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Abstract
The advent of Vision Transformers (ViTs) has significantly ad-
vanced computer vision, particularly image classification, through
large-scale pretraining on massive datasets. However, the high com-
putational and memory costs of full fine-tuning remain a major
bottleneck for practical deployment across diverse downstream
tasks. Parameter-Efficient Fine-Tuning (PEFT) has emerged as a
promising paradigm to address this challenge by adapting models
through updates to only a small subset of parameters while pre-
serving the benefits of pretrained representations. In this survey,
we present a focused review of PEFT techniques for ViTs in image
classification. We introduce a structured taxonomy that catego-
rizes existing approaches into additive-based, reparameterization-
based, selective, hybrid, and inference-efficient tuning methods,
highlighting their core design principles, strengths, and limitations.
We further analyze evaluation protocols, benchmark results, and
trade-offs between accuracy, efficiency, and scalability. Finally, we
identify open challenges and outline promising directions for fu-
ture research toward more robust, efficient, and deployable PEFT
frameworks for vision. Our appendix is available here.
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Figure 1: Illustrative growth trend of publications on
parameter-efficient fine-tuning for Vision Transformers in
image classification (2020-2025), based on a curated set of
representative works.

1 Introduction
The remarkable success of deep learning in computer vision has
been driven by the development of large-scale pre-trained mod-
els. Among these, Vision Transformer (ViT) [17] have emerged as
a dominant architecture, demonstrating strong performance on
image classification datasets[14, 79] and a wide range of down-
stream tasks[48, 74, 105, 107]. By modeling long-range dependen-
cies through self-attention mechanisms, ViTs exhibit competitive
and often generalization compared to CNNs, particularly when
trained on massive datasets such as ImageNet[14, 79]. As a result,
ViTs have become the backbone of many state-of-the-art vision
systems leading to a large number of transformer-based pre-trained
vision models (PVMs)[7, 17, 28, 58, 90, 100].

PVMs have demonstrated impressive representational capabil-
ities and have emerged as the de facto approach for fine-tuning
models on a wide range of downstream tasks. However, full fine-
tuning of PVMs across several downstream tasks remains computa-
tionally expensive[4, 73]. The process involves updating hundreds
of millions of parameters, which demands significant GPU memory,
training time, and energy consumption. These costs pose significant
challenges in resource-constrained settings, such as on-device de-
ployment or scenarios requiring adaptation to multiple downstream
tasks with limited labeled data.
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To address these limitations, Parameter-Efficient Fine-Tuning
(PEFT), originally from from the field of natural language process-
ing (NLP) [34], has emerged as a compelling alternative. Rather
than updating the entire model, PEFT methods adapt only a small
subset of parameters while keeping the pretrained backbone largely
frozen. This strategy significantly reduces training cost, improves
scalability across tasks, and frequently achieves performance com-
parable to full fine-tuning. Recent works[34, 35, 38, 106] has in-
troduced a diverse range of PEFT techniques for ViTs, inserting
additional learnable parameters [38], lightweight additional mod-
ules [9, 10, 34], and attention weight decomposition [35]. Beyond
efficiency gains, these approaches also offer insights into the repre-
sentational capacity and adaptability of ViTs.

The growing interest in PEFT for vision is also reflected in the
rapid increase in related research activity. As illustrated in Figure
1, the number of publications focusing on parameter-efficient fine-
tuning for ViTs in image classification has risen sharply in recent
years. This trend, based on a curated set of representative works,
highlights both the maturation of PEFT techniques in vision, and
the increasing demand for efficient adaptation strategies as model
scales continue to grow. At the same time, the accelerating pace and
diversity of research underscore the need for a structured synthesis
of existing methods and findings. Although several studies inves-
tigate PEFT in diverse vision and multimodal settings [6, 86, 108],
a focused synthesis dedicated to PEFT for ViTs in image recogni-
tion remains limited. Image recognition is a foundational task in
computer vision and serves as a primary evaluation benchmark for
assessing the effectiveness of PEFT methods in vision. Given the
rapid growth and diversification of this research area, there is a
clear need to consolidate existing work, analyze emerging trends,
and identify open challenges.

In this work, we present a focused survey on PEFT for ViTs in
image recognition tasks. Our main contributions are:

i. We propose a structured taxonomy of PEFTs for ViTs, covering
additive-based tuning, reparameterization-based tuning, selective
tuning, hybrid-based tuning and inference-efficient tuning.

ii. We review benchmark results, evaluation protocols, and trade-offs,
providing insights into the efficiency, scalability, and performance
characteristics of different PEFT paradigms.

iii. We discuss open research challenges and outline promising future
directions for PEFT in image classification, with particular empha-
sis on robustness, inference efficiency, and scalable deployment.

2 Preliminaries
2.1 Vision Transformer
The Vision Transformer (ViT) is composed of a patch embedding
module followed by 𝐿 transformer encoder layers. Given an input
image 𝑥 ∈ R𝐻×𝑊 ×𝐶 , the patch embedding splits 𝑥 into a sequence
of patches and flattens them into 𝑥𝑝 ∈ R𝑁×(𝑃2𝐶 ) , where (𝐻,𝑊 )
denote the image height and width, (𝑃, 𝑃) is the patch resolution,𝐶
is the number of channels, and 𝑁 = 𝐻𝑊 /𝑃2 is the total number of
tokens. These patch vectors are then projected through a learnable
linear layer to obtain 𝑥0 ∈ R𝑁×𝑑 . A special classification token [cls]
is prepended to 𝑥0, and the resulting sequence forms the input to
the transformer encoder.

Each transformer layer consists of a Multi-Head Self-Attention
(MHSA) module and a Multilayer Perceptron (MLP). In MHSA,
attention weights are computed using query (𝑄), key (𝐾 ), and value
(𝑉 ) matrices derived from the input 𝑥ℓ−1 at layer ℓ with projection
parameters𝑊𝑞,𝑊𝑘 ,𝑊𝑣 ∈ R𝑑×𝑑 :

𝑄 = 𝑥ℓ−1𝑊𝑞, 𝐾 = 𝑥ℓ−1𝑊𝑘 , 𝑉 = 𝑥ℓ−1𝑊𝑣, (1)

𝑥 ′ℓ = Attention(𝑄,𝐾,𝑉 ) = softmax
(
𝑄𝐾⊤
√
𝑑

)
𝑉 . (2)

The output 𝑥 ′ℓ is then normalized and passed through an MLP
block with a residual connection:

𝑥ℓ =MLP(LN(𝑥 ′ℓ )) + 𝑥 ′ℓ , (3)

where 𝑥ℓ is the output of the ℓ-th layer and LN is Layer-Norm.

2.2 Transfer Learning
Transfer learning plays a major role in modern machine learning.
It is designed to harness the knowledge embedded within a large
pretrained model to enhance the performance of downstream tasks
[89, 99, 122, 124]. At the core, the parameters 𝜃 of a pretrained large
vision models encode rich linguistic and contextual knowledge.
These parameters can be efficiently adapted to downstream tasks
either by fine-tuning a small subset of them or by introducing light-
weight task-specific components[34, 35]. This paradigm highlights
the effectiveness of leveraging broad pretraining to achieve strong
task-specific performance.

