
Under review as a conference paper at ICLR 2024

ONLINE WEIGHT APPROXIMATION FOR CONTINUAL
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual Learning primarily focuses on studying learning scenarios that chal-
lenge a learner’s capacity to adapt to new problems, while reducing the loss of
previously acquired knowledge. This work addresses challenges arising when
training a deep neural network across numerous tasks. We propose an Online
Weight Approximation scheme to model the dynamics of the weights of such a
model across different tasks. We show that this represents a viable approach for
tackling the problem of catastrophic forgetting both in domain-incremental and
class-incremental learning problems, provided that the task identities can be es-
timated. Empirical experiments under several configurations demonstrate the ef-
fectiveness and superiority of this approach also when compared with a powerful
replay strategy.

1 INTRODUCTION

Continuously learning from an evolving source of data rather than from a fixed dataset has been
one of the most compelling and unsolved problem in the deep learning landscape. Indeed, standard
learning methods for Deep Neural Networks (DNNs) struggle when they keep learning on data
drawn from a new distribution while preserving knowledge about previously encountered examples.
This phenomenon is known as catastrophic forgetting (McClelland et al. (1995); McCloskey &
Cohen (1989)) and it entails that DNNs are unable to correctly process examples coming from past
distributions. As one can imagine, this is a major limitation of current artificial intelligence method,
since the capacity to continuously learn might be a necessity in different scenarios. As an example,
we may need to learn to recognize new samples belonging to an already known class (domain-
incremental learning); in other cases, we may want our model to extend the set of recognized classes
without losing the capability to predict the ones previously learnt (class-incremental learning) Mai
et al. (2022).

Several approaches have been developed to tackle this problem either by inserting regularisation
mechanisms which prevent the network from abruptly shifting parameters when facing a new learn-
ing distribution Kirkpatrick et al. (2017); Ahn et al. (2019), or architectural constraints which aim
to specialize different parameters in learning different distributions Rusu et al. (2016); Xu & Zhu
(2018), or even memory-based approaches which retain and keep learning over a set of samples
from the past distribution Rebuffi et al. (2017); Rolnick et al. (2019). While all these approaches are
useful to mitigate it, the catastrophic forgetting problem is far from being solved, and it remains an
important challenge in the deep learning research field.

Inspired by recent developments in online approximation of functions Voelker et al. (2019); Gu
et al. (2020) here we propose to capture the dynamic of the parameters of a DNN model by an
approximation function that is efficiently updated online. By means of this function, we can retrieve
a representation of the weights at any given moment of time. As a result, we retain the capability
to predict over samples coming from the past. In the experiments, we show that when employing
a sufficiently powerful approximation function, the loss of performance with respect to a model
trained on the past distribution only is negligible. Moreover, when comparing the proposed method
with respect to a replay strategy equipped with a similar budget, we increase the average accuracy
by up to +34% points in the tested configurations.

As previously mentioned, in this work we concentrate on scenarios where at test time the identifier
of the distribution from which the sample was collected is predetermined or known in advance.
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This assumption forms the basis of several existing works, such as Lopez-Paz & Ranzato (2017);
Li & Hoiem (2016) and it holds true in scenarios where contextual information about the sample is
either available or can be predicted, either by the model itself or by an external source. Consider,
for instance, the case in which a sensor gradually corrupts acquired data over time. The age of the
sensor serves as valuable information, and it is accessible both during training and testing phases.
Similarly, in cases where the recognition of a set of objects depends on the specific scene they are
placed in, this contextual information can either be readily available or, in some instances, predicted
by the model.

To summarize, the main contributions of our approach are: (i) We propose for the first time an Online
Weight Approximation Method (OWA) for neural model to tackle continual learning problems. (ii)
We demonstrate that our proposed method enables achieving an average accuracy that matches the
performance attained when training on a single task, in both continuous domain-incremental and
class-incremental problems. (iii) We show that the proposed method allows to reach classification
performance that are higher than an effective continual learning strategy such as Replay Buffer (up
to +34% points in average accuracy).

