The equation (8) becomes:

exp(qy - 1)
N
ijo exp(q; - ;)

pph?“(ki|y<t7 Ca X) = 9

The phrase-level probability of the fake key-
word ko, i.e., Ppnr (ko|y<s, C, X) means the model
should generate tokens in the next step. Ac-
cordingly, it can be treated as the prior prob-
ability of generating tokens. Finally, the two
sorts of probability, i.e., piok(yt|y<t, C, X) and
Pphr (Kily<t, C, X ), can be jointly normalized to
the same scale.

Dphr (Ko|Y<t)Piok (2i|Y<t), 2i €V
pjoi(zi‘y<t):{pT( ly<t)pron(zily<e), 24

Pphr (2i|Y<t), 2z € K,z # ko
(10)



Here, V is the token vocabulary. z; is a token from
V or a keyword from K. For abbreviation, we omit
the condition C and X in the equation. After nor-
malization, tokens in the vocabulary and keywords
in the keyword list form a unified space Z = VUK.
The probabilities from token-level and phrase-level
biasing are jointly normalized in p;o;(2i|y<¢). We
finally generate the final transcription by doing
beam search over pjo; (2i|y<¢).

3 Experiments

3.1 Experimental Setup

Datasets. We conduct experiments on Chinese
and English datasets. For Chinese, we use the
Aishell dataset (Bu et al., 2017; Chen et al., 2022)
and the RWCS-NER dataset (Zhou et al., 2024a).
The Aishell dataset contains 150 hours of clean
speeches recorded in quiet environments. RWCS-
NER is a test set proposed to evaluate the perfor-
mance of Chinese Spoken NER in real-world sce-
narios. It covers two domains: open-domain daily
conversations (DC) and task-oriented intelligent
cockpit instructions (ICI). Both the Aishell and
RWCS-NER datasets are annotated with transcrip-
tions and the named entities. We utilize the entities
as the corresponding keyword list.

For English, we use the Slidespeech dataset
(Wang et al., 2024), a large-scale corpus enriched
with slide information. Each speech sample is
paired with its corresponding transcription as well
as a keyword list extracted from the associated slide.
We use the 473-hour L95 subset of Slidespeech as
the training set.

Backbone Models. Our joint model has two
main components: the ASR model and the LLM
model. For the ASR model, we select the Whisper-
small model' (Radford et al., 2022). As for the
LLM model, we choose the Qwen2-1.5B? (Yang
et al., 2024a) and the Phi-3.5-mini’ (Abdin et al.,
2024) for the experiments on Chinese and English
respectively.

3.2 Training

Loss Function. The loss function £ of our model
is composed of two parts: the token-level loss Lok
and the phrase-level loss L. First, given the
ground-truth transcription Y = y1,y2, ...,y of

"https://huggingface.co/openai/whisper-small
“https://huggingface.co/Qwen/Qwen2-1.5B
3https://huggingface.co/microsoft/Phi-3.5-mini-instruct

the speech, L, is the negative log-likelihood loss
to generate the transcription Y.

T

£tok = - Zptok (yt|y<t> Ca X)
t=1

(11)

Second, the phrase-level loss L, is used to
teach the model to choose the correct keywords
from the keyword list K. Given K, we apply
the maximum matching algorithm to find all the
phrases in the transcription Y that also listed in the
keyword list K. Through this process, we can ob-
tain a sequence P = p1,pa,...,pr. p; = k; if the
j-th keyword is matched at time step . Otherwise,
p; = ko, which is a fake keyword indicating no
keyword is matched. So the phrase-level loss Ly,
is the loss to generate the phrase-level sequence P.

T
Lonr == pphr(pilp<t, €, X)  (12)
t=1

Finally, the total loss £ is the sum of L;,; and
Lyhr.

L= Etok + Ephr (13)
Training Details. We train our model on the
Aishell training set and the L95 subset of
Slidespeech respectively. In the whole training
process, the LLM model is frozen. Since the token-
level biasing requires the ASR model and the LLM
model to have the same token vocabulary, we re-
place the tokenizer of the ASR model with the one
in LLM (Chen et al., 2024). Therefore, during
the training process, we only update the ASR de-
coder, Keyword Encoder, and the linear layer in
the phrase-level biasing module. The number of
parameters to be updated is about 300M.