Let us denote a pretrainedmodel 𝑓𝜃0 with parameters𝜃0, obtained
through training on a large-scale image dataset. Transfer learning
allows the adaptation of this model to a downstream dataset Dtask.
The adaptation process seeks an optimized model 𝑓𝜃∗ , where the
optimization objective is given by:

𝜃 ∗ = argmin
𝜃

L(𝑓𝜃 ,Dtask), (4)

with L representing the task-specific loss function. The pretrained
parameters 𝜃0 serve as a strong initialization, improving general-
ization and acting as a form of regularization. This significantly
reduces the amount of task-specific training required, making adap-
tation both computationally efficient and effective. The principles
of transfer learning form the foundation of PEFT methods.

Inspite of its major role, training and fine-tuning of large vision
models impose huge computational and memory costs due to the
self-attention mechanism. The time complexity of self-attention
is O(𝑛2) with respect to the number of tokens 𝑛, since every to-
ken attends to all other tokens. During pretraining, large vision
models process large number of tokens, and this quadratic cost
translates into trillions of floating-point operations (FLOPs)[4, 73].
Fine-tuning exacerbates the challenge, as it typically requires up-
dating all parameters for each downstream task, especially when
dealing with complex datasets. Additionally, the memory require-
ments of large vision models are similarly demanding. Storage
scales with both the number of model parameters and the size of
intermediate activations, which grows on the order of O(𝑛 ·𝑑model),
where 𝑑model is the hidden dimension of the model. During training,
memory consumption includes storing parameters as well as their
gradients, leading to significant memory overhead, particularly
when all parameters are updated during full fine-tuning.
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Figure 2: Detailed architectures of representative PEFT methods for Vision Transformers. Adapter tuning modifies internal
representations via bottleneck layers; prompt tuning adapts the model through learnable input tokens; reparameterization
tuning applies constrained parameter transformations to pretrainedweights; and side tuning learns task-specific representations
through an auxiliary network while keeping the backbone frozen.

PEFT techniques offer a practical solution to these challenges
by modifying only a small fraction of the parameters. As a result,
PEFT aims for a faster training and deployment on resource-limited
hardware while maintaining strong task performance.

2.3 Parameter Efficient Fine-Tuning
PEFT methods aim to adapt pretrained models to new tasks by
updating only a small subset of parameters, rather than the entire
model. Consider a pretrained model 𝑀 with parameters 𝜃 , and
a downstream task D = {(𝑥𝑖 , 𝑦𝑖 )} |D |

𝑖=1 , where (𝑥𝑖 , 𝑦𝑖 ) denotes an
input-output pair from D. PEFT seeks to adapt 𝜃 to the target task
by introducing task-specific parameter increments Δ𝜃 , such that
|Δ𝜃 | ≪ |𝜃 |. The objective is to optimize these additional parameters
by minimizing the task-specific loss L:

min
Δ𝜃

E(𝑥𝑖 ,𝑦𝑖 ) ∈D
[
L(𝑀𝜃+Δ𝜃 (𝑦𝑖 | 𝑥𝑖 ), 𝑦𝑖 )

]
. (5)

3 Taxonomy
This section presents a comprehensive taxonomy of PEFT methods
for image classification tasks. We categorize PEFTs into additive-
based tuning, reparameterization-based tuning, selective tuning ,
hybrid tuning and inference-efficient tuning methods.

3.1 Additive-based Tuning
Additive-based tuning strategies introduce supplementary trainable
modules or parameters into pre-trained vision models, enabling the
model to acquire task-specific knowledge. This class of methods
is commonly divided into four main categories: adapter, prompt,
prefix, and side tuning.

Adapter fine-tuning. The adapter mechanism was first pro-
posed in the NLP domain as an effective approach to PEFT [34].
Owing to its strong performance, it has since been widely adopted
in computer vision. The core idea is to insert lightweight neu-
ral modules, referred to as adapters, into the transformer layers.
During adaptation, only these added modules are updated while

the backbone remains frozen. Each adapter consists of a down-
projection layer, parameterized by𝑊down ∈ R𝑑×𝑘 , followed by an
up-projection layer, parameterized by𝑊up ∈ R𝑘×𝑑 , as illustrated in
Figure 2a. The bottleneck dimension 𝑘 (with 𝑘 ≪ 𝑑) compresses the
original representation into a lower-rank space. A ReLU activation
is applied between the two linear layers to introduce nonlinear-
ity. For an input feature map 𝑥ℓ ∈ R𝑁×𝑑 , the adapter produces an
updated representation as:

𝑥ℓ = ReLU(𝑥ℓ𝑊down)𝑊up, (6)

where𝑊 = [𝑊down;𝑊 ⊤
up] ∈ R𝑑×2𝑘 denotes all trainable parameters

within the adapter. Building on the concept of the original adapter
several variants have been developed, e.g., Adaptformer[10] moves
away from the conventional way of adapter mechanism and use a
parallel insertion of adapters in the pretrained model. Convpass[40]
identifies that the current adapters lack strong inductive biases
constraining their performance and therefore proposes an integra-
tion of trainable convolutional blocks into the adapter architecture.
Steitz and Roth [83] conducted a systematic analysis of adapters, ex-
amining their internal structure and implementation choices. They
identify key limitations that explain why standard adapters often
underperforms relative to alternatives such as low-rank adaptation.

Other methods[15, 16, 42] also focused on optimizing the adapter
architecture. Through a quantization-aware training strategy, Jie
et al. [42] showed an adapter can be made more storage-efficient by
exploiting the robustness of adapter parameters to noise and low nu-
merical precision. Adapter Re-Composing (ARC) [16] introduces the
idea of sharing the bottleneck operation’s up and down-projections
across layers and employs low-dimensional re-composing coeffi-
cients to create layer-adaptive adapters. For a flexible bottleneck
dimensionality in the adaptations, Dong et al. [15] uses House-
holder matrices to construct Householder transformation-based
adaptations to enhance their efficiency and effectiveness. Further-
more, to improve the efficiency and generalization trade-off in the
adapter mechanism, Li et al. [52] jointly incorporates parameter
sharing, dynamic token-level allocation, and block-specific designs
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within a unified framework.To unleash the potential of each pa-
rameter in the adapters, Mixture of Sparse Adapters(MoSA) [115]
decomposes the standard adapter into multiple non-overlapping
modules, stochastically activates these modules for sparse training,
and subsequently merges them into a complete adapter posttuning.