2 BACKGROUND

Online Approximation of Functions Given a function of one variable defined on the half line
u : [0,+∞) → R, the problem of online approximation of such function is twofold: i. for time
instant t ∈ [0,+∞) find an approximation of u until t, i.e. ut := u|It with It := (0, t) and ii.
have a method to update online such approximation. In order to define a notion of approximation,
we need to have some notion of closeness, and hence we need to assume that the function that we
want to approximate lives in some normed space. Here we only discuss the case of square integrable
functions. The measure with respect to which we define the notion of integrability has a rather
important role for computing an online approximation (for a more detailed account on this point
see Gu et al. (2020)). In this work, we simply assume to work with a normalized Lebesgue measure
on It (which is the standard choice in Rn). The other basic ingredient is the class of basis functions
with which we want to perform the approximation. In this setting, Gu et al. (2020) have shown that a
good choice is represented by the translated and rescaled Legendre polynomials vtn for n = 1, 2, . . .
defined in [0, t] by

vtn(x) =
√
2en

(2x
t

− 1
)

∀x ∈ [0, t], n = 0, 1, . . . , (1)

where en are the normalized Legendre polynomials (see Ciarlet (2013)). Then, the wanted approxi-
mation vt of the function ut can be expressed (as explained in Gu et al. (2020)) by

vt =

N−1∑
n=0

cn(t)v
t
n where cn(t) := (ut, vtn)t, (2)

where (ut, vtn)t :=
∫
It
utvtn dx/t is the standard scalar product in L2((0, t);R) rescaled by a factor

1/t. This is a very well known and general results that is at the basis of Fourier theory and gives
an answer to the approximation problem i. stated above. Recently, however, inspired by a previous
work on Legendre polynomials Voelker et al. (2019), Gu et al. (2020) have shown that this approach
to online approximation offer a particularly efficient (linear) way of updating such approximation
online. The basic idea is that once we extend ut to the whole half-line R+ by identifying ut with
u1It (1A being the characteristic function of the set A) we realize that the coefficients cn defined in
equation 2 are differentiable in the classical sense. In particular, the main result that we are going to
use can be summed up in the following theorem:
Theorem 2.1 (Gu et al. (2020)). Let u ∈ C0([0,+∞),R) and let vnt be as in equation 1. Let

cn(t) = (ut, vtn)t =
1

t

∫
(0,+∞)

u(x)vtn(x) 1It(x)dx,

then cn ∈ C1([0,+∞),R) for all n = 0, . . . , N and, in particular1

ċ(t) = −1

t
Ac(t) +

1

t
Bu(t), (3)

1Here we use the notation ċ to represent the derivative of the function t 7→ c(t).
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where c(t) = (c0(t), . . . , cN−1(t)) and

Aij =


√
(2i+ 1)(2j + 1) if i > j

i+ 1 if i = j

0 otherwise
, Bi =

√
2i+ 1 for i, j = 0, . . . , N − 1. (4)

Equation 3 allow us to update the approximation online as follows: suppose that we have computed
for some t0 ∈ (0,+∞) the coefficients c0 according to equation 2, then the coefficients of the
approximation at some later time t1 > t0 can be computed by solving the Cauchy problem given by
equation 3 with initial condition c(t0) = c0 up to time t1 instead of using again equation 2.

Continual Learning Continual Learning is mostly interested in the problem of learning neural
models from a stream of data. The sequentiality of the problem is reminiscent and partly inspired
on the way in which humans learns. The main challenge in doing this is represented by the problem
of forgetting, or as it is known in the literature, catastrophic forgetting.

Throughout this paper we will assume the more definite scenario of task incremental learning (see
e.g. De Lange et al. (2022)) in which we will assume that the sample from which we want to learn
are collected in homogeneous groups that we process sequentially; in other words we will assume
that we have a stream of tasks. For the purposes of this work we will not give a precise definition of
task, and we will simply adopt the working definition given in De Lange et al. (2022) of an isolated
training phase with a new batch of data, belonging to a new group of classes, a new domain, or a
different output space. The method that we are going to propose works in a scenario in which, at
inference time, we are able to retrieve the information on the task, so we will assume that either the
ID of the task is available or that we are able to infer it.

3 METHOD

Our proposal is to apply the online function approximation method described in Section 2 to the
parameters (weights) of a neural network in order to build a compact representation of the dynamics
of the weights across different tasks. Let us consider a a DNN f(·, w) : Rd → Rm with weights
w ∈ Rp. Assume furthermore that we are in a continual learning scenario with T ≫ 1 tasks and that
for each task t we are able to find a set of weights wt that solves the learning problem in that specific
task. A learning procedure in this setting will have as as outcome the sequence w1, w2, . . . , wT of
the learned weights after each task.

