
Joint Token-level and Phrase-level Contextual Biasing for Automatic
Speech Recognition with Large Language Models

Anonymous ACL submission

Abstract

End-to-end Automatic Speech Recognition001
(ASR) models often face challenges in accu-002
rately transcribing contextually relevant key-003
words, such as proper nouns or user-specific004
entities. Existing approaches leverage large005
language models (LLMs) to improve keyword006
recognition through token-level or phrase-level007
biasing. However, token-level approaches008
struggle to ensure holistic generation of key-009
word phrases, while phrase-level approaches010
may compromise the accuracy of non-keyword011
transcriptions. To overcome these limita-012
tions, we propose a novel joint approach that013
integrates token-level and phrase-level bias-014
ing, leveraging their complementary strengths.015
Our approach incorporates LLMs using a late-016
fusion mechanism, combining ASR and LLM017
outputs at both token and phrase levels. Experi-018
ments on Chinese and English datasets demon-019
strate that our approach achieves state-of-the-020
art performance on keyword-related metrics021
while preserving the high accuracy on non-022
keyword text. Ablation studies also confirm023
that the token-level and phrase-level compo-024
nents both significantly contribute to the im-025
provement, complementing each other in our026
joint approach. The code and models will be027
publicly available at https://github.com/.028

1 Introduction029

Current end-to-end Automatic Speech Recognition030

(ASR) models, such as Whisper (Radford et al.,031

2022; Gandhi et al., 2023), have demonstrated032

impressive performance in transcribing common033

words. However, these models often struggle with034

accurately transcribing contextually relevant key-035

words (Alon et al., 2019; Yang et al., 2024b; Zhou036

et al., 2024b). Such keywords may include proper037

nouns or user-specific entities, such as contact038

names from a phone’s address book. These key-039

words often convey important semantics, which are040

essential for understanding a sentence’s meaning041

Figure 1: An example that illustrates the wrongly tran-
scribed keywords by the ASR model.

and performing related tasks accurately. In many 042

scenarios, contextual keywords frequently occur 043

within predefined contexts, such as contact names 044

stored in a phone or previously searched terms. 045

This contextual information is typically readily ac- 046

cessible. To improve the recognition of these key- 047

words during transcription, prior researches have 048

explored the use of contextual keyword dictionaries 049

(Pundak et al., 2018; Alon et al., 2019; Lakomkin 050

et al., 2024). 051

Large language models (LLMs) have recently 052

demonstrated exceptional capabilities in contex- 053

tual modeling and reasoning across diverse tasks 054

(OpenAI, 2023; Touvron et al., 2023; Yang et al., 055

2023; Abdin et al., 2024). These strengths align 056

closely with the demands of contextual ASR, where 057

the accurate recognition of user-relevant keywords 058

heavily depends on contextual information. Con- 059

sequently, there has been growing interest in lever- 060

aging LLMs to help ASR model better recognize 061

keywords (Sun et al., 2024; Lakomkin et al., 2024; 062

Yang et al., 2024b). Typically, contextual keyword 063

dictionaries are provided to LLMs in the form of 064

a prompt C. Based on this, Sun et al. (2024) 065

proposed a two-pass approach. In the first pass, 066

the ASR model generates multiple transcriptions. 067

These candidates are then fed into the LLM, which 068

computes second-pass scores conditioned on C. 069

The LLM calculates the likelihood of each token 070

sequentially during decoding and aggregates these 071

token-level scores to produce an overall score for 072

each candidate. The candidate with the highest 073
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score is selected as the final result. In addition,074