We use the AdamW optimizer (Loshchilov et al.,
2017) to train our model. The learning rate is set to
le-4 and the batch size is 60. The model is trained
for 40 epochs with the first 4 epochs used for warm-
up. The training process takes about 40 hours on
three A100 40G GPUs. We report the results of the
best model on the validation set.

3.3 Evaluation

Baselines. On the Chinese dataset, we first fine-
tune the Whisper model (Radford et al., 2022) on
the Aishell training set as the initial baseline. Addi-
tionally, the Whisper baseline also corresponds to
our joint model with both token-level and phrase-
level biasing removed. CopyNE (Zhou et al.,



Aishell Entity Char Ratio=9.58%

DC Entity Char Ratio=8.34%

ICI Entity Char Ratio=18.86%

Model " ~ERIB-CER] U-CER| R] CER| B-CER| U-CER| R CER] B-CER| U-CER| R}

Whisper 5.2 104 47 80.6 12.8 229 117 71.1 115 307 69 408
CopyNE 4.6 34 47 944 122 149 118 820 89 168 7.0 70.0
Ours 3.7 22 38 964 11.0 114 108 866 7.7 109 68 798
Oursw/oP 43 70 40 869 116 179 108 773 102 20.1 7.6 618
Oursw/oT 45 2.7 47 955 121 132 118 843 86 147 70 73.1

Table 1: Results on Aishell, DC, and ICI test sets. Entity Char Ratio is the ratio of the entity characters in the dataset.
w/o P and w/o T indicate the exclusion of the phrase-level and token-level modules, respectively.

Slidespeech Keyword Ratio=6.72%

Model W ERI B-WER| U-WER| Rf
Whisper 10.9 8.0 112 923
CopyNE 109 6.7 112 935
MaLa-ASR 9.1 5.5 9.4 949
Ours 108 53 112 952

Table 2: Results on the Slidespeech test set.

2024b) is the second baseline. It is a phrase-level
biasing model which also utilizes the keyword dic-
tionary to improve the accuracy of keywords.

On English, besides the Whisper and CopyNE,
we also compare with MalLa-ASR (Yang et al.,
2024b), a state-of-the-art model on the Slidespeech
dataset. It’s a token-level biasing model that fol-
lows the early-fusion paradigm and utilizes both
the keyword dictionary and the LLM model.

To ensure a fair comparison with the baselines,
all models are evaluated using the same keyword
list. Following MaLa-ASR, we set the keyword list
size to 50 for the primary experiments. We will
also evaluate the effect of the keyword list size in
the ablation studies.

Metrics. Following Zhou et al. (2024b) and Yang
et al. (2024b), we report the character error rate
(CER) and the word error rate (WER) for the Chi-
nese and English respectively. In addition to the
CER/WER, to evaluate the performance on the key-
words, we also report the keyword related metrics
including biased character error rate (B-CER), bi-
ased word error rate (B-WER), and keyword recall
(Recall). B-CER and B-WER measure the error
rate of the transcriptions corresponding to the key-
words. Recall is the percentage of the keywords
that are correctly and fully predicted.

On the contrary, U-CER and U-WER are the
CER and WER of the transcriptions that do not
contain keywords, which can also reflect the impact
of different models on non-keyword texts.

3.4 Results

Main Results. For Chinese, we evaluate the mod-
els on the test sets of Aishell, DC, and ICI. Since
the models are fine-tuned on the Aishell training set,
their performance on DC and ICI reflects their abil-
ity to generalize to out-of-domain scenarios. Table
1 presents the results across all three datasets.

Overall, our model achieves the best perfor-
mance across all metrics, particularly those related
to keywords. Specifically, compared to CopyNE,
our joint model achieves absolute reductions in
B-CER of 1.28%, 3.51%, and 5.9% on Aishell,
DC, and ICI, respectively. Similarly, for Recall,
our model outperforms CopyNE with absolute im-
provements of 2%, 4.59%, and 9.96% on the three
datasets. Notably, the advantages of our method
become even more pronounced when the keyword
density is higher. For instance, in ICI, where the
ratio of entity characters reaches 18%, the improve-
ment achieved by our method is the largest among
the three datasets.