Assuming that at inference time we are able to retrieve the for a specific example the corresponding
task ID t̄, our aim would be to restore the set of weights wt̄ instead of the final weights wT . Doing
this would require to keep in memory all the weights found for all the T tasks and therefore would
require a memory budget that is proportional to pT (p being the number of parameters of the model).
Instead of storing all the weights for all the tasks, the approximation method described in Section 2
allows us to approximate the weight trajectory with a constant amount of memory (depending only
on the order of the approximation N ) that does not increase with the number of tasks. First, however,
we need to discuss the following issues: i. how do we deal with an approximation of a sequence of
vectors (the weights) instead of a scalar-valued function and ii. how can we address in this discrete
setting the hypothesis of continuity of the approximated function as required in Theorem 2.1.

We chose to solve issue i. simply by applying the online approximation procedure to each compo-
nents of the weights separately, and we simply apply Theorem 2.1 that holds for scalar functions to
each vector component. Doing this we turn the problem into p independent online approximation
problems one for each weight of the network as it is depicted in Fig. 1. Such approach then boils
down to the determination of the trajectories of the vectors of coefficients t 7→ Ci(t) ∈ RN over
time, one for each weight wi of the network.

To address ii. instead, we need to give a discrete interpretation of equation 3, that is also what our
implementation will use. Let us focus from now on the i-th weight wi. Clearly, given a sequence
of values of a given weight w1

i , w
2
i , . . . , they can always be interpreted as the sampling of some

continuous function done with some temporal resolution τ > 0. In other words, we can always find
at least a continuous function ωi : R+ → R such that ωi(kτ) = wk

i and therefore we can apply
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Figure 1: Conceptual illustration of how the OWA method works. For each weight of a network (in
this case we are focusing our attention on the weight w75), we use an online approximation scheme
to model the dynamics of the weights across different tasks and restore previous configuration at test
time.

the approximation method to the family of functions ωi for i = 1, . . . p. This means that the set of
coefficient Ci(t), for each i = 1, . . . , p satisfies:

Ċi(t) = −1

t
ACi(t) +

1

t
Bωi(t), i = 1, . . . , p. (5)

Notice that each vector of coefficients Ci is computed using the same constant matrices defined in
equation 4. Still, when we are working in a discrete setting, we need to solve the main equation 5
only knowing a sampling w1

i , w
2
i , . . . of the term ωi. As we will see, this make the issue of conti-

nuity of the weight trajectory that we have just discussed closely intertwined with the precision of
approximation technique that we are going to use to solve the ODE system 5 that we are going to
discuss now.

Temporal Discretization We will assume to numerically solve equation 5 using a straightforward
Euler’s method. This means that given a temporal quantization step τ , we can define a partition of
the half line (0,+∞), P := {0 = t0τ < t1τ < · · · < tnτ < . . . } with tnτ = tn−1

τ + τ . The sequences
of vectors (C̃k

i )
+∞
k=0 that we expect to be an approximation of Ci(t

k
τ ), one for each weight wi, is

defined by the following recursive relation (explicit Euler method):

C̃k+1
i − C̃k

i

τ
=

1

kτ

(
−AC̃k

i +Bwk
i

)
i = 1, . . . , p and k > 0, (6)

that can be rewritten more explicitly as

C̃k+1
i =

(
Id−k−1A

)
C̃k

i + k−1Bwk
i . i = 1, . . . , p and k > 0, (7)

Notice that equation 7 is independent of τ ; this is a consequence of the equivariance property of ODE
system for the coefficients in continuous time that can be summed up in the following statement:

Proposition 3.1 (proposition 3 of Gu et al. (2020)). Let α > 0 and define Φ: [0,+∞) → [0,+∞)
that maps t 7→ s = αt =: Φ(t) and let c be a solution of equation 3, then if we define ĉ(s) =

c(Φ−1(s)) = c(t) we have that ĉ solves ˙̂c(s) = −s−1Aĉ(s) + s−1Bu(s/α).