Lakomkin et al. (2024) and Yang et al. (2024b)075

proposed early-fusion based methods. Beyond pro-076

viding the contextual prompt C, these methods077

directly feed audio input into the LLM via adapters078

and train the model to predict transcription text.079

Similar to the two-pass approach, the decoding pro-080

cess in early-fusion methods operates at the token081

level, where the LLM generates transcription text082

in a token-by-token, autoregressive manner. Both083

approaches share the characteristic of relying on084

token-level operations during decoding. For this085

reason, we categorize them as token-level biasing086

methods in this paper.087

However, keywords are often multi-token088

phrases, and token-level biasing approaches lack a089

holistic understanding of the entire keyword phrase.090

This limitation can result in incomplete generation091

of keywords. To address this issue, Zhou et al.092

(2024b) proposed a phrase-level biasing approach,093

introducing a phrase-level copy loss to guide the094

ASR model in selecting the correct keyword phrase.095

This approach allows the model to directly copy096

all tokens of a keyword phrase from a predefined097

dictionary, significantly improving the overall re-098

call of keywords. However, the effectiveness of099

the phrase-level approach depends on the accurate100

selection of keywords from the dictionary. Zhou101

et al. (2024b) relied exclusively on speech informa-102

tion from the ASR model for keyword selection,103

which may result in incorrect choices. This, in turn,104

may adversely affect the recognition accuracy of105

non-keyword text.106

In this paper, we propose a joint approach that in-107

tegrates token-level and phrase-level approaches to108

improve ASR keyword recognition. Figure 2 illus-109

trates the framework of our joint approach. Unlike110

previous works that utilize LLMs through two-pass111

or early-fusion strategies, we introduces a novel112

late-fusion based approach to incorporate LLMs.113

The overall process is as follows: the keyword114

list is first provided to the LLM in the form of a115

prompt. During transcription, the knowledge of116

ASR and LLM is fused in a late-fusion manner to117

improve keyword recognition. Specifically, in our118

token-level biasing, we fuse the token-level logit119

scores from the ASR and LLM to guide the model120

in generating tokens. In phrase-level biasing, we121

further fuse the hidden representations of the ASR122

and LLM to enable the model to select the correct123

keyword phrase from the dictionary. Finally, the124

results from token-level and phrase-level biasing125

are jointly considered through a re-normalization 126

process to produce the final result. 127

We conduct experiments on both Chinese and 128

English datasets (Chen et al., 2022; Zhou et al., 129

2024a; Wang et al., 2024). Experiments demon- 130

strate that our proposed approaches achieve perfor- 131

mance comparable to state-of-the-art methods, par- 132

ticularly on keyword-related metrics, while main- 133

taining the accuracy on non-keyword text. Ab- 134

lation studies show that both the token-level and 135

phrase-level components play crucial roles in the 136

joint framework. The joint strategy effectively inte- 137

grates the strengths of both approaches, achieving 138

further improvements. The contributions can be 139

summarized as follows: 140

• We propose a joint approach that integrates 141

token-level and phrase-level approaches, 142

leveraging the strengths of both to improve 143

ASR keyword recognition. 144

• Unlike previous works that utilize LLMs 145

through two-pass or early-fusion strategies, 146

our joint approach introduces a late-fusion 147

based approach to incorporate LLMs with 148

ASR. 149

• We evaluate our joint model on both Chinese 150

and English datasets. The results show that 151

our approach achieves performance on par 152

with previous approaches and even surpasses 153

them on keyword-related metrics. Additional 154

analysis further confirms the effectiveness of 155

our joint strategy. The codes and models will 156

be released at https://github.com/. 157

2 Proposed Approach 158

The core idea of our approach is biasing the model 159

to transcribe contextual keywords more accurately 160

through LLM intervention. We achieve this by first 161

injecting the knowledge of contextual keywords 162

into the LLM. Then, we incorporate LLM-derived 163

contextual information to bias the ASR model to 164

transcribe the keywords in the speech input. Specif- 165

ically, we propose a joint biasing framework that 166

leverages LLMs to assist ASR models from both 167

token-level and phrase-level perspectives. Our ap- 168

proach comprises four main components: knowl- 169

edge injection, token-level biasing, phrase-level 170

biasing, and joint modeling. Following sections 171

will introduce each of these components in detail. 172
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Figure 2: An example of transcribing the speech "send a message to elisa toffoli". Here, X is the speech input. C is
the contextual prompt. y<t is the previously generated text. slt, h

l
t and sat , h

a
t are the logit score and hidden state of

the LLM and ASR model, respectively.