Table 2 presents the results on the test set of the
English Slidespeech dataset. Overall, our model
outperforms Whisper and CopyNE and achieves
performance comparable to MalLa-ASR. A closer
comparison with MalLa-ASR reveals that our model
excels in keyword-related metrics, such as B-WER
and Recall, but falls behind in WER and U-WER.
We hypothesize two main reasons.

First, the LLM used in MalLa-ASR is the 7B Vi-
cuna (Chiang et al., 2023), which is significantly
larger than the 3.8B Phi model employed in our
joint approach. Second, Mal.a-ASR adopts an
early-fusion design, where the audio input is di-
rectly fed into the LLM. This allows the model
to fully utilize the parameters of the LLM to fit
the data. Given that non-keyword text dominates
the dataset (approximately 95%), the early-fusion
model effectively learns to transcribe non-keyword
text. However, its ability to handle keywords is
comparatively weaker. In contrast, our model em-
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Figure 3: Effect of the keyword list size.

ploys a late-fusion approach, where the LLM is pri-
marily used to enhance the generation of keyword-
related text. As a result, we achieve superior per-
formance on metrics associated with keywords.

Token-level vs. Phrase-level. To evaluate the ef-
fectiveness of token-level and phrase-level biasing,
we conduct ablation studies on the three Chinese
datasets. The lower half of Table 1 reports the re-
sults after removing the phrase-level biasing mod-
ule (w/o P) and the token-level biasing module (w/o
T), respectively. The results indicate that removing
phrase-level biasing while retaining token-level bi-
asing leads to a significant decrease in performance
on keyword-related metrics (B-CER, Recall), with
minimal impact on non-keyword metrics (CER, U-
CER). Conversely, removing token-level biasing
results in a substantial degradation in non-keyword
metric, while its impact on keyword-related met-
rics is less pronounced. Despite these degradations,
both configurations outperform the Whisper base-
line, which lacks any biasing mechanism.

These findings suggest that token-level and
phrase-level biasing contribute to recognition ac-
curacy from complementary perspectives. Our
phrase-level biasing effectively improves keyword
recognition accuracy without compromising non-
keyword accuracy, while token-level biasing en-
hances the recognition of non-keyword text. This
is likely because the training data for text-based
LLMs contains significantly more non-keyword
text than keyword text, leading the LLM’s better
capability on the non-keyword text.

Effect of the Keyword List Size. The size of
the keyword list significantly impacts model per-
formance. When the list becomes larger, it intro-
duces many noisy keywords that are irrelevant to
the context, which can degrade the model’s ability.
Therefore, it is essential to analyze the robustness

of different models. As shown in Figure 3, we ex-
amine the effect of keyword list size on the Aishell
dataset. Since the overall CER is minimally af-
fected by the list size, we focus on the variations in
the B-CER, U-CER, and Recall.

First, it can be observed that the joint method
consistently achieves the best performance across
all settings of keyword list size in terms of B-CER,
U-CER, and Recall. Second, the analysis reveals
that as the keyword list size increases, the per-
formance of all methods declines to some extent.
Among them, the token-level biasing shows the
largest decline, indicating poor stability, whereas
the phrase-level biasing demonstrates the smallest
decline, reflecting superior robustness. The joint
approach effectively integrates the strengths of both
token-level and phrase-level biasing, inheriting the
robustness of the phrase-level approach, and thus
exhibits good stability too.

Moreover, an intriguing phenomenon is ob-
served in Figure 2(b): when the keyword list size
increases, the U-CER of the token-level method un-
expectedly decreases, which contradicts the general
trend observed in B-CER and Recall. We hypoth-
esize that this is because the extended keyword
list results in a longer prompt C' being fed into the
LLM, which activates its general language mod-
eling capabilities and improves the transcription
accuracy for non-keyword text.

4 Related Works

4.1 Contextual Biasing

Using keyword dictionaries to bias ASR models
for better transcription has been widely studied.
Depending on the granularity of the biasing ap-
proach, these approaches can be categorized into
token-level and phrase-level approaches.



