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Abstract

Retrosynthesis is a critical task in drug discovery, aimed at finding a viable pathway for
synthesizing a given target molecule. Many existing approaches frame this task as a graph-
generating problem. Specifically, these methods firstly identify the reaction center, and
break a targeted molecule accordingly to generate synthons. Reactants are generated by
either adding atoms sequentially to synthon graphs or directly adding proper leaving groups.
However, both of these strategies have limitations. Adding atoms results in a long prediction
sequence which increases the complexity of generation, while adding leaving groups can only
consider those in the training set which results in poor generalization. In this paper, we
propose a novel end-to-end graph generation model for retrosynthesis prediction, which
sequentially identifies the reaction center, generates the synthons, and adds motifs to the
synthons to generate reactants. Since chemically meaningful motifs are bigger than atoms
and smaller than leaving groups, our method enjoys lower prediction complexity than adding
atoms and better generalization than adding leaving groups. We evaluate our proposed
model on a benchmark dataset and show that it significantly outperforms previous state-of-
the-art models. Furthermore, we conduct an ablation study to investigate the contribution
of each component of our proposed model to the overall performance on the benchmark
dataset. Our results demonstrate the effectiveness of our model in predicting rethresynthesis
pathways and suggest its potential as a valuable tool in drug discovery.

1 Introduction

Retrosynthesis prediction is a fundamental problem in the field of organic chemistry, which plays a crucial
role in the planning of chemical synthesis and drug discovery. The concept of retrosynthesis was first pro-
posed by E. J. Corey, which triggered extensive research in this area. The aim of retrosynthesis prediction is
to identify physically feasible reactants that can be used to synthesize target molecules, given the knowledge
of their chemical structure. However, the complexity of the chemical search space make this task highly chal-
lenging. There are approximately 107 reactions and molecules in the published synthetic-organic knowledge
Gothard et al. (2012), leading to an enormous number of possible combinations that need to be considered.
Traditionally, chemists relied on their experience and knowledge to derive potential reactants, which was
highly inefficient and limited in scope. For example, the complete synthetic route of vitamin B12 required
the collaboration of hundreds of chemists led by Robert Woodward Woodward (1973) and took 11 years
to complete. To overcome these limitations, chemists have turned to computer-aided synthesis planning
(CASP) tools to design synthetic pathways. Several rule-based systems Kayala & Baldi (2012); Marcou
et al. (2015) have been developed and achieve excellent results for specific reaction types, but they suffer
from high complexities and have limited generalization ability on reactions outside the template library.

With the development of deep learning Wu et al. (2020); Otter et al. (2020), deep models have spawned a
series of promising proposals, greatly increasing the efficiency of synthetic route design. Broadly speaking,
these models can be categorized into two types: template-based Segler & Waller (2017); Coley et al. (2017);
Dai et al. (2019); Yan et al. (2022) and template-free Liu et al. (2017); Zheng et al. (2019); Shi et al. (2020a);
Yan et al. (2020); Sun et al. (2021b). Template-based models rely on templates that are either manually
extracted by experienced chemists or automatically extracted from large-scale data Coley et al. (2019). The
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core task of these methods is to match the product and the reactants to the appropriate template, which
reflects the reaction center of the target molecule in a particular type of reaction. While template-based
methods offer highly interpretability and can overcome the issues that traditional rule-based systems give
conflicting results with functional groups Segler & Waller (2017), they are limited by the costly subgraph
matching process Liu et al. (2017) and poor generalization capabilities Thakkar et al. (2020).

Template-free methods can be generally divided into sequence-based and graph-based methods. Sequence-
based methods treat retrosynthesis prediction as a machine translation task. These methods use an encoder-
decoder model, such as LSTM Liu et al. (2017) and Transformer Karpov et al. (2019); Zheng et al. (2019) to
translate SMILES1 sequences of target molecules into reactants SMILES sequences without atom mapping
and subgraph matching. Although sequence-based methods can implicitly learn reaction rules and easily
scale to larger datasets, they ignore the rich topological information presented in molecular graphs and
are prone to generating invalid reactant molecules. Recently, many graph-based models for retrosynthesis
have gained popularity with the development of graph neural networks. These methods typically follow
a similar paradigm, consisting of reaction center identification and synthon completion. G2Gs Shi et al.
(2020a), RetroXpert Yan et al. (2020), and GraphRetro Somnath et al. (2021) all use a two-stage framework
to formulate the above two subtasks. However, due to the different optimization objectives of the two
separate models, two-stage methods may not achieve the optimal result and can have poor generalization.
Additionally, GraphRetro’s use of leaving groups to complete synthons can result in unbalanced training
samples and low generalization. MEGAN Sacha et al. (2021) is an end-to-end model that completes synthons
with tiny units like single atom and benzene, while the lengthy prediction process makes the reactant
generation challenging.