2.1 Konwledge Injection173

For a given keyword list K = (k1, k2, ..., kN ) with174

N keywords, we concatenate the keywords into a175

single contextual prompt C and instruct the LLM176

to pay more attention to the keywords during the177

subsequent transcription process. Specifically, the178

prompt C is formulated as follows: Transcribe the179

speech into text. The following keywords are likely180

to appear in the transcribed text output. Use rele-181

vant keywords to improve transcription accuracy182

and ignore irrelevant ones. The keywords are k1,183

k2, ..., kN . The text corresponding to the speech is:184

In both two-pass (Li et al., 2023; Sun et al., 2024)185

and early-fusion (Lakomkin et al., 2024; Yang et al.,186

2024b) approaches, the keyword list is also pro-187

vided to the LLM in the form of a prompt. How-188

ever, in addition to the keyword prompt, two-pass189

approach requires candidate transcriptions as input190

to the LLM, while early-fusion approach requires191

audio representations to be processed by the LLM.192

In contrast, our approach only provides the key-193

word list as prior knowledge to the LLM. This194

design not only enables a highly efficient one-pass195

process but also eliminates the need for fine-tuning196

the model to handle audio inputs.197

2.2 Token-level Biasing198

Token-level biasing integrates the semantic infor-199

mation from the LLM and the acoustic information200

from the ASR model during the token-by-token 201

decoding process. We propose a training-free late- 202

fusion strategy that fuses the information from the 203

LLM and ASR during the decoding. Specifically, at 204

decoding step t, the LLM produces the logit score 205

slt for all tokens in the token vocabulary V based on 206

the contextual prompt C and the previously gener- 207

ated text y<t. Similarly, the ASR model produces 208

the logit score sat for the next token based on y<t 209

and the speech input X . The slt and sat model the 210

probabilities for the next token from semantic and 211

acoustic perspectives, respectively. 212

hl
t, s

l
t = LLM(y<t, C) (1) 213

214
ha
t , s

a
t = ASR(y<t, X) (2) 215

Here, hl
t and ha

t are the hidden states of the LLM 216

and ASR model. 217

We combine slt and sat to compute the final prob- 218

ability of generating next token. However, since slt 219

and sat originate from different modalities, and the 220

computation of the two scores relies on different 221

information, they cannot be directly compared. For 222

example, the computation of slt depends solely on 223

y<t and C. At the beginning of generation, y<t 224

contains limited information, causing the LLM to 225

predict within a broad semantic space. Excessive 226

reliance on slt may lead to the model deviating from 227

the true transcription corresponding to the speech 228
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input. On the contrary, sat is based on the speech229