Prompt tuning. Visual prompt tuning (VPT) [38] offers an al-
ternative to inserting trainable modules directly into transformer
architectures. Instead of modifying the model layers, this approach
augments the original input, either the image itself or its embed-
ding by attaching learnable visual prompts as depicted in Figure
2b. These prompts take the form of additional trainable parame-
ters that can be flexibly optimized for a given task. The central
objective is to use these task-specific prompts to adjust the input
distribution so that it better aligns with the distribution seen during
pre-training. The original VPT architecture, consists of two variants:
VPT-Shallow and VPT-Deep. In VPT-Shallow, a set of 𝑙 learnable
prompts, denoted as 𝑃 = [𝑃1, 𝑃2, . . . , 𝑃𝑙 ] ∈ R𝑙×𝑑 , is inserted into
the embedding space of the input patch tokens 𝑥0 ∈ R𝑁×𝑑 . These
prompts are concatenated with the original patch embeddings to
produce the final input:

𝑥0 = concat(𝑃, 𝑥0) = [𝑃, 𝑥0] ∈ R(𝑙+𝑁 )×𝑑 , (7)

where [·, ·] denotes concatenation along the token dimension.
VPT-Deep on the other hand injects prompts into the input of

every transformer layer. During fine-tuning, only these prompt pa-
rameters are updated while all pre-trained weights remain frozen.
The computational overhead of VPT-Deep depends on the prompt
length and token embedding dimension, with empirical studies
showing that increasing the prompt length typically yields bet-
ter downstream performance. Building upon the success of VPT,
several variants have been explored. Han et al. [27] and Yoo et al.
[109] further enhanced VPT by implementing cross-layer prompt
connections with dynamic gating mechanisms. Subsequent studies
also enhanced VPT’s abilities through convolutional prompts [92],
lightweight prompt blocks composed of three convolutional layers
[67], better prompt positioning [96] and spatial selection mecha-
nisms for coordinating attention between image patches and visual
prompts [72]. Recently, Ren et al. [78], and Park and Chung [70]
guide prompt tokens to align with semantically informative regions
of the ViT embedding space. Different from the original concept
of VPT, other approaches also integrates task-specific prompt at
the pixel level,thus integrating these prompts with input images.
Wu et al. [103] improves the approach by shrinking the input im-
ages, applying data augmentations, and padding the surrounding
area with prompt information, enriching the input representation.
Diversity-Aware Meta Visual Prompt (DAM-VP) [36] takes a divide-
and-conquer approach by segmenting high-diversity datasets into
smaller subsets and learning separate prompts for each subset. This
strategy effectively addresses the challenges posed by the large
diversity of data.

Prefix fine-tuning.Different from prompt tuning, prefix tuning
[53] introduces learnable prefix matrices in the MHSA mechanism
of pretrained vision transformers. Prefix-tuning introduces train-
able prefix matrices into the attention mechanism. In particular, it
uses two learnable matrices 𝑃𝑘 , 𝑃𝑣 ∈ R𝑙×𝑑 , which are prepended to
the keys and values of the multi-head attention. This modification

updates the attention formulation in Eq. (3) to:

Attention(𝑄,𝐾,𝑉 ) = softmax
(
𝑄 [𝑃𝑘 , 𝐾]⊤√

𝑑

)
[𝑃𝑣,𝑉 ] . (8)

Although effective, initializing these prefix matrices randomly may
introduce undesirable noise that hinders stable convergence during
fine-tuning. To overcome this limitation, PATT [110] introduces
a parallel attention pathway that avoids random initialization. It
generates prefix matrices using two linear layers,parameterized by
𝑊down ∈ R𝑑×𝑘 and𝑊up ∈ R𝑘×𝑙 ,together with Tanh activations to
transform the input features. For the ℓ-th transformer layer, given
the output of the previous layer 𝑥ℓ−1, the corresponding prefix
matrices are computed as:

𝑃𝑘 , 𝑃𝑣 = tanh(𝑥ℓ−1𝑊down)𝑊up . (9)

To extend the studies of prefix tuning, VQT [93] appends prefix
vectors exclusively to the query Q, rather than increasing both the
key K and the value V.

Side tuning.Aside parameter efficiency, to improve the memory
efficiency of previous PEFT methods, side tuning takes an alterna-
tive approach by using a smaller, detached side network running
alongside the pretrained vision models. An architecture of side-
tuning is shown in Figure 2c. Earlier side tuning approach [114]
employed a four-layer convolutional network as an additive side
network, whose outputs are combined with representations of the
pretrained vision model in the final layer to address various tasks.
Recently, several variants [22, 55, 65, 85, 87, 88] of side-tuning have
been proposed with the aim of optimizing its architecture.

3.2 Reparameterization-based Tuning
Reparameterization-based tuning transforms the model parameters
into a lower-dimensional representation during training to facili-
tate efficient optimization. The reparameterized weights are later
mapped back to the original parameter space during inference as
shown in Figure 2d, to ensure the model’s full capacity and also
preserve expressiveness. A popular technique is LoRA [35] which
factorizes weight updates into low-rank matrices, significantly re-
ducing the number of trainable parameters. For a pre-trainedweight
matrix𝑊ℓ , LoRA models its adaptation through a low-rank decom-
position. Specifically, the updated weight is expressed as

𝑊 ′
ℓ =𝑊ℓ + Δ𝑊 =𝑊ℓ + 𝐵𝐴, (10)

where 𝐵 and 𝐴 are the trainable low-rank matrices introduced
during fine-tuning. Typically, LoRA modifies the query and value
projection matrices in multihead attention. Furthermore, an expand-
ing line of subsequent research has sought to enhance and the LoRA
framework. Recent studies have explored the limitations of low rank
constraints and proposed several solutions [1, 29, 37, 106, 123], e.g.,
through Kronecker decompositions which is structurally related to
LoRA as shown below:

Δ𝑊 = 𝐵 ⊗ 𝐴. (11)

The fine-tuning process is able to capture more complex relation-
ships utilizing the Kronecker product to constructs full rank update
matrices from smaller trainable factors. KAdaptation [29] broad-
ens this idea by expressing the weights as a sum of 𝑛 Kronecker
products, pairing shared slow weights 𝐴𝑖 with task-specific fast
weights 𝐵𝑖 . SinLoRA [37] uses a sine function parameterized by
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a frequency parameter on top of a low-rank update, effectively
producing a full rank update. For products with high effective rank
than the original LoRA framework, [1] uses the Khatri-Rao product
to produce weight updates. FacT[41] also proposes a tensorization-
decomposition framework in which the weights of PVMs are first
tensorized into a unified three-dimensional structure and the cor-
responding parameter updates are then decomposed into compact
factorized components enabling an efficient storage of weight incre-
ments. Another line of research also investigates the initialization
of projection matrices in the LoRA framework [64, 82, 84, 98]. To
further enhance transfer representations, other studies have also
explored multiple parallel layers [8, 18–20, 47, 121]. Recently, some
works [75, 76] proved that there exists a small discrepancy between
the pretrained and the finetuned model, limiting the preservation
of pretrained knowledge leading to the proposition of orthogonal
finetuning (OFT) and its variants [57, 60, 102]. OFT preserves pre-
trained semantics by mapping pretrained linear weights with an
angle-preserving transformation using a block-diagonal matrix,
while adapting to downstream tasks. Beyond modifying pre-trained
weight matrices, several studies have investigated alternative pa-
rameterization strategies within PVMs [54, 80, 81, 113]. For instance,
SSF [54] introduces learnable scale and shift parameters tomodulate
intermediate feature representations, which are later reparameter-
ized into the MLP layers.