Token-level. Pundak et al. (2018) proposed to
use an additional encoder to encode each keyword
in the keyword list and applying an attention mech-
anism to produce a vector representation of the en-
tire list. This representation is then provided as an
auxiliary input alongside the ASR input, biasing the
model toward generating tokens from the keyword
list during token-by-token transcription. Subse-
quent works have refined this setup in various ways,
such as adding noise during training to improve the
model’s robustness (Alon et al., 2019), employing
better keyword encoders (Fu et al., 2023), or adopt-
ing strategies to ensure that the keyword dictionary
excludes irrelevant keywords (Jayanthi et al., 2023).
However, token-level approaches lack a holistic
understanding of keywords as complete phrases,
often leading to incomplete keyword generation
and lower recall rates.

Phrase-level. Phrase-level approaches focus
more on generating complete forms of target key-
words compared to token-level approaches, ensur-
ing the overall correctness of the keywords. Zhou
et al. (2024b) first introduced the copy mechanism
into ASR, allowing the model to directly copy tar-
get keywords from a predefined keyword list. Simi-
larly, Sudo et al. (2024) proposed merging the key-
word list with the original token vocabulary into
an extended vocabulary, enabling the model to pre-
dict entire phrases directly during inference. While
phrase-level approaches significantly improve the
accuracy and integrity of keyword generation, they
often reduce the accuracy of non-keyword text to
some extent.

In contrast, our work introduces a joint biasing
approach that integrates token-level and phrase-
level methods. It achieves a significant improve-
ment in keyword accuracy without compromising
the accuracy of non-keyword text.

4.2 Using LLMs in ASR

Language models (LMs) acquire rich linguistic
knowledge through pre-training on large-scale un-
labeled text. Traditionally, n-gram LMs have been
widely used in ASR systems to enhance the natural-
ness of generated text (Yao et al., 2021; Chorowski
and Jaitly, 2016; Sriram et al., 2017). Recently,
the emergence of LLMs with powerful contextual
modeling and reasoning capabilities has prompted
researchers to focus on leveraging these models to
enhance ASR performance, particularly in keyword
recognition. These approaches can be broadly cate-

gorized into two types: early-fusion and two-pass
approaches.

Early-fusion. In early-fusion approaches, speech
features and text prompts are combined at the ini-
tial input stage. Specifically, the keyword list is
formatted into a prompt, which is paired with the
speech input. The speech input is first processed
by a speech encoder to extract features, which are
then concatenated with the embeddings of the text
prompt. The fused representation is subsequently
fed into the LLM. The LLM is directly trained to
generate transcriptions based on this fused input
(Yang et al., 2024b; Lakomkin et al., 2024; Bai
et al., 2024).

Two-pass. Unlike early-fusion approaches, two-
pass approaches do not involve speech features.
Instead, they leverage LLMs to rescore or reorder
all candidate texts produced by the ASR system
and select the highest-scoring text as the final out-
put. For example, Sun et al. (2024) explored the
application of in-context learning in the rescoring
stage, achieving significant improvements in key-
word recognition. Ogawa et al. (2024) investigated
the impact of historical conversational context un-
der the two-pass framework. However, the two-
pass processing may introduce additional latency,
which is undesirable in real-time applications.

In this work, we propose a novel late-fusion-
based approach that leverages LLMs to assist ASR
in keyword recognition. Unlike early-fusion ap-
proaches, our approach does not require training
the model to support speech inputs. In addition, our
approach operates in a one-pass manner, where the
LLM intervenes directly during the decoding stage,
biasing the model to better recognize keywords.

5 Conclusion

In this paper, we propose a joint approach that
combines token-level and phrase-level biasing ap-
proaches to enhance keyword recognition in ASR
systems. Through the introduction of a late-fusion
mechanism, our approach effectively leverages
the advanced contextual modeling capabilities of
LLMs to assist ASR models, achieving superior
accuracy on keywords while preserving robust per-
formance on non-keyword text. We hope our work
can pave the way for new applications of LLMs in
ASR systems and provide a foundation for further
research in the area of ASR keyword recognition.