input X and y<t, which may align better with the230

speech contents. Therefore, inspired by Chen et al.231

(2024), we employ a score fusion strategy based on232

uncertainty to balance the predictions of the LLM233

and ASR. The final token-level fusion formulas are234

as follows:235

st = sat + sigmoid(ua
t ) · slt (3)236

237
ua
t = −pa

t · log(pa
t ) (4)238

239
ptok(yt|y<t, C,X) = [softmax(st)]yt (5)240

Here, ua
t represents the uncertainty of the ASR241

model. pa
t is the probability of the ASR model242

obtained from applying softmax to sat . It means243

that when the ASR model has high uncertainty, for244

example, if a keyword is difficult to distinguish245

based on speech information alone, more weight246

is given to the LLM’s prediction. Conversely, at247

the beginning of the generation, when the ASR248

model is more confident, greater weight is assigned249

to the ASR’s prediction. st and ptok(yt|y<t, C,X)250

represent the final fused token-level score and prob-251

ability, respectively.252

2.3 Phrase-level Biasing253

Unlike the token-level approach, which applies bi-254

asing to each individual token in the vocabulary,255

the phrase-level approach biases the model to fo-256

cus on entire key phrases, enabling it to transcribe257

target keywords as cohesive units.258

Specifically, we design a phrase fusion module259

to integrate the phrase-level representation of each260

keyword, the contextual semantic information from261

the LLM, and the speech information from the ASR262

to determine the phrase-level probability for each263

keyword. At decoding step t, the module estimates264

the probability of generating a complete phrase265

from the keyword list.266

First, we obtain the phrase-level representation267

ri for each keyword ki in the keyword list K us-268

ing a keyword encoder. Following CopyNE (Zhou269

et al., 2024b), we use a light-weight LSTM as the270

keyword encoder to encode each keyword. We take271

the hidden state of the last token as the phrase-level272

representation ri.273

ri = LSTM(ki) (6)274

Then, for contextual semantic information and275

acoustic information, we use the hidden states hl
t276

and ha
t from the LLM and ASR model, as shown277

in equation 1 and 2. With ri, hl
t, and ha

t ob- 278

tained, we compute the phrase-level probability 279

pphr(ki|y<t, C,X) for each keyword ki using a 280

dot-product attention mechanism. 281

First, hl
t and ha

t are concatenated and passed 282

through a linear layer to obtain the attention query 283

qt. Then, we calculate the attention score between 284

the query qt and each phrase-level representation 285

ri. Finally, a softmax function is applied to obtain 286

the phrase-level probability pphr(ki|y<t, C,X). 287

qt = Linear([hl
t;h

a
t ]) (7) 288

289

pphr(ki|y<t, C,X) =
exp(qt · ri)∑N
j=1 exp(qt · rj)

(8) 290

2.4 Joint Modeling 291

The token-level probability ptok(yt|y<t, C,X) 292

guides the model on which token to gen- 293

erate next, while the phrase-level probability 294

pphr(ki|y<t, C,X) informs the model to pick an 295

entire keyword phrase. Different choices between 296

generating individual tokens and entire keywords 297

can result in varying final outcomes. So it is im- 298

portant to jointly consider the two probabilities to 299

make the best transcription. However, it is non- 300

trivial to directly combine the two probabilities, 301

as they are computed based on different informa- 302

tion and have different scales. To make the two 303

probabilities comparable, we use a simple yet ef- 304

fective method to normalize them to the same scale 305

following Zhou et al. (2024b). 306

Specifically, we add a fake keyword k0 to the 307

keyword list K. When the model should generate 308

tokens rather than select a keyword, we train it to 309

predict k0. The equation (8) becomes: 310

pphr(ki|y<t, C,X) =
exp(qt · ri)∑N
j=0 exp(qt · rj)

(9) 311

The phrase-level probability of the fake key- 312

word k0, i.e., pphr(k0|y<t, C,X) means the model 313

should generate tokens in the next step. Ac- 314

cordingly, it can be treated as the prior prob- 315

ability of generating tokens. Finally, the two 316

sorts of probability, i.e., ptok(yt|y<t, C,X) and 317

pphr(ki|y<t, C,X), can be jointly normalized to 318

the same scale. 319

pjoi(zi|y<t) =

{
pphr(k0|y<t)ptok(zi|y<t), zi ∈ V
pphr(zi|y<t), zi ∈ K, zi ̸= k0

(10) 320
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Here, V is the token vocabulary. zi is a token from321