3.3 Selective Tuning
Selective Tuning adapts pre-trained models to specific taks by mod-
ifying only a carefully chosen subset of parameters while keeping
the rest unchanged. Unlike traditional fine-tuning, which updates
all parameters in the model, selective fine-tuning focuses on pa-
rameters that are most relevant to the task. Linear Probe [49] adds
a simple linear classifier on top of a frozen pretrained vision model,
keeping all pre-trained parameters fixed. Furthermore, BitFit [112]
demonstrates empirically that updating only the bias terms of a
model can achieve strong fine-tuning performance, highlighting
the surprising effectiveness of minimal parameter updates. Instead
of updating bias terms, LN-Tune [2] adapts pre-trained models by
fine-tuning only their LayerNorm parameters. Another innovative
approach is Salient Channel Tuning [119], which adopts a selec-
tive channel tuning strategy. This method prioritizes tuning task-
relevant channels, thereby significantly reducing parameter costs
while maintaining performance. Different from original concept of
selective tuning, Zhang et al. [118], and Chen et al. [11] introduce
a novel paradigm in which parameters chosen for fine-tuning are
determined by their gradient relevance to the downstream task.

3.4 Hybrid-based Tuning
Hybrid-based tuning approaches integrate multiple fine-tuning
strategies into a unified framework that exploits the complemen-
tary advantages of each technique. By combining thesemechanisms,
hybrid methods offer greater flexibility, adaptability, and robust-
ness across a wide range of tasks. Such approaches can dynamically
select or balance the most effective tuning components to achieve
strong performance while preserving parameter efficiency. For ex-
ample, NOAH [117] combines Adapter, LoRA, and VPTmechanisms
within each transformer block, using neural architecture search

(NAS) to automatically determine the most effective configuration
for a given downstream task. This framework illustrates a holis-
tic approach to fine-tuning, demonstrating how the integration of
multiple PEFT techniques can yield optimized adaptation perfor-
mance. Similarly, V-PEFT [111] provides a unified analysis of PEFT
techniques, focusing on critical fine-tuning positions and providing
a cohesive perspective on these approaches. In contrast, U-Tuning
[39] uncovers a shared parallel structure among mainstream tuning
strategies, including adapter, prefix, and prompt tuning, and lever-
ages this insight to reduce structural coupling across these methods.
More recently, PEFT-Vision [61] provides a comprehensive anal-
ysis of PEFT techniques in vision, offering practical guidance on
selecting and applying these methods effectively for different tasks
and deployment scenarios.

3.5 Inference-Efficient Tuning
Despite the notable progress achieved by current PEFT methods,
emerging research [59] shows that most PEFTs such as Adapters
inccurs non-negligible latency during inference, even though they
significantly reduce the number of trainable parameters. Luo et al.
[59] through structural parameterization embeds adapter modules
into pre-trained models, ensuring efficient adaptation without zero
inference overhead.

In recent years, there has been a growing class of parameter-
efficient adaptation methods that reduce the computational burden
of ViTs by compressing, selecting, or merging image tokens during
fine-tuning [45, 56, 116, 120], inspired by token reduction and token
merging techniques. These approaches [5, 46, 77, 91] not only per-
form parameter efficiency, but also operate on the token dimensions,
aiming to retain essential semantic information, eliminate redun-
dancy among spatial tokens thereby improving inference efficiency.
Token reduction [46, 77] removes less informative tokens entirely
during inference or training, whiles token merging [5, 91] com-
bines similar tokens into a single representative token, preserving
information while reducing token count. For instance, DyT [120]
incorporates a token dispatcher within each transformer block that
dynamically determines which tokens to activate or deactivate. Ac-
tivated tokens pass through both the full transformer block and an
auxiliary lightweight adapter, whereas deactivated tokens skip the
block entirely and are processed solely by the adapter. Recently,
Kim et al. [45] addresses the inference latency and computational
overhead by introducing a plug-and-play token redundancy reduc-
tion module that learns token similarity via adapters and performs
fully differentiable token merging using a straight-through estima-
tor. By reducing redundant tokens in self-attention, this method
improves inference speed and training efficiency without sacrificing
adaptation performance.

4 Datasets and Protocols
PEFT methods for ViTs are commonly evaluated on a diverse set of
image recognition benchmarks that vary in scale, granularity, and
task complexity. While this diversity enables broad empirical as-
sessment, both dataset characteristics and evaluation protocols can
introduce biases that complicate fair and reproducible comparison
across studies.
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Figure 3: Accuracy-efficiency trade-offs for selected PEFT methods applied to ViTs in image classification on VTAB-1k. The
figure shows mean classification accuracy versus trainable parameters, inference time per image, and GPU memory usage.

Fine-grained visual classification (FGVC) datasets, includ-
ing CUB-200-2011[95], NABirds[33], Oxford Flowers[68], Stanford
Dogs[44], and Stanford Cars[24], emphasize subtle inter-class dif-
ferences and are frequently used to assess the adaptation capacity
of PEFT methods in low-data regimes. Typical evaluation proto-
cols involve fine-tuning on limited training splits and reporting
top-1 accuracy. However, these datasets are relatively small and
visually homogeneous, which can favor adaptation methods that
exploit strong inductive biases while offering limited insight into
scalability, robustness, or performance under distribution shift.

VTAB-1k provides a standardized multi-task benchmark for
assessing parameter-efficient adaptation with a fixed budget of
1,000 labeled examples per task. The benchmark is organized into
three categories: Natural datasets: CIFAR-100 [50], Caltech-101 [21],
DTD [13], Flowers102 [68], Pets [71], SVHN [66], Sun397 [104]. Spe-
cialized datasets: Patch Camelyon [94], EuroSAT [30], Resisc45 [12],
Retinopathy [26]. Structured datasets: CLEVR-count/distance [43],
DMLab [3], KITTI [25],dSprites [63], SmallNORBs[51]. VTAB-1k en-
forces consistent training budgets and evaluation metrics, typically
reporting mean accuracy across task groups. However, its reliance
on fixed hyperparameters, short training schedules, and small data
budgets can bias results toward methods optimized for low-data
adaptation and may underrepresent performance differences that
emerge at larger scales.

General image recognition datasets such as CIFAR-10[50],
CIFAR-100[50], and ImageNet-1k[14] are widely used to study
scalability and transfer performance. Protocols on these datasets
vary substantially across studies, including differences in back-
bone initialization, optimizer choice, learning-rate schedules, num-
ber of training epochs, and parameter-freezing strategies. While
ImageNet-1k serves as the primary large-scale benchmark for PEFT
methods, inconsistent reporting of training budgets, parameter
counts, and computational cost often hinders direct comparison
between approaches.