This result basically means that if we rescale the time of the function u by a factor 1/α, then the
dynamics of the coefficients will be rescaled by the same factor. This property is instrumental
to make us understand the goodness of the approximation of the Euler method in equation 7 in
relation to the “regularity” properties of the sequence of weights w1

i , w
2
i , . . . . Indeed, since we want

to interpret w1
i , w

2
i , . . . as a sampling of a continuous function, as we reduce the value of τ the

sequence of coefficients C̃1
i , C̃

2
i , . . . can be regarded as good approximation of the values Ci(kτ)

only if the difference between |wk+1
i − wk

i | is sufficiently small, namely of the same order of the
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Algorithm 1 Continual Learning with OWA
Require: A neural model f , a sequence of datasets D1, . . . , DT where dataset Dj is of size Mj , a

number of epochs Ej for each task and an update policy πα
j for j = 1, . . . T and α = 1, . . . Ej

and the order of desired approximation N .
Initialize: Randomly initialize the weights of the network f and set C̃i = 0 ∈ RN for all i =
1, . . . , p.
for j = 1 upto T : do

for α = 1 upto Ej do
Update the parameters of the network w using SGD
if πα

j = 1 then
Update C̃i for all i = 1, . . . , p using equation 7

end if
end for

end for

τ . 2 This means that even if we can indeed use equation 7 for a generic sequence of points (wk
i )k>0,

the resulting sequence (C̃k
i )k>0 will be a good approximation of equation 5 only when (wk

i )k>0

1. it comes from a truly continuous underlying process and

2. it has been sampled at an appropriate resolution.

These two points are important guideline for using the online approximation method in a continual
learning scenario since, as we will discuss in the experimental section, the rate at which the update
of the coefficients is done during learning and the kind of sequence of task that we want to address
will jointly determine the goodness of our method.

Algorithmic description of the method Now we will try to give an algorithmic description of
how the method can be used in learning and in inference. We will focus on a supervised learning
sequence of tasks defined by a sequence of training sets D1, D2, . . . , DT where Dj = {(xj

k, y
j
k) :

k = 1, . . . ,Mj} with xj
k ∈ Rd and yjk ∈ Rm, Mj is the dimension of the set and m ≥ 1 is

the number of classes at task j. We further assume that in each task we train the network using a
gradient-based method for a number Ej of epochs. Finally, we assume to have an update policy πα

j
for j = 1, . . . , T and α = 1, . . . , Ej that is 1 if we want to update the approximation of the weights
and 0 otherwise. Then the training process is done as described in Algorithm 1. The procedure
returns for each weight i = 1, . . . , p a set of coefficients C̃S

i that express the final approximation of
each weight trajectory, where S is the number of Euler steps done overall.

Once the learning is completed, the output of f on a new example x is computed as follows:

1. we determine the task ID j to which x belongs and we compute the time t̄ corresponding
to the last update of C within the task j;

2. we compute the corresponding approximated weights using equation 2, that is w∗
i (t̄) :=∑N−1

n=0 (C̃
S
i )nv

τS
n (t̄ ), where vτSn are the Legendre polynomial defined on the temporal in-

terval [0, τS].3

3. we compute the output as f(x,w∗(t̄ ))

Which basically means that we use the approximation found on the whole temporal horizon of the
training, which is stored in CS

i with i = 1, . . . , p, to retrieve the correct weights found at the end of
the corresponding task in order to make an inference on a new sample x.

2This can be understood since we know that supk>0 |w
k+1
i − wk

i |/τ , is an approximation of the Lipshitz
constant of ωi (if ωi is C1 with bounded derivative), which enter exponentially in the error bound of the Euler
method (see Burden et al. (2015) Theorem 5.9 page 271).

3Notice that the number of steps S and the time t̄ both depends on the update policy π. For instance if
the policy is πα

j ≡ 1 for all α and j that means that the updates are done at the end of any epochs, then
S =

∑T
j=1 Ej which is the total number of epochs, but in general can be strictly less than that.

5



Under review as a conference paper at ICLR 2024

4 EXPERIMENTS

As we discussed in Section 3, the proposed method arises from the idea that, throughout the con-
tinual learning across many different tasks, the parameters of a NN model form a trajectory whose
behaviour can be captured by an online approximation method. We remind that since the method
relies on an approximation of a differential equation, we expect it would be more effective in sce-
narios in which the underlying trajectories of the weights have slower variations; we expect this to
happen in continual learning problems in which one task is obtained from another with a continuous
shift of data distribution. On the other hand, we still want to assess the performance of the method
on more standard continual learning settings. For these reasons, we devised a set of experiments
covering both cases. We will use Incrementally Permuted MNIST, Incrementally Permuted
Fashion MNIST and Incrementally Permuted Cifar10 as examples of dataset with gradual data
shift, alongside with the more standard and challenging class incremental settings of Split Cifar100
and Split CUB200.