V or a keyword from K. For abbreviation, we omit322

the condition C and X in the equation. After nor-323

malization, tokens in the vocabulary and keywords324

in the keyword list form a unified space Z = V∪K.325

The probabilities from token-level and phrase-level326

biasing are jointly normalized in pjoi(zi|y<t). We327

finally generate the final transcription by doing328

beam search over pjoi(zi|y<t).329

3 Experiments330

3.1 Experimental Setup331

Datasets. We conduct experiments on Chinese332

and English datasets. For Chinese, we use the333

Aishell dataset (Bu et al., 2017; Chen et al., 2022)334

and the RWCS-NER dataset (Zhou et al., 2024a).335

The Aishell dataset contains 150 hours of clean336

speeches recorded in quiet environments. RWCS-337

NER is a test set proposed to evaluate the perfor-338

mance of Chinese Spoken NER in real-world sce-339

narios. It covers two domains: open-domain daily340

conversations (DC) and task-oriented intelligent341

cockpit instructions (ICI). Both the Aishell and342

RWCS-NER datasets are annotated with transcrip-343

tions and the named entities. We utilize the entities344

as the corresponding keyword list.345

For English, we use the Slidespeech dataset346

(Wang et al., 2024), a large-scale corpus enriched347

with slide information. Each speech sample is348

paired with its corresponding transcription as well349

as a keyword list extracted from the associated slide.350

We use the 473-hour L95 subset of Slidespeech as351

the training set.352

Backbone Models. Our joint model has two353

main components: the ASR model and the LLM354

model. For the ASR model, we select the Whisper-355

small model1 (Radford et al., 2022). As for the356

LLM model, we choose the Qwen2-1.5B2 (Yang357

et al., 2024a) and the Phi-3.5-mini3 (Abdin et al.,358

2024) for the experiments on Chinese and English359

respectively.360

3.2 Training361

Loss Function. The loss function L of our model362

is composed of two parts: the token-level loss Ltok363

and the phrase-level loss Lphr. First, given the364

ground-truth transcription Y = y1, y2, . . . , yT of365

1https://huggingface.co/openai/whisper-small
2https://huggingface.co/Qwen/Qwen2-1.5B
3https://huggingface.co/microsoft/Phi-3.5-mini-instruct

the speech, Ltok is the negative log-likelihood loss 366

to generate the transcription Y . 367

Ltok = −
T∑
t=1

ptok(yt|y<t, C,X) (11) 368

Second, the phrase-level loss Lphr is used to 369

teach the model to choose the correct keywords 370

from the keyword list K. Given K, we apply 371

the maximum matching algorithm to find all the 372

phrases in the transcription Y that also listed in the 373

keyword list K. Through this process, we can ob- 374

tain a sequence P = p1, p2, . . . , pT . pi = kj if the 375

j-th keyword is matched at time step i. Otherwise, 376

pi = k0, which is a fake keyword indicating no 377

keyword is matched. So the phrase-level loss Lphr 378

is the loss to generate the phrase-level sequence P . 379

Lphr = −
T∑
t=1

pphr(pt|p<t, C,X) (12) 380

Finally, the total loss L is the sum of Ltok and 381

Lphr. 382

L = Ltok + Lphr (13) 383

Training Details. We train our model on the 384

Aishell training set and the L95 subset of 385

Slidespeech respectively. In the whole training 386

process, the LLM model is frozen. Since the token- 387

level biasing requires the ASR model and the LLM 388

model to have the same token vocabulary, we re- 389

place the tokenizer of the ASR model with the one 390

in LLM (Chen et al., 2024). Therefore, during 391

the training process, we only update the ASR de- 392

coder, Keyword Encoder, and the linear layer in 393

the phrase-level biasing module. The number of 394

parameters to be updated is about 300M. 395

We use the AdamW optimizer (Loshchilov et al., 396

2017) to train our model. The learning rate is set to 397

1e-4 and the batch size is 60. The model is trained 398

for 40 epochs with the first 4 epochs used for warm- 399

up. The training process takes about 40 hours on 400

three A100 40G GPUs. We report the results of the 401

best model on the validation set. 402

3.3 Evaluation 403

Baselines. On the Chinese dataset, we first fine- 404

tune the Whisper model (Radford et al., 2022) on 405

the Aishell training set as the initial baseline. Addi- 406

tionally, the Whisper baseline also corresponds to 407

our joint model with both token-level and phrase- 408

level biasing removed. CopyNE (Zhou et al., 409
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Model
Aishell Entity Char Ratio=9.58% DC Entity Char Ratio=8.34% ICI Entity Char Ratio=18.86%

CER↓ B-CER↓ U-CER↓ R↑ CER↓ B-CER↓ U-CER↓ R↑ CER↓ B-CER↓ U-CER↓ R↑
Whisper 5.2 10.4 4.7 80.6 12.8 22.9 11.7 71.1 11.5 30.7 6.9 40.8
CopyNE 4.6 3.4 4.7 94.4 12.2 14.9 11.8 82.0 8.9 16.8 7.0 70.0
Ours 3.7 2.2 3.8 96.4 11.0 11.4 10.8 86.6 7.7 10.9 6.8 79.8
Ours w/o P 4.3 7.0 4.0 86.9 11.6 17.9 10.8 77.3 10.2 20.1 7.6 61.8
Ours w/o T 4.5 2.7 4.7 95.5 12.1 13.2 11.8 84.3 8.6 14.7 7.0 73.1
Table 1: Results on Aishell, DC, and ICI test sets. Entity Char Ratio is the ratio of the entity characters in the dataset.
w/o P and w/o T indicate the exclusion of the phrase-level and token-level modules, respectively.