In this work, we propose a novel Motif-based Autoregressive model for RetroSynthesis prediction (MARS),
which jointly identifies reaction center and completes synthons in an end-to-end graph generation framework.
The workflow of the entire model is shown in Fig. 1. For reaction center identification, our MARS automat-
ically predicts which bonds in a product need to be edited, without simply ignoring samples with multiple
reaction centers or introducing additional tasks to predict the number of reaction centers. For synthon
completion, we employ a predefined motif vocabulary from training reactions, instead of using a single atom
or ring. Motifs are fine-grained components that enjoy lower redundancy, more balanced data distribution,
and more generative flexibility than leaving groups proposed by GraphRetro Somnath et al. (2021). We
describe each step from product to reactants through carefully designed graph editing actions represented
as a complete transformation path. Then, we adapt an RNN model to learn to generate a transformation
path in an autoregressive manner. Our main contributions in this work can be summarized as:

• We integrate the two subtasks of reaction center identification and synthon completion into a unified
framework, and adapt an encoder-decoder architecture for retrosynthesis prediction to train the
model in an end-to-end manner.

• We extract a chemically meaningful motif vocabulary from training reactions without additional
chemical knowledge, which offers more generative flexibility and greatly improves generalization
ability.

• We provide a complete transformation path for each step from product to reactants, which allows
for more interpretable and understandable predictions.

• Experiments on the benchmark dataset show that our model could achieve the state-of-the-art
retrosynthesis performance with a Top-1 accuracy of 54.6% and 66.2% when w/o and w/ reaction
type, respectively.

1https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
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2 Related works

2.1 Molecular Graph Generation Methods

The field of molecular graph generation has seen various approaches Madhawa et al. (2019); Zang & Wang
(2020); Luo et al. (2021) aimed at generating chemically valid molecules with specific chemical properties.
MolGAN De Cao & Kipf (2018) generates molecules via generative adversarial networks. JT-VAE Jin et al.
(2018) first decomposes a molecular graph into disconnected subgraphs and then designs a junction tree
variational autoencoder for molecule generation. Recently, autoregressive-based models have gained much
attention in molecular graph generation. GCPN You et al. (2018) formulates molecular graph generation
as a Markov Decision Process. MolecularRNN Popova et al. (2019) utilizes a recurrent neural network to
generate the nodes and edges. GraphAF Shi et al. (2020b) designs a flow-based autoregressive model to
dynamically generate nodes and edges based on historical subgraph structures. Our proposed method can
be considered as a conditional molecular graph generation method based on an autoregressive model.

2.2 Template-free Retrosynthesis Prediction Methods

Template-free methods are data-driven methods that can be divided into sequence-based and graph-based
methods. Sequence-based methods Tetko et al. (2020); Wang et al. (2021); Mao et al. (2021) leverage natural
language processing (NLP) techniques and treat the retrosynthesis task as a machine translation problem,
with molecules represented as SMILES strings. For example, Seq2seq Liu et al. (2017) and Transformer
Karpov et al. (2019) simply apply machine translation models to retrosynthesis tasks, resulting in the gener-
ation of ineffective molecules. To remedy the grammatically incorrect output in the previous models, SCROP
embeddings into the SMILES representation to achieve better performance than the vanilla Transformer.
RetroPrime Wang et al. (2021) uses two Transformers to translate products to synthons and synthons to re-
actants, respectively. Although these methods simplify retrosynthetic models, they ignore the rich structural
information in molecular graphs and are poorly interpretable.

Graph-based methods Shi et al. (2020a); Sacha et al. (2021); Han et al. (2022), on the other hand, model the
retrosynthesis task as two steps: i) break the target molecule into incomplete molecules called synthons, and
then ii) complete them into reactants using subgraph units such as atoms or leaving groups. For instance,
methods such as G2Gs Shi et al. (2020a), RetroXpert Yan et al. (2020), and GraphRetro Somnath et al.
(2021) build two independent models to implement the above steps respectively. MEGAN Sacha et al.
(2021) constructs an end-to-end graph generative model while completing synthon with individual atoms
and benzene. Our work is closely related to graph-based models but fundamentally different from the above
methods. First, rather than treating reaction center identification and synthon completion as two completely
independent subtasks like Shi et al. (2020a); Yan et al. (2020); Somnath et al. (2021), our work integrates
these two subtasks into an end-to-end framework. Second, compared to the high prediction complexity of
completing synthon with small units Sacha et al. (2021), adding motifs to synthons can greatly reduce the
length of the prediction sequence. It is worth noting that motifs are distinct from leaving group proposed
by Somnath et al. (2021) and the differences are discussed in subsection 3.2.

3 Proposed method

In this section, we first describe the construction of the transformation path, and then detail our proposed
model MARS.