Limitations

While our approach demonstrates significant im-
provements in keyword recognition compared to
traditional ASR models, leveraging LLMs intro-
duces additional computational and resource over-
head. In addition, our analysis shows that as the
size of the keyword dictionary increases, the per-
formance tends to degrade, particularly when using
late-fusion based token-level biasing with LLMs.
In future work, we aim to explore strategies to mit-
igate the challenges associated with large keyword
dictionaries, ensuring both efficiency and accuracy.

References

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,
Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-
rat Behl, et al. 2024. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv
preprint arXiv:2404.14219.

Uri Alon, Golan Pundak, and Tara N Sainath. 2019.
Contextual speech recognition with difficult negative
training examples. In 2019 IEEE International Con-

ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 6440-6444.

Ye Bai, Jingping Chen, Jitong Chen, Wei Chen,
Zhuo Chen, Chuang Ding, Linhao Dong, Qiangian
Dong, Yujiao Du, Kepan Gao, et al. 2024. Seed-
asr: Understanding diverse speech and contexts
with Ilm-based speech recognition. arXiv preprint
arXiv:2407.04675.

Hui Bu, Jiayu Du, Xingyu Na, Bengu Wu, and Hao
Zheng. 2017. Aishell-1: An open-source mandarin
speech corpus and a speech recognition baseline. In
2017 20th Conference of the Oriental Chapter of
the International Coordinating Committee on Speech
Databases and Speech 1/0 Systems and Assessment
(O-COCOSDA), pages 1-5.

Boli Chen, Guangwei Xu, Xiaobin Wang, Pengjun Xie,
Meishan Zhang, and Fei Huang. 2022. Aishell-ner:
Named entity recognition from chinese speech. In
2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 8352—
8356.

Chen Chen, Ruizhe Li, Yuchen Hu, Sabato Marco Sinis-
calchi, Pin-Yu Chen, EngSiong Chng, and Chao-
Han Huck Yang. 2024. It’s never too late: Fusing
acoustic information into large language models for
automatic speech recognition. In The Telfth Inter-
national Conference on Learning Representations.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.
2023. Vicuna: An open-source chatbot impressing

gpt-4 with 90%* chatgpt quality. See https://vicuna.
Imsys. org (accessed 14 April 2023), 2(3):6.

Jan Chorowski and Navdeep Jaitly. 2016. Towards
better decoding and language model integration
in sequence to sequence models. arXiv preprint
arXiv:1612.02695.

Xuandi Fu, Kanthashree Mysore Sathyendra, Ankur
Gandhe, Jing Liu, Grant P. Strimel, Ross McGowan,
and Athanasios Mouchtaris. 2023. Robust acoustic
and semantic contextual biasing in neural transducers
for speech recognition. In 2023 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 1-5.

Sanchit Gandhi, Patrick von Platen, and Alexander M
Rush. 2023. Distil-whisper: Robust knowledge distil-
lation via large-scale pseudo labelling. arXiv preprint
arXiv:2311.00430.

Sai Muralidhar Jayanthi, Devang Kulshreshtha, Saket
Dingliwal, Srikanth Ronanki, and Sravan Bodapati.
2023. Retrieve and copy: Scaling asr personalization
to large catalogs. arXiv preprint arXiv:2311.08402.

Egor Lakomkin, Chunyang Wu, Yassir Fathullah,
Ozlem Kalinli, Michael L Seltzer, and Christian Fue-
gen. 2024. End-to-end speech recognition contex-
tualization with large language models. In /CASSP
2024-2024 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
12406-12410. IEEE.

Yuang Li, Yu Wu, Jinyu Li, and Shujie Liu. 2023.
Prompting large language models for zero-shot do-
main adaptation in speech recognition. In 2023 IEEE
Automatic Speech Recognition and Understanding

Workshop (ASRU), pages 1-8. IEEE.

Ilya Loshchilov, Frank Hutter, et al. 2017. Fixing
weight decay regularization in adam. arXiv preprint
arXiv:1711.05101, 5.

Atsunori Ogawa, Naoyuki Kamo, Kohei Matsuura,
Takanori Ashihara, Takafumi Moriya, Takatomo
Kano, Naohiro Tawara, and Marc Delcroix. 2024.
Applying llms for rescoring n-best asr hypothe-
ses of casual conversations: Effects of domain
adaptation and context carry-over. arXiv preprint
arXiv:2406.18972.