Model
Slidespeech Keyword Ratio=6.72%

WER↓ B-WER↓ U-WER↓ R↑
Whisper 10.9 8.0 11.2 92.3
CopyNE 10.9 6.7 11.2 93.5
MaLa-ASR 9.1 5.5 9.4 94.9
Ours 10.8 5.3 11.2 95.2

Table 2: Results on the Slidespeech test set.

2024b) is the second baseline. It is a phrase-level410

biasing model which also utilizes the keyword dic-411

tionary to improve the accuracy of keywords.412

On English, besides the Whisper and CopyNE,413

we also compare with MaLa-ASR (Yang et al.,414

2024b), a state-of-the-art model on the Slidespeech415

dataset. It’s a token-level biasing model that fol-416

lows the early-fusion paradigm and utilizes both417

the keyword dictionary and the LLM model.418

To ensure a fair comparison with the baselines,419

all models are evaluated using the same keyword420

list. Following MaLa-ASR, we set the keyword list421

size to 50 for the primary experiments. We will422

also evaluate the effect of the keyword list size in423

the ablation studies.424

Metrics. Following Zhou et al. (2024b) and Yang425

et al. (2024b), we report the character error rate426

(CER) and the word error rate (WER) for the Chi-427

nese and English respectively. In addition to the428

CER/WER, to evaluate the performance on the key-429

words, we also report the keyword related metrics430

including biased character error rate (B-CER), bi-431

ased word error rate (B-WER), and keyword recall432

(Recall). B-CER and B-WER measure the error433

rate of the transcriptions corresponding to the key-434

words. Recall is the percentage of the keywords435

that are correctly and fully predicted.436

On the contrary, U-CER and U-WER are the437

CER and WER of the transcriptions that do not438

contain keywords, which can also reflect the impact439

of different models on non-keyword texts.440

3.4 Results 441

Main Results. For Chinese, we evaluate the mod- 442

els on the test sets of Aishell, DC, and ICI. Since 443

the models are fine-tuned on the Aishell training set, 444

their performance on DC and ICI reflects their abil- 445

ity to generalize to out-of-domain scenarios. Table 446

1 presents the results across all three datasets. 447

Overall, our model achieves the best perfor- 448

mance across all metrics, particularly those related 449

to keywords. Specifically, compared to CopyNE, 450

our joint model achieves absolute reductions in 451

B-CER of 1.28%, 3.51%, and 5.9% on Aishell, 452

DC, and ICI, respectively. Similarly, for Recall, 453

our model outperforms CopyNE with absolute im- 454

provements of 2%, 4.59%, and 9.96% on the three 455

datasets. Notably, the advantages of our method 456

become even more pronounced when the keyword 457

density is higher. For instance, in ICI, where the 458

ratio of entity characters reaches 18%, the improve- 459

ment achieved by our method is the largest among 460

the three datasets. 461

Table 2 presents the results on the test set of the 462

English Slidespeech dataset. Overall, our model 463

outperforms Whisper and CopyNE and achieves 464

performance comparable to MaLa-ASR. A closer 465

comparison with MaLa-ASR reveals that our model 466

excels in keyword-related metrics, such as B-WER 467

and Recall, but falls behind in WER and U-WER. 468

We hypothesize two main reasons. 469

First, the LLM used in MaLa-ASR is the 7B Vi- 470

cuna (Chiang et al., 2023), which is significantly 471

larger than the 3.8B Phi model employed in our 472

joint approach. Second, MaLa-ASR adopts an 473

early-fusion design, where the audio input is di- 474

rectly fed into the LLM. This allows the model 475

to fully utilize the parameters of the LLM to fit 476

the data. Given that non-keyword text dominates 477

the dataset (approximately 95%), the early-fusion 478

model effectively learns to transcribe non-keyword 479

text. However, its ability to handle keywords is 480

comparatively weaker. In contrast, our model em- 481
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Figure 3: Effect of the keyword list size.