In all the experiment, we trained the model by minimizing a Cross Entropy loss function within each
task and using an Adam optimizer with initial learning rate of 10−3. We measured the performances
of all the experiments in terms of average accuracy. Formally, let us define aij to be the accuracy
evaluated on the test set of task j with a model that has been trained from task 1 up to task i (here
we are using the same notations introduced in Mai et al. (2022)). The average accuracy up to task
i ai is then defined as ai =

∑i
j=1 aij/i, i = 1, . . . , T, and we will refer to aT as the final average

accuracy. In every setting we compare the results of our method OWA with the natural baseline,
which is the model trained sequentially on each task without any continual learning strategy that
we will refer to as vanilla and with the model trained using a replay buffer strategy which we will
refer to as replay. For a fair comparison, we always employ a buffer size that is comparable to the
memory budget employed in the OWA. More in details, we employ a buffer of n samples, where
the size is computed as n = (N · p)/d where we remind that p the size of a given model and with
d the number of features of each sample, and assuming that each weight of the model and each
feature are represented using the same precision (i.e., 32 bits). The n samples are drawn randomly
and uniformly from each of the T training distribution, i.e. with n/T samples originating from each
distribution. In each scenario, we tested our method under different budget that we label as small,
medium and large and for each of these cases we compare different order of approximations with
a replay method equipped with a buffer sized accordingly. All the reported numerical results have
been averaged over three different runs that differs only on the initial seed with which the parameters
of the network have been initialized. Additional results can be found in Appendix A.

4.1 INCREMENTALLY PERMUTED DATASETS

For Incrementally Permuted MNIST, Incrementally Permuted Fashion-MNIST and Incrementally
Permuted Cifar10 we used OWA with the basic update policy πα

j ≡ 1 for all α = 1, . . . , Ej and all
j = 1, . . . , T .

Incrementally Permuted MNIST Is a variation of the standard Permuted MNIST continual learn-
ing benchmark ( Goodfellow et al. (2014); Kirkpatrick et al. (2017)) in which each new task is recur-
sively generated by the previous one by permuting a fixed number of pixels. This clearly creates a
shift in the distribution of the data which is softer than the one associated with the standard Permuted
MNIST. To tackle this problem we used a neural network with a single hidden layer composed of
100 neurons and sigmoidal activation function. In all our experiments on this dataset we permuted
100 pixels at a time. See Appendix A for some visualizations of the incremental perturbations in
the MNIST and FMNIST Incrementally Permuted datasets. We run the experiments on the datasets
for T = 100 tasks and in each task we perform a batched optimization with a batch size of 128
for 10 epochs. We run experiments with order of approximation N ∈ {2, 10, 20}. The results on
the final average accuracy are reported in Table 4.1 while the behaviour of the average accuracy as
a function of the training steps is depicted in Figure 4.1 alongside with the baseline and the curve
relative to the replay methods. As we can see from Table 4.1 the final average accuracy is always
significantly higher than the baseline (+35–60%) but also of the model trained with the replay strat-
egy (+25–34%). With N = 10 the accuracy is comparable with the one obtained only on the test set
of the last task and when N = 20 it is even higher.
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Figure 2: Incrementally Permuted MNIST: a comparison of the average accuracy of OWA against
replay and a vanilla strategy for order approximation N = 2, 10, 20.

small (N = 2) medium (N = 10) large (N = 20) Single Task
Accuracydataset vanilla replay ours replay ours replay ours

MN 0.36±0.01 0.46±0.02 0.71±0.01 0.61±0.01 0.95±ε 0.68±0.01 0.96±ε 0.95±ε

FMN 0.31±0.02 0.47±0.01 0.61±0.01 0.60±0.01 0.82±ε 0.65±ε 0.85±ε 0.83±ε

C10 0.20±ε 0.25±0.01 0.40±ε 0.31±ε 0.49±ε 0.34±ε 0.50±ε 0.48±ε

Table 1: Incrementally Permuted experiments. Final average accuracy on the datasets Incremen-
tally Permuted MNIST (MN), Incrementally Permuted Fashion-MNIST (FMN) and Incrementally
Permuted Cifar10 (C10), reported values are in [0,1]. With ε we indicate a variance smaller than
10−2. Notice how OWA gains 20–60% points w.r.t. a vanilla strategy and 14–34% points w.r.t.
replay.