Domain generalization benchmarks, e.g., ImageNet-V2[79],
ImageNet-Sketch[97], ImageNet-A[32], and ImageNet-R[31], are
used to evaluate robustness under distribution shift. These datasets
are typically evaluated using zero-shot or in-distribution fine-tuned
models without additional adaptation. Despite their relevance, such

benchmarks are less frequently included in PEFT evaluations, lim-
iting current understanding of how parameter-efficient adaptation
affects robustness and out-of-distribution generalization.

Across datasets such VTAB-1k and FGVC, most PEFT meth-
ods follow the evaluation protocols stated in [38]. Many studies
report single-run results without variance estimates, and few nor-
malize comparisons by computational budget or inference cost.
These protocol-level inconsistencies introduce implicit biases and
reduce reproducibility, highlighting the need for more standardized
evaluation practices, clearer reporting of training and inference con-
straints, and broader inclusion of robustness-oriented benchmarks
in future PEFT research.

5 Analysis and Discussions
5.1 Comparative Trade-offs
Table 1 provides a comprehensive comparison of state-of-the-art
PEFTmethods evaluated on VTAB-1k, grouped into natural, special-
ized, and structured visual tasks. Several consistent trends emerge
across PEFT families, highlighting the trade-offs between accuracy,
parameter efficiency, and task complexity. Reparameterization-
based methods, including LoRA and its variants, demonstrate
strong and stable performance across all VTAB categories. These
approaches achieve accuracy close to or exceeding traditional full
fine-tuning while updating only a small fraction of model param-
eters. Their effectiveness is particularly pronounced on natural
image classification tasks, where low-rank updates appear suffi-
cient to capture task-specific variations. However, performance
gains on structured tasks are more modest, suggesting that purely
linear reparameterization may be less expressive for tasks requir-
ing spatial reasoning or geometric understanding. Additive-based
approaches, such as adapters and AdaptFormer variants, offer a
favorable balance between expressivity and efficiency. These meth-
ods consistently outperform selective tuning baselines and exhibit
robust performance on both natural and specialized tasks. Their
stronger results on structured datasets indicate that inserting light-
weight task-specific modules can enhance representational flexibil-
ity beyond what is achievable through reparameterization alone.
The trade-off is a moderate increase in trainable parameters and
inference overhead relative to reparameterization-based methods.
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Traditional Fine-Tuning
Full 85.8 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 68.9
Linear Probe[49] 0.04 64.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.5 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 57.6
PETL Methods
BitFit [112] 0.10 72.8 87.0 59.2 97.5 85.3 59.9 51.4 78.7 91.6 72.9 69.8 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 65.2
GPS [118] 0.25 81.1 94.2 75.8 99.4 91.7 91.6 52.4 87.9 96.2 86.5 76.5 79.9 62.6 55.0 82.4 84.0 55.4 29.7 46.1 77.5
SCT [119] 0.11 75.3 91.6 72.2 99.2 91.1 91.2 55.0 85.0 96.1 86.3 76.2 81.1 65.1 51.7 80.2 75.4 46.2 33.2 45.7 76.0
Adapter [34] 0.16 69.2 90.1 68.0 98.8 89.9 82.8 54.3 84.0 94.9 81.9 75.5 80.9 65.3 48.6 78.3 74.8 48.5 29.9 41.6 73.9
AdaptFormer [10] 0.16 70.8 91.2 70.5 99.1 90.9 86.6 54.8 83.0 95.8 84.4 76.3 81.9 64.3 49.3 80.3 76.3 45.7 31.7 41.1 74.7
Convpass [40] 0.33 72.3 91.2 72.2 99.2 90.9 91.3 54.9 84.2 96.1 85.3 75.6 82.3 67.9 51.3 80.0 85.9 53.1 36.4 44.4 76.6
Bi-AdaptFormer [42] 0.59 74.1 92.4 72.1 99.3 91.6 89.0 56.3 88.2 95.2 86.0 76.2 83.9 63.9 53.0 81.4 86.2 54.8 35.2 41.3 77.0
VPT-Shallow [38] 0.24 77.7 86.9 62.6 97.5 87.3 74.5 51.2 78.2 92.0 75.6 72.9 50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1 67.8
VPT-Deep [38] 0.53 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 72.0
E2VPT [27] 0.25 78.6 89.4 67.8 98.2 88.5 85.3 52.3 82.5 96.8 84.8 73.6 71.7 61.2 47.9 75.8 80.8 48.1 31.7 41.9 73.9
LoRA [35] 0.29 67.1 91.4 69.4 98.8 90.4 85.3 54.0 84.9 95.3 84.4 73.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0 74.5
Bi-LoRA [42] 1.18 72.1 91.7 71.2 99.1 91.4 90.2 55.8 87.0 95.4 85.5 75.5 83.1 64.1 52.2 81.2 86.4 53.5 36.7 44.4 76.7
KARST [123] 0.33 76.8 93.2 75.1 99.3 92.2 91.9 57.6 88.3 96.2 88.4 75.7 83.8 69.0 52.9 82.0 86.0 52.9 33.8 47.0 78.1
FacT-TT [41] 0.04 71.3 89.6 70.7 98.9 91.0 87.8 54.6 85.2 95.5 83.4 75.7 82.0 69.0 49.8 80.0 79.2 48.4 34.2 41.4 75.3
FacT-TK [41] 0.01 70.6 90.6 70.8 99.1 90.7 88.6 54.1 84.8 96.2 84.5 75.7 82.6 68.2 49.8 80.7 80.8 47.4 33.2 43.0 75.6
OFT [76] 0.15 68.8 91.9 73.8 99.7 92.2 91.8 49.2 90.2 100 89.1 80.5 83.2 71.1 53.9 81.3 82.0 54.3 34.4 43.8 78.0
GOFT [60] 0.02 75.0 93.9 72.3 99.7 92.6 85.2 60.9 89.1 100 87.9 82.4 84.0 74.2 55.1 82.0 80.9 52.7 32.3 43.8 78.6
Hydra[47] 0.28 72.7 91.3 72.0 99.2 91.4 90.7 55.5 85.8 96.0 86.1 75.9 83.2 68.2 50.9 82.3 80.3 50.8 34.5 43.1 76.5
SSF[54] 0.24 69.0 92.6 75.1 99.4 91.8 90.2 52.9 87.4 95.9 87.4 75.5 75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9 75.7
NOAH [117] 0.36 69.6 92.7 70.2 99.1 90.4 86.1 53.7 84.4 95.4 83.9 75.8 82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2 75.5
RepAdapter [59] 0.22 69.0 92.6 75.1 99.4 91.8 90.2 52.9 87.4 95.9 87.4 75.5 75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9 76.1
LoSA [65] 0.19 82.5 92.8 76.1 99.7 90.5 82.0 55.8 86.6 97.1 87.0 76.7 81.5 62.3 48.6 82.1 94.2 61.7 47.9 45.6 78.4
DTL [22] 0.05 74.1 94.8 71.8 99.4 91.7 90.4 57.2 87.9 96.7 87.5 74.8 81.9 64.7 51.5 81.9 93.9 54.0 35.6 50.3 76.7
LAST [88] 0.66 66.7 93.4 76.1 99.6 89.8 86.1 54.3 86.2 96.3 86.8 75.4 81.9 65.9 49.4 82.6 87.9 46.7 32.3 51.5 76.5
DyT[120] 0.16 74.4 95.5 73.6 99.2 91.7 87.5 57.4 88.3 96.1 86.7 76.7 83.5 63.5 52.9 83.1 85.7 54.9 34.3 45.9 77.6
FPET-RepAdapter[45] 0.23 72.1 91.5 71.8 99.3 90.7 90.3 55.0 85.2 96.2 84.5 75.6 82.2 67.7 49.7 79.9 82.2 48.7 36.9 41.7 76.1
FPET-LoRA[45] 0.30 70.1 92.7 69.4 99.1 90.8 85.4 55.6 87.2 94.6 82.5 74.1 83.0 63.4 50.6 81.6 84.7 51.5 34.3 43.3 75.6
FPET-AdaptFormer[45] 0.17 71.3 93.5 69.9 99.3 90.7 87.0 54.7 87.5 95.1 84.5 76.2 83.6 63.1 52.2 81.3 87.1 54.1 33.5 40.2 76.2
FPET-Bi-LoRA[45] 1.18 71.9 91.1 70.9 99.1 90.5 89.4 55.9 87.4 94.7 84.4 74.9 83.5 65.1 52.1 79.7 85.8 54.2 36.7 44.4 76.4
FPET-Bi-AdaptFormer[45] 0.64 74.1 92.8 72.5 99.4 91.1 89.6 56.2 88.3 94.9 86.3 75.3 83.8 63.0 52.8 81.4 85.7 54.4 35.9 42.2 77.0