ploys a late-fusion approach, where the LLM is pri-482

marily used to enhance the generation of keyword-483

related text. As a result, we achieve superior per-484

formance on metrics associated with keywords.485

Token-level vs. Phrase-level. To evaluate the ef-486

fectiveness of token-level and phrase-level biasing,487

we conduct ablation studies on the three Chinese488

datasets. The lower half of Table 1 reports the re-489

sults after removing the phrase-level biasing mod-490

ule (w/o P) and the token-level biasing module (w/o491

T), respectively. The results indicate that removing492

phrase-level biasing while retaining token-level bi-493

asing leads to a significant decrease in performance494

on keyword-related metrics (B-CER, Recall), with495

minimal impact on non-keyword metrics (CER, U-496

CER). Conversely, removing token-level biasing497

results in a substantial degradation in non-keyword498

metric, while its impact on keyword-related met-499

rics is less pronounced. Despite these degradations,500

both configurations outperform the Whisper base-501

line, which lacks any biasing mechanism.502

These findings suggest that token-level and503

phrase-level biasing contribute to recognition ac-504

curacy from complementary perspectives. Our505

phrase-level biasing effectively improves keyword506

recognition accuracy without compromising non-507

keyword accuracy, while token-level biasing en-508

hances the recognition of non-keyword text. This509

is likely because the training data for text-based510

LLMs contains significantly more non-keyword511

text than keyword text, leading the LLM’s better512

capability on the non-keyword text.513

Effect of the Keyword List Size. The size of514

the keyword list significantly impacts model per-515

formance. When the list becomes larger, it intro-516

duces many noisy keywords that are irrelevant to517

the context, which can degrade the model’s ability.518

Therefore, it is essential to analyze the robustness519

of different models. As shown in Figure 3, we ex- 520

amine the effect of keyword list size on the Aishell 521

dataset. Since the overall CER is minimally af- 522

fected by the list size, we focus on the variations in 523

the B-CER, U-CER, and Recall. 524

First, it can be observed that the joint method 525

consistently achieves the best performance across 526

all settings of keyword list size in terms of B-CER, 527

U-CER, and Recall. Second, the analysis reveals 528

that as the keyword list size increases, the per- 529

formance of all methods declines to some extent. 530

Among them, the token-level biasing shows the 531

largest decline, indicating poor stability, whereas 532

the phrase-level biasing demonstrates the smallest 533

decline, reflecting superior robustness. The joint 534

approach effectively integrates the strengths of both 535

token-level and phrase-level biasing, inheriting the 536

robustness of the phrase-level approach, and thus 537

exhibits good stability too. 538

Moreover, an intriguing phenomenon is ob- 539

served in Figure 2(b): when the keyword list size 540

increases, the U-CER of the token-level method un- 541

expectedly decreases, which contradicts the general 542

trend observed in B-CER and Recall. We hypoth- 543

esize that this is because the extended keyword 544

list results in a longer prompt C being fed into the 545

LLM, which activates its general language mod- 546

eling capabilities and improves the transcription 547

accuracy for non-keyword text. 548

4 Related Works 549

4.1 Contextual Biasing 550

Using keyword dictionaries to bias ASR models 551

for better transcription has been widely studied. 552

Depending on the granularity of the biasing ap- 553

proach, these approaches can be categorized into 554

token-level and phrase-level approaches. 555
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Token-level. Pundak et al. (2018) proposed to556