OpenAl. 2023. GPT-4 technical report. ArXiv preprint,
abs/2303.08774.

Golan Pundak, Tara N Sainath, Rohit Prabhavalkar, An-
juli Kannan, and Ding Zhao. 2018. Deep context:
end-to-end contextual speech recognition. In 2018
IEEE Spoken Language Technology Workshop (SLT),
pages 418-425.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2022.
Robust speech recognition via large-scale weak su-
pervision. arXiv preprint arXiv:2212.04356.


https://doi.org/10.1109/ICASSP49357.2023.10094808
https://doi.org/10.1109/ICASSP49357.2023.10094808
https://doi.org/10.1109/ICASSP49357.2023.10094808
https://doi.org/10.1109/ICASSP49357.2023.10094808
https://doi.org/10.1109/ICASSP49357.2023.10094808
https://arxiv.org/abs/2303.08774

Anuroop Sriram, Heewoo Jun, Sanjeev Satheesh, and
Adam Coates. 2017. Cold fusion: Training seq2seq
models together with language models. arXiv
preprint arXiv:1708.06426.

Yui Sudo, Yosuke Fukumoto, Muhammad Shakeel, Yi-
fan Peng, and Shinji Watanabe. 2024. Contextualized
automatic speech recognition with dynamic vocabu-
lary. arXiv preprint arXiv:2405.13344.

Chuanneng Sun, Zeeshan Ahmed, Yingyi Ma, Zhe Liu,
Lucas Kabela, Yutong Pang, and Ozlem Kalinli. 2024.
Contextual biasing of named-entities with large lan-
guage models. In ICASSP 2024-2024 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 10151-10155. IEEE.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Haoxu Wang, Fan Yu, Xian Shi, Yuezhang Wang, Shil-
iang Zhang, and Ming Li. 2024. Slidespeech: A large
scale slide-enriched audio-visual corpus. In ICASSP
2024-2024 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
11076-11080. IEEE.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang,
Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang,
Dong Yan, et al. 2023. Baichuan 2: Open large-scale
language models. arXiv preprint arXiv:2309.10305.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024a. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Guanrou Yang, Ziyang Ma, Fan Yu, Zhifu Gao, Shil-
iang Zhang, and Xie Chen. 2024b. Mala-asr:
Multimedia-assisted 1lm-based asr. arXiv preprint
arXiv:2406.05839.

Zhuoyuan Yao, Di Wu, Xiong Wang, Binbin Zhang,
Fan Yu, Chao Yang, Zhendong Peng, Xiaoyu Chen,
Lei Xie, and Xin Lei. 2021. Wenet: Production
oriented streaming and non-streaming end-to-end
speech recognition toolkit. In Proc. Interspeech,
Brno, Czech Republic. IEEE.

Shilin Zhou, Zhenghua Li, Chen Gong, Lei Zhang,
Yu Hong, and Min Zhang. 2024a. Chinese spo-
ken named entity recognition in real-world scenarios:
Dataset and approaches. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2024,
pages 1872—1884, Bangkok, Thailand. Association
for Computational Linguistics.

Shilin Zhou, Zhenghua Li, Yu Hong, Min Zhang, Zhe-
feng Wang, and Baoxing Huai. 2024b. CopyNE:
Better contextual ASR by copying named entities.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:

10

Long Papers), pages 2675-2686, Bangkok, Thailand.
Association for Computational Linguistics.


https://doi.org/10.18653/v1/2024.findings-acl.111
https://doi.org/10.18653/v1/2024.findings-acl.111
https://doi.org/10.18653/v1/2024.findings-acl.111
https://doi.org/10.18653/v1/2024.findings-acl.111
https://doi.org/10.18653/v1/2024.findings-acl.111
https://doi.org/10.18653/v1/2024.acl-long.147
https://doi.org/10.18653/v1/2024.acl-long.147
https://doi.org/10.18653/v1/2024.acl-long.147

	Introduction
	Proposed Approach
	Konwledge Injection
	Token-level Biasing
	Phrase-level Biasing
	Joint Modeling

	Experiments
	Experimental Setup
	Training
	Evaluation
	Results

	Related Works
	Contextual Biasing
	Using LLMs in ASR

	Conclusion