Table 1: VTAB-1k results for representative PEFT methods, reporting mean accuracy (Average) across natural, specialized, and
structured task groups. All methods use ViT-B/16 pretrained on ImageNet-21K as the backbone.

Selective tuning methods, including BitFit and linear probing,
achieve the lowest parameter cost but also exhibit the largest perfor-
mance gap relative to other PEFT families. While these approaches
remain competitive on some natural image tasks, their limited ex-
pressive capacity becomes evident on specialized and structured
datasets, where more substantial adaptation is required. This high-
lights an inherent trade-off between extreme parameter efficiency
and task generalization. Hybrid-based methods, which combine
complementary strategies such as reparameterization and addi-
tive adaptation, consistently achieve strong performance across
all VTAB groups. In particular, hybrid approaches demonstrate
improved robustness on structured tasks, narrowing the gap with
full fine-tuning while maintaining high parameter efficiency. These
results suggest that combining multiple adaptation mechanisms
can mitigate the limitations of individual PEFT paradigms. Finally,
inference-efficient variants, including FPET-based methods, fur-
ther improve deployment efficiency without sacrificing accuracy.
These approaches retain competitive performance across VTAB cat-
egories while reducing inference cost, making them attractive for
resource-constrained and large-scale deployment scenarios. Overall,
the results in Table 1 confirm that no single PEFT strategy univer-
sally dominates across all tasks. Instead, different PEFT families
occupy distinct regions of the accuracy–efficiency trade-off space,
with performance strongly influenced by dataset characteristics
and task complexity. These findings reinforce the importance of
selecting PEFT methods based on application-specific constraints
rather than accuracy alone.

Under the evaluation protocols of [38, 45], Figure 3 provides a
comparative view of how selected PEFT methods balance predictive
performance against computational and memory costs. The left
panel highlights the substantial parameter overhead of full fine-
tuning, which achieves competitive accuracy but requires updating
nearly the entire model. In contrast, PEFT methods attain compara-
ble or improved accuracy while updating only a small fraction of
parameters, demonstrating the effectiveness of parameter-efficient
adaptation strategies. Reparameterization-based approaches, such
as LoRA and its FPET variants, consistently achieve strong accuracy
with minimal trainable parameters, indicating a favorable accuracy-
efficiency trade-off. Notably, FPET-LoRA and FPET-AdaptFormer
achieve the highest accuracy among the considered methods while
maintaining low parameter counts, suggesting that combining low-
rank reparameterization with structured fine-tuning can further
enhance representational capacity. Additive-based methods such
as AdaptFormer also perform competitively, though with slightly
higher inference cost compared to purely reparameterization-based
techniques. The middle panel reveals that most PEFT methods
incur only modest inference-time overhead relative to full fine-
tuning, with differences largely attributable to additional adapter
modules. Importantly, methods with higher accuracy do not neces-
sarily require increased inference time, underscoring that parameter
efficiency and inference efficiency are not strictly opposing objec-
tives. Selective tuning methods, exemplified by BitFit, offer minimal
overhead but exhibit a noticeable drop in accuracy, reflecting their
limited expressive capacity. The right panel further emphasizes
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memory efficiency, showing that PEFT methods substantially re-
duce GPU memory usage compared to full fine-tuning. FPET-based
approaches, occupy a favorable region of the accuracy-memory
trade-off space, making them particularly attractive for deployment
in resource-constrained or large-scale settings.

5.2 Strengths and Weaknesses
Strengths. PEFTs has emerged as a powerful paradigm for adapting
large ViTs to downstream image classification tasks while signif-
icantly reducing training cost. One of its primary strengths lies
in its ability to achieve competitive accuracy with only a small
fraction of trainable parameters. By freezing most of the pretrained
backbone, PEFT methods substantially lower memory consump-
tion, training time, and energy usage, making them well suited
for scenarios involving limited computational resources or large
numbers of downstream tasks. Another key advantage of PEFT is
improved scalability across tasks. Since task-specific parameters
are lightweight, multiple adaptations can be stored and deployed
efficiently, enabling practical multi-task and continual learning
setups. In addition, the constrained parameter updates imposed
by PEFT often act as an implicit regularizer, which can mitigate
overfitting in low-data regimes and lead to improved generaliza-
tion compared to full fine-tuning. This effect is particularly evident
in reparameterization-based and hybrid PEFT approaches, which
balance expressive capacity with strong inductive biases.

Weaknesses. Despite these advantages, PEFT methods also ex-
hibit notable limitations. A central weakness is their sensitivity to
design choices, such as insertion points[69], rank selection[23, 62],
or prompt length[38, 101], which can significantly affect perfor-
mance. Unlike full fine-tuning, PEFT does not universally guarantee
strong adaptation across all tasks and dataset scales, and poorly
chosen configurations may underperform even simple baselines.
Inference efficiency represents another important challenge. While
PEFT methods reduce training cost, some approaches introduce
additional computational overhead at inference time due to extra
modules[10, 34]. As a result, parameter efficiency does not always
translate directly into inference efficiency, particularly for deploy-
ment on latency-critical systems.

PEFT presents a compelling trade-off space rather than a univer-
sally optimal solution. Its strengths in efficiency, scalability, and
generalization must be weighed against limitations in expressive-
ness, inference overhead, and sensitivity to hyperparameter choices.
These observations highlight the need for principled design guide-
lines, unified benchmarks, and inference-aware PEFT strategies,
which we identify as important directions for future research.