use an additional encoder to encode each keyword557

in the keyword list and applying an attention mech-558

anism to produce a vector representation of the en-559

tire list. This representation is then provided as an560

auxiliary input alongside the ASR input, biasing the561

model toward generating tokens from the keyword562

list during token-by-token transcription. Subse-563

quent works have refined this setup in various ways,564

such as adding noise during training to improve the565

model’s robustness (Alon et al., 2019), employing566

better keyword encoders (Fu et al., 2023), or adopt-567

ing strategies to ensure that the keyword dictionary568

excludes irrelevant keywords (Jayanthi et al., 2023).569

However, token-level approaches lack a holistic570

understanding of keywords as complete phrases,571

often leading to incomplete keyword generation572

and lower recall rates.573

Phrase-level. Phrase-level approaches focus574

more on generating complete forms of target key-575

words compared to token-level approaches, ensur-576

ing the overall correctness of the keywords. Zhou577

et al. (2024b) first introduced the copy mechanism578

into ASR, allowing the model to directly copy tar-579

get keywords from a predefined keyword list. Simi-580

larly, Sudo et al. (2024) proposed merging the key-581

word list with the original token vocabulary into582

an extended vocabulary, enabling the model to pre-583

dict entire phrases directly during inference. While584

phrase-level approaches significantly improve the585

accuracy and integrity of keyword generation, they586

often reduce the accuracy of non-keyword text to587

some extent.588

In contrast, our work introduces a joint biasing589

approach that integrates token-level and phrase-590

level methods. It achieves a significant improve-591

ment in keyword accuracy without compromising592

the accuracy of non-keyword text.593

4.2 Using LLMs in ASR594

Language models (LMs) acquire rich linguistic595

knowledge through pre-training on large-scale un-596

labeled text. Traditionally, n-gram LMs have been597

widely used in ASR systems to enhance the natural-598

ness of generated text (Yao et al., 2021; Chorowski599

and Jaitly, 2016; Sriram et al., 2017). Recently,600

the emergence of LLMs with powerful contextual601

modeling and reasoning capabilities has prompted602

researchers to focus on leveraging these models to603

enhance ASR performance, particularly in keyword604

recognition. These approaches can be broadly cate-605

gorized into two types: early-fusion and two-pass 606

approaches. 607

Early-fusion. In early-fusion approaches, speech 608

features and text prompts are combined at the ini- 609

tial input stage. Specifically, the keyword list is 610

formatted into a prompt, which is paired with the 611

speech input. The speech input is first processed 612

by a speech encoder to extract features, which are 613

then concatenated with the embeddings of the text 614

prompt. The fused representation is subsequently 615

fed into the LLM. The LLM is directly trained to 616

generate transcriptions based on this fused input 617

(Yang et al., 2024b; Lakomkin et al., 2024; Bai 618

et al., 2024). 619

Two-pass. Unlike early-fusion approaches, two- 620

pass approaches do not involve speech features. 621

Instead, they leverage LLMs to rescore or reorder 622

all candidate texts produced by the ASR system 623

and select the highest-scoring text as the final out- 624

put. For example, Sun et al. (2024) explored the 625

application of in-context learning in the rescoring 626

stage, achieving significant improvements in key- 627

word recognition. Ogawa et al. (2024) investigated 628

the impact of historical conversational context un- 629

der the two-pass framework. However, the two- 630

pass processing may introduce additional latency, 631

which is undesirable in real-time applications. 632

In this work, we propose a novel late-fusion- 633

based approach that leverages LLMs to assist ASR 634

in keyword recognition. Unlike early-fusion ap- 635

proaches, our approach does not require training 636

the model to support speech inputs. In addition, our 637

approach operates in a one-pass manner, where the 638

LLM intervenes directly during the decoding stage, 639

biasing the model to better recognize keywords. 640

5 Conclusion 641

In this paper, we propose a joint approach that 642

combines token-level and phrase-level biasing ap- 643

proaches to enhance keyword recognition in ASR 644

systems. Through the introduction of a late-fusion 645

mechanism, our approach effectively leverages 646

the advanced contextual modeling capabilities of 647

LLMs to assist ASR models, achieving superior 648

accuracy on keywords while preserving robust per- 649

formance on non-keyword text. We hope our work 650

can pave the way for new applications of LLMs in 651

ASR systems and provide a foundation for further 652

research in the area of ASR keyword recognition. 653

8



Limitations654

While our approach demonstrates significant im-655

provements in keyword recognition compared to656

traditional ASR models, leveraging LLMs intro-657

duces additional computational and resource over-658

head. In addition, our analysis shows that as the659

size of the keyword dictionary increases, the per-660

formance tends to degrade, particularly when using661

late-fusion based token-level biasing with LLMs.662

In future work, we aim to explore strategies to mit-663

igate the challenges associated with large keyword664

dictionaries, ensuring both efficiency and accuracy.665
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