3.1 Notations

In this work, molecules are represented as graph G = (V, E) with n atoms and m bonds, where V is the set
of atoms (nodes) and E is the set of bonds (edges). Each atom u has a feature vector xu indicating its atom
type, degree, chiral tag, the number of hydrogen and so on. Similarly, each bond (u, v) has a feature vector
xuv indicating bond type, stereo, aromaticity and so on. All features are computed by the RDKit Landrum
et al. (2016) package. For convenience, an index is assigned to each bond and atom, where the bond index
is its index given by RDKit, and the atom index is its index given by RDKit plus m.
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Figure 1: Reactants generation procedure of the proposed MARS. Edit and AddingMotif indicate graph
transformation actions, where the Edit phase describes bond and atom changes from product to synthons
and plays the role of reaction center identification while AddingMotif phase conducts synthon completion
by adding proper motifs to synthons. Input molecular graphs are encoded by the Graph Neural Network
(GNN), and the Recurrent Neural Network (RNN) predicts graph transformation operations sequentially.
In Edit phase, the RNN predicts a sequence of Edit operations until the FinishEdit which indicates the
end of Edit phase as well as the start of AddingMotif phase. In AddingMotif phase, the RNN adds motifs
sequentially until no attachment atoms (highlighted in pink) remained. In the above example, the first Edit
operation applies to the S=O bond, and the new bond type is None which indicates removing the bond.
For the AddingMotif operation, the interface-atom (green) in the motif and the attachment atom in the
synthon/intermediate represents the same atom and are merged into a single atom when attaching the motif
to the synthon/intermediate.

In addition, each bond has a 4-dimensional one-hot vector rb representing its bond type, including none,
single, double and triple bonds, respectively. All bonds and atoms have a label si ∈ {0, 1} indicating whether
they belong to the reaction center.

3.2 Transformation Path Construction

In MARS, we formulate the retrosynthesis prediction as a graph generation problem. Specifically, our MARS
involves predicting a sequence of graph editing actions that transform a given product into its corresponding
reactants. To achieve this, we pre-construct a transformation path for each product that consist of an Edit
phase and an AddingMotif phase (Fig. 1). The Edit phase plays the role in identifying reaction center and
describing the bond and atom changes from the product to synthons. The AddingMotif phase, on the other
hand, constructs synthon completion by adding appropriate pre-defined motifs to synthons. In particular, we
introduce a hierarchical structure to represent the connection between synthons and motifs (Fig. 2b), named
junction tree Jin et al. (2018), which provides an efficient way to create AddingMotif sequences. To integrate
Edit and AddingMotif actions into a complete transformation path, we define four graph transformation
tokens: Start, Edit, FinishEdit, and AddingMotif. Except for auxiliary actions Start and FinishEdit, each
token in the transformation path contains three parts: edit action π, edit object o, and edit state τ . We
then elaborate the representation of the reaction center in the Edit sequence, motif extraction, and junction
tree construction.
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Table 1: notation
Notation Short Explanation
G∗ Molecular graph
V Set of atoms
E Set of bonds
Z Motif vocabulary and motif.
aj Attachment atom j.
qj Interface-atom j.
πt Graph editing action at t step.
ot Edit object at t step.
τt Edit state at t step.
si Editing score of edit object i.
ut The output vector of GRU at t step.
ψt The vector derived from molecular graph embedding and the

output of GRU at t step.
σ∗(·) Linear layer of neural networks with any nonlinear activation.
f∗(·) Linear layer of neural networks with any nonlinear activation, mapping entities to vectors.
h∗ Embedding vector.
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Figure 2: (a) The conversion of products to reactants. The bond b marked pink represents the reaction
center, while the atoms a1 and a2 are attachment atoms; (b) The junction tree constructed by synthons and
motifs z. The atoms of the same color represent connected attachment atom and interface atom q, which
are the same atom in reactant. The arrows represent the parent node pointing to the child node. After
connecting synthons with z2, the interface atom q3 becomes the attachment atom a3; (c) The input and
target transformation paths for training RNN, constructed according to (a) and (b).

3.2.1 Edit Sequence Construction

The Edit phase of our MARS involves two types of edits: bond edit and atom edit. Bond edit is the process
of adding or removing a bond or changing the bond type between two heavy atoms, while atom edit is
the process of changing the number of hydrogen or charge of an atom. These edits are applied to a target
molecule to obtain synthons, and we refer to the atoms at both ends of the changed bond, as well as the
atoms with changed hydrogen or charges as attachment atoms. This is because we need to attach a motif
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to every attachment atom to complete synthons. The reaction center of the target molecule can be encoded
as an Edit sequence, where each Edit token in the sequence is a tuple of (edit action, edit object, edit state).
For example, in Fig. 2a, the bond marked in pink is the reaction center of the given product and the Edit
tuple is denoted as (Edit, b, none), where b is the bond index and none describes the new bond type which
indicates removing the bond.