Incrementally Permuted Fashion-MNIST This dataset is the analogue of the Incrementally Per-
muted MNIST but with the Fashion-MNIST (see Xiao et al. (2017)) dataset used as the base set
and a with each new task obtained with a permutation of 100 pixels. The experimental setting is
the same as for the Incrementally permuted dataset: same network and loss, T = 100 batch size
128, 10 epochs for each task. Again, we vary the number of term in the approximation in the set
N ∈ {2, 10, 20}. Results are summed up again in Table 4.1. As for the MNIST dataset OWA sur-
passes both the baseline (+30–54%) and the replay method (+14–20%) and for N = 20 outperforms
even the local accuracy on the last test set.

Incrementally Permuted Cifar-10 This dataset is the incrementally permuted version of Cifar-10
where each image is a 32× 32× 3 image and the permutations are applied across all the image and
among all the channels. Here each subsequent task has a permutation of 500 pixels with respect
to the previous one. Here we are using a different model, specifically a ResNet10 architecture.
We considered a sequence of T = 100 tasks and in each task we perform a batched optimization
with a batch size of 128 for 3 epochs. In Table 4.1 we reported the results for the various order of
approximations N ∈ {2, 10, 20}. As for the other two Incrementally Permuted datasets OWA has
significantly better performances in terms of average accuracy with respect to the vanilla case (+20–
28%) and also when the learning is done using replay methods (+14–18%). Again, for N = 20 the
accuracy is on par with the local accuracy on the last test set.

4.2 CLASS INCREMENTAL/SPLIT DATASETS

As anticipated, the class incremental settings seems to be a challenging scenario for our method
because, differently from the Incrementally Permuted one, in this scenario the domain shift between
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Figure 3: CIFAR100 - Split: a comparison of the average accuracy of OWA against replay and a
vanilla strategy for order approximation N = 2, 5, 10.

different tasks is abrupt: when we require the network to learn a new set of classes, the novel training
set may share very few features with the previous one and the network weights may require to change
significantly. Nonetheless, since it is a commonly evaluated scenario in continual learning, we
experimented on the Cifar100-Split and the CUB200-Split datasets. In both settings we employed
OWA with a less frequent update policy πα

j than previously. In particular, we heuristically found that
updating 10 times per task (uniformly distributed along the epochs) resulted in an efficient update
policy. In both settings we employed a Resnet18 model in transfer learning, i.e., we only trained
the last fully connected layers. To do so, in Cifar100 the images have been up scaled to 224x224.
The interesting results obtained in both contexts confirm the quality of the proposed approach also
in this challenging scenario.

Cifar100 - Split The very well known Cifar100 dataset is often employed for testing Class-
incremental learning settings Lopez-Paz & Ranzato (2017); Adel et al. (2019). In this work, we
split the 100 classes into 20 different sets composed of 5 classes each following the semantic group-
ing given by the 20 super classes (Reptiles, Vehicles, Peoples, etc.). We trained the network with full
batch for 100 epochs. In Figure 4.2 and in Table 4.2 we compare the performance of a model when
equipped with OWA, with replay and with a vanilla learning strategy under three different budget
settings. Due to the lower number of tasks (T = 20) we chose smaller approximation orders, i.e.
N ∈ {2, 5, 10}. OWA in all scenarios result the best strategy with +21–67 % gain with respect to
vanilla and with +6–26% with respect to replay.

CUB200 - Split Also CUB200 is a frequently employed dataset for Class-incremental learning
settings Boschini et al. (2022). In this work, we split the 200 classes into 20 different sets composed
of 10 classes each. We trained the network with a batch size of 128 samples for 100 epochs. As
it can be notice in Table 4.2, also in this case the proposed model results to be still much better
than a vanilla strategy (+27–82 %). However, when compared with a replay strategy, OWA results
slightly less performing in lower and medium budget scenarios (-3–12%). In higher budget scenario,
however, the proposed approach still improves significantly with respect to replay (+18%). We
believe that this is due to the fact that the abrupt domain shift among different tasks, in this setting,
can be well approximated only when using a higher order of approximation.