5.3 Future Directions
Although PEFT has demonstrated strong empirical performance
for adapting ViTs, several open research challenges remain. Ad-
dressing these challenges is essential for improving the scalability,
robustness, and theoretical understanding of PEFT in real-world
deployment settings.

Structure-aware adaptation. Most existing PEFT methods
treat tokens independently during adaptation, ignoring structural
relationships such as spatial locality or semantic similarity. Future
work could explore structure-aware PEFT strategies that leverage

token graphs or region-level relations to guide parameter updates.
Such approaches may reduce redundant adaptations and improve
generalization, particularly for complex visual scenes.

Dynamic and input-adaptive PEFT. Current PEFT methods
rely on static parameter allocation, applying the same adaptation
modules to all inputs regardless of difficulty or content. A promising
direction is dynamic PEFT, where adapters or low-rank components
are conditionally activated based on input characteristics, token
importance, or task uncertainty. This could enable more efficient
computation and better accuracy-efficiency trade-offs, which are
critical for web-scale and real-time applications.

Robustness and distribution shift. PEFT models are typically
evaluated under clean, in-distribution settings, leaving their robust-
ness underexplored. Future work should systematically study PEFT
behavior under distribution shifts, data scarcity, and adversarial
perturbations. Incorporating robustness-aware objectives or regu-
larization strategies into PEFT could improve reliability in practical,
open-world environments.

Theoretical foundations.Despite their empirical success, PEFTs
lack rigorous theoretical explanations. Open questions remain re-
garding the expressivity and generalization properties of low-rank
updates, adapters, and partial fine-tuning. Developing theoretical
analyses of optimization dynamics and representation adaptation
would provide principled guidance for future PEFT designs.

Deployment considerations. Finally, the field would benefit
from standardized benchmarks that evaluate PEFT methods across
accuracy, parameter efficiency, computational cost, and robustness.
Practical deployment constraints, including memory footprint and
inference latency, should be explicitly considered to bridge the gap
between research and real-world applications.

6 Conclusion
PEFT has emerged as an effective paradigm for adapting large ViTs
to image classification tasks under practical computational con-
straints. Updating only a small subset of parameters substantially
reduce training cost, memory usage, and energy consumption while
maintaining competitive predictive performance.

In this survey, we presented a structured taxonomy and compar-
ative analysis of PEFT approaches. Our analysis highlights the effec-
tiveness of localized and low-dimensional adaptations for captur-
ing task-specific information. While early PEFTs focused on static
and layer-wise efficiency, recent work has increasingly explored
inference-efficient strategies that improve accuracy-efficiency trade-
offs. Despite their promise, several challenges remain. Current eval-
uations largely focus on clean, in-distribution benchmarks, leaving
robustness, distribution shift, and low-data performance underex-
plored. In addition, the theoretical understanding of PEFT regarding
expressivity and generalization remains limited. Addressing these
gaps will be crucial for advancing PEFT toward more principled,
robust, and widely deployable image classification systems.
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A Comparison with Existing Surveys
Parameter-efficient fine-tuning (PEFT) has emerged as a practical
alternative to full fine-tuning for adapting large pretrained mod-
els, particularly transformer models, to downstream tasks under
constraints on data, computation, and storage. This paradigm has
motivated a growing literature of surveys and reviews that aim
to systematize efficient adaptation techniques, typically grouping
methods such as adapters, prompt-based tuning, low-rank parame-
terizations, bias or normalization tuning, and selective fine-tuning
under a unified framework. Many of these surveys earlier placed
strong emphasis on natural language processing and large language
models [126, 128, 136, 138].

Within the vision domain, several studies [137, 139] survey PEFT
strategies for Vision Transformers (ViTs), while a parallel line of
work adopts a cross-modality perspective, framing vision adapta-
tion alongside PEFT methods developed for language and multi-
modal architectures [4, 73, 142]. These studies provide valuable
overviews of early design choices, common architectural insertion
points, and representative empirical results on benchmarks such
as VTAB-1k, ImageNet variants, and fine-grained visual classifica-
tion (FGVC) datasets. However, as the PEFT landscape for ViTs has
rapidly expanded, existing surveys often provide limited coverage
of more recent and hybrid approaches, specifically methods that ex-
plicitly exploit the token-based structure of ViTs for better inference
efficiency of PEFTs. Moreover, prior surveys typically emphasize
categorical taxonomies of methods, but devote less attention to
comparative trade-offs across PEFT families when evaluated under
consistent constraints. In particular, distinctions between perfor-
mance gains arising from increased trainable capacity, improved
inductive bias, or task-specific adaptation are not always made
explicit. Similarly, differences in PEFT behavior across task regimes
such as natural image classification versus specialized domains or
structured reasoning tasks are often underexplored, despite their im-
portance for understanding generalization and deployment. These
developments raise new questions about scalability and stability
that extend beyond traditional notions of parameter efficiency and
motivate a more architecture-grounded synthesis.

Different from other survey, this survey focuses specifically on
PEFTs for ViTs in image classification, organizing existing methods
and emphasizing empirical and practical trade-offs across PEFT fam-
ilies. By consolidating both established and emerging approaches
within a unified, vision-centric perspective, the survey comple-
ments existing PEFT reviews while addressing gaps in coverage,
comparison, and architectural specificity.

B Benchmark Dataset Statistics
Table 2 shows the overall statistics of benchmark datasets.

C Other Benchmark Evaluations
C.1 Fine-Grained Visual Classification
Table 3 presents a comparative evaluation of representative PEFT
methods on FGVC benchmarks, including CUB-200-2011, NABirds,
Oxford Flowers, Stanford Dogs, and Stanford Cars, using a ViT-
B/16 backbone pretrained on ImageNet-21K. These datasets are
characterized by subtle inter-class differences and high intra-class
similarity, making them particularly challenging and well suited for

assessing the expressive capacity of PEFT methods under limited
adaptation budgets. Several observations emerge from the results.
First, PEFT methods consistently outperform linear probing and
closely match full fine-tuning performance while using orders of
magnitude fewer trainable parameters. This highlights the effec-
tiveness of parameter-efficient adaptation in capturing fine-grained
visual cues without requiring full model updates.

Among PEFT families, reparameterization-based methods, such
as LoRA, demonstrate strong and stable performance across FGVC
datasets, achieving competitive mean accuracy with relatively mod-
est parameter counts. This suggests that low-rank updates to at-
tention weights are sufficient to adapt pretrained representations
to fine-grained classification tasks. Additive-based approaches, in-
cluding adapters and RepAdapter, further improve performance
on several datasets, particularly CUB-200 and Cars, indicating that
inserting lightweight task-specific modules can enhance represen-
tational flexibility for distinguishing subtle visual attributes. In con-
trast, prompt-based methods exhibit more mixed behavior. While
VPT-Deep outperforms its shallow counterpart and improves over
linear probing, its performance generally lags behind adapter and
LoRA-based approaches, especially on datasets requiring detailed
part-level discrimination. This suggests that prompt tuning alone
may offer limited expressivity for fine-grained tasks. Importantly,
the results also reveal clear accuracy-parameter trade-offs. Meth-
ods such as RepAdapter achieve the highest mean accuracy among
PEFT approaches while maintaining a relatively small parameter
footprint, whereas more parameter-constrained methods, such as
BitFit, offer lower performance but minimal adaptation cost. These
trade-offs underscore that no single PEFT strategy is universally
optimal but instead, the choice of method should be guided by task
difficulty and deployment constraints.