5 RELATED WORK

The present work brings together ideas that comes from the theory of online approximation of func-
tions and continual learning. Because of the importance of the continuous/lifelong learning scenario
in addressing a wide range of learning problems, there has been a significant surge in the publi-
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small (N = 2) medium (N = 5) large (N = 10) Single Task
Accuracydataset vanilla replay ours replay ours replay ours

C100 0.05±ε 0.26±0.01 0.32±0.01 0.38±ε 0.44±ε 0.46±ε 0.72±0.01 0.91±ε

CB200 0.05±ε 0.48±0.02 0.45±0.01 0.63±0.02 0.51±0.02 0.69±0.02 0.87±0.01 0.95±0.02

Table 2: Class incremental experiments. Final average accuracy on the datasets Cifar100-Split
(C100) and Incrementally Permuted CUB200 (CB200), reported values are in [0,1]. With ε we
indicate a variance smaller than 10−2. Notice how also in this case OWA gains 21–82% w.r.t. a
vanilla strategy and is on par with replay -12% – +18%.

cation of scientific papers on continual learning in recent years. Many of the recently proposed
methods (see the surveys of Parisi et al. (2019); De Lange et al. (2022); Mai et al. (2022); Lesort
et al. (2020); Pfülb & Gepperth (2019)) falls in one of the following classes: (a) regularisation-
based, (b) architecture-based also known as parameter-isolation methods and (c) memory-based or
replay methods. (a) They add constraints (usually soft), to prevent too abrupt shift of the parameters
between one task and the next with the purpose of learning new information while keeping as much
previous knowledge (Kirkpatrick et al. (2017); Nguyen et al. (2018); Ahn et al. (2019); Zenke et al.
(2017); Zhang et al. (2020)). Our method, OWA, while not falling in this category can be readily
be applied in conjunction with most regularization-based methods. (b) In this family falls all the
methods that uses different parameters for each new task, either by keeping the architecture fixed
and storing copy of parameters (or subset of parameters) dedicated to each task or by allowing new
branches associated to new tasks (Rusu et al. (2016); Xu & Zhu (2018); Aljundi et al. (2017); Fer-
nando et al. (2017); Mallya & Lazebnik (2018); Serra et al. (2018)). While OWA cannot be strictly
categorized within this class it shares with this approach the idea that one can retrieve a set of weights
that is specialized for a specific task. (c)Here the main idea is to try to mitigate forgetting keeping
in memory examples from previous tasks or to train a generator to supply pseudo-examples (Rebuffi
et al. (2017); Rolnick et al. (2019); Isele & Cosgun (2018); Chaudhry et al. (2019); De Lange &
Tuytelaars (2021); Lopez-Paz & Ranzato (2017); Aljundi et al. (2019); Robins (1995)). Usually in
this setting as in (b) a budget need to be set to limit the amount of replay examples that one can keep
in memory; in our method the choice order of approximation N can be considered similarly a way
to set a budget. Recently new ideas has been put forward within the field of online approximation of
functions that has driven numerous new results within the machine learning community. The semi-
nal work of Voelker et al. (2019) and the more recent paper Gu et al. (2020), proposed the main idea
on online function approximation that we are using in the present paper and has inspired a whole
new line of research on Deep State Models (Gu et al. (2021b;a); Smith et al. (2022); Gupta et al.
(2022a;b); Gu et al. (2022)).

6 CONCLUSIONS

In this paper, we proposed an Online Weight Approximation method for tackling continual learning
problems. Inspired by recent works on online approximation theory of scalar functions, our approach
consists of an online approximation schema for all the trajectories of the weights of a network as
they evolve across different tasks. More precisely OWA, given the task ID, can retrieve a task-
specific weight representation that closely aligns with the locally learned parameters for that task.
This allows to bring back the model to a state where it is capable to accurately process samples
originating from the corresponding task distribution. In the experiments we validated the proposed
approach on a variety of learning scenarios spanning over domain-incremental and class-incremental
learning. We showed that the performance of a continually learnt model equipped with a sufficiently
powerful OWA closes the gap with locally learnt models and surpass a strong existing continual
learning competitor. In future work, we plan to test the feasibility of OWA in conjunction with
methods predicting the task ID. Furthermore, we plan to test the proposed method to tackle task-free
continual learning settings where not only the task ID is not available but also the task boundaries,
since the proposed method is naturally posed in a continuous time setting.
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A ADDITIONAL RESULTS
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Figure 4: Same sample across different tasks j = 1, 2, 10, 20 in the Incremental Permuted scenarios
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Figure 5: FMNIST: the OWAcumulative accuracy when compared against the for order approxima-
tion 2, 10, 20.
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Figure 7: CUB200: the two baselines and then the hippo cumulative accuracy for order approxima-
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