The FGVC results confirm that PEFT methods can effectively
adapt large ViTs to fine-grained recognition tasks with minimal pa-
rameter updates. They further highlight the advantages of additive
and reparameterization-based adaptations over purely selective or
shallow prompt-based approaches in settings that demand high
representational precision.

C.2 Evaluation on Hierarchical Transformers
Table 4 compares full fine-tuning, linear probing, and a range of
PEFT methods on VTAB-1k using a Swin-pretrained model. Several
important trends emerge.

First, full fine-tuning achieves strong overall performance (75.0%
average accuracy), particularly on Natural tasks (79.2%), but at a
very high parameter cost (86.7M trainable parameters). This high-
lights the effectiveness of end-to-end adaptation, but also under-
scores its limited practicality in low-data or resource-constrained
settings. Second, linear probing performs substantially worse, espe-
cially on Structured tasks (33.5%), confirming that freezing the back-
bone severely restricts adaptability to distributional shifts and non-
natural image structures. This gap demonstrates that some form of
feature adaptation is essential for VTAB-style transfer. Third, PEFT
methods consistently outperform linear probing and approach, or
surpass, full fine-tuning while updating fewer than 0.5M parame-
ters. Among them, Task-adaptive methods such as FacT, DTL, and
KARST show the strongest performance, with KARST achieving
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Table 2: Common datasets in the visual PEFT domain for image recognition tasks. For each dataset, we report the number of
classes and the sizes of training, validation, and test splits.

Dataset Description #Classes Train Val Test
Fine-Grained Visual Classification (FGVC)

CUB-200-2011 Fine-grained bird species recognition 200 5,394 600 5,794
NABirds Fine-grained bird species recognition 55 21,536 2,393 24,633
Oxford Flowers Fine-grained flower species recognition 102 1,020 1,020 6,149
Stanford Dogs Fine-grained dog species recognition 120 10,800 1,200 8,580
Stanford Cars Fine-grained car classification 196 7,329 815 8,041

Visual Task Adaptation Benchmark (VTAB-1k) [141]
CIFAR-100 Natural image classification 100 – – 10,000
Caltech101 Natural image classification 102 – – 6,084
DTD Texture recognition 47 – – 1,880
Flowers102 Natural images captured using standard cameras 102 800 200 6,149
Pets Natural image classification 37 – – 3,669
SVHN Street view house numbers 10 – – 26,032
Sun397 Scene recognition 397 – – 21,750
Patch Camelyon Specialized medical image classification 2 – – 32,768
EuroSAT Remote sensing image classification 10 800 200 5,400
Resisc45 Remote sensing scene classification 45 – – 6,300
Retinopathy Medical image diagnosis 5 – – 42,670
Clevr/count Structured geometric reasoning (counting) 8 – – 15,000
Clevr/distance Structured geometric reasoning (distance) 6 – – 15,000
DMLab 3D visual reasoning 6 – – 22,735
KITTI/distance Depth and distance estimation 4 800 200 711
dSprites/location Disentangled representation learning 16 – – 73,728
dSprites/orientation Disentangled representation learning 16 – – 73,728
SmallNORB/azimuth 3D object recognition 18 – – 12,150
SmallNORB/elevation 3D object recognition 9 – – 12,150

General Image Recognition Datasets
CIFAR-10 General image recognition 10 50,000 – 10,000
CIFAR-100 General image recognition 100 50,000 – 10,000
ImageNet-1k Large-scale image classification 1,000 1,281,167 50,000 50,000

Domain Generalization Datasets
ImageNet-V2 Domain generalization recognition 1,000 – – 10,000
ImageNet-Sketch Domain generalization recognition 1,000 – – 50,889
ImageNet-A Adversarial natural images 200 – – 7,500
ImageNet-R Artistic renditions 200 – – 30,000

Method Params.(M)AverageNatural SpecializedStructured
Full fine-tuning 86.7 75.0 79.2 86.2 59.7
Linear probing[49] 0 62.6 73.5 80.8 33.5
Bitfit[112] 0.20 65.6 74.2 80.1 42.4
VPT-Shallow [38] 0.00 66.7 79.9 82.5 37.8
VPT-Deep [38] 0.16 71.6 76.8 84.5 53.4
FacT[38] 0.14 77.4 83.1 86.9 62.1
DTL[22] 0.09 77.9 82.4 87.0 64.2
KARST[123] 0.45 78.6 83.9 87.7 64.2
Table 4: Results on VTAB-1k with Swin-B as backbone.
Params.(M): number of trainable parameters in backbones.

Method CUB-200NABirdsFlowersDogsCarsMeanParams.(M)
Full fine-tuning 87.3 82.7 98.8 89.4 84.5 88.5 85.98
Linear probing[49] 85.3 75.9 97.9 86.2 51.3 79.3 0.18
Bitfit[112] 88.4 84.2 98.8 91.2 79.4 88.4 0.28
VPT-Shallow [38] 86.7 78.8 98.4 90.7 68.7 84.7 0.25
VPT-Deep [38] 88.5 84.2 99.0 90.2 83.6 89.1 0.85
SSF [54] 82.7 85.9 98.5 87.7 82.6 87.5 0.39
LoRA [35] 88.3 85.6 99.2 91.0 83.2 89.5 0.44
Adapter [34] 87.1 84.3 98.5 89.8 68.6 85.7 0.41
RepAdapter [59] 89.4 86.5 99.5 90.6 85.9 90.3 0.34
Table 3: Performance comparison of representative PEFT
methods on FGVC datasets, including CUB-200-2011,
NABirds, Oxford Flowers, Stanford Dogs, and Stanford Cars.
Results are reported as top-1 accuracy (%). All methods use
ViT-B/16 pretrained on ImageNet-21K as the backbone.

the highest average accuracy (78.6%) and the best results across
all three VTAB subsets. Notably, KARST improves Structured task
accuracy by over 30 points relative to linear probing, indicating
superior inductive bias for tasks involving geometric or symbolic
structure. Fourth, Structured tasks remain the most challenging
subset, but also the one where PEFT methods deliver the largest
relative gains. This suggests that parameter-efficient adaptations
are particularly effective at injecting task-specific inductive biases
into hierarchical ViTs like Swin, without overfitting the limited
VTAB-1k supervision.

These results demonstrate that carefully designed PEFT strate-
gies can not only match but exceed full fine-tuning on VTAB-1k,
achieving a better performance-efficiency trade-off.
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