Once we obtain synthons resulting from the Edit operations, we can add motifs to synthons to generate
reactants. AddingMotif token represents adding a motif from the vocabulary and attaching the motif to a
specific attachment. A motif can contains one or more attachments. We add motifs sequentially until all
attachments are properly processed.

3.2.2 Motif Extraction

Through Edit, a product molecular graph can be decomposed into a group of incomplete subgraphs called
synthons. By combining appropriate motifs and attachments, synthons can be reconstructed into valid
reactant molecular graphs. In other words, motifs are the subgraphs of reactant molecular graphs. The
details of motif extraction are summarised as follows:

• Bonds that connect the synthon in the reactants are broken to obtain a set of subgraphs. Each
subgraph retains the attachment atoms connected to it on the synthon, resulting in a coarse-grained
motif.

• If two connected atoms belong to two rings, the bond between them is broken, resulting in two
independent motifs.

• If one atom belongs to a ring and the other has a degree greater than 1, the bond between them is
broken, resulting in two independent motifs.

Finally, a motif vocabulary Z of size |Z| = 210 is obtained from the USPTO-50K training set Schneider
et al. (2016). It is worth noting that motifs are fundamentally different from leaving groups proposed by
the previous method Somnath et al. (2021). i) A motif is connected to an attachment atom, whereas a
leaving group is combined with a synthon. Since one synthon may contain more than one attachment atom,
and a leaving group may consist of multiple disconnected subgraphs (i.e. motifs). ii) Motif retains the
corresponding attachment atom on synthon, referred to as the interface-atom. We observe that a large
portion of the added leaving groups is single hydrogen, which results in an extremely unbalanced frequency
of leaving groups. iii) A large leaving group may contain multiple rings or large branched chains, which
appear infrequently in the dataset. To reduce redundancy, We cut these into multiple small motifs that are
common in the dataset.

3.2.3 Junction Tree Construction

Based on chemical intuition, it is postulated that reactants can be decomposed into synthons and motifs,
where synthons represent molecule fragments obtained by breaking the bonds in the product, and motifs
represent subgraphs of reactants. to maintain the connection between synthons and motifs, the junction
tree method is introduced, as described in Jin et al. (2018). The junction tree method represents synthons
and motifs as a hierarchical tree structure, where the group of synthons is set as the root node and motifs
are set as children nodes (Fig. 2b). The connected edge between two nodes indicates that they are directly
linked in the reactants, denoted as (attachment, motif, interface-atom). The trees are traversed using depth-
first search (DFS) to preserve the linked edges between nodes, and to obtain the training input and target
AddingMotif paths. The input path consists of each token containing an action AddingMotif and an object
attachment atom, while for target path, the object consists of the motif z and the interface-atom q.

By combining the aforementioned Edit sequence with the AddingMotif path, as well as other auxiliary
actions, the input and target transformation paths corresponding to each product can be obtained.(Fig. 2c).
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3.3 Graph Encoder

Graph neural networks (GNNs) Kipf & Welling (2016); Hamilton et al. (2017); Veličković et al. (2017); Xu
et al. (2018) are a series of neural network architectures specifically designed to acting on graph structure and
properties, updating the representation vectors (i.e. embeddings) of nodes via a message passing mechanism.
In this work, we employ an L-Layer graph transformer network (GTN) Shi et al. (2020c) to encode the latent
representation of molecular graph. GTN utilizes improved multi-head self-attention modules in vanilla
transformer Vaswani et al. (2017) to aggregate both atom and bond features. In the head c of layer l, the
query q(l)

c,u, keyword k(l)
c,u, and value v(l)

c,u vectors correspond to the atom representation vector h(l)
u , which are

transformed by the query, keyword, and value matrices. The GTN integrates bond features xuv, calculates
an attention score to the bond (u, v), and updates the representation of atom u by message passing scheme
as follows:

hc,uv = Wc,exuv + bc,e,

α(l)
c,uv = ⟨q(l)

c,u,k
(l)
c,v + hc,uv⟩∑

v∈N (u) ⟨q(l)
c,u,k

(l)
c,v + hc,uv⟩

,

ĥ(l+1)
u =

∥∥∥C

c=1
[

∑
v∈N (u)

α(l)
c,uv(v(l)

c,v + hc,uv)],

(1)

where ⟨q,k⟩ = exp( qT k√
d

), d is the dimension of each head, N (u) denotes the neighbors of atom u and ∥ is
the concatenation operation. Then the gated residual connection is introduced to avoid over-smoothing.

Finally, the atom representations {hu ∈ RD|u ∈ G} are gained. The self-loop representations of atoms and
bond representations are expressed as

huu = MLPbond(hu ∥ hu), (2)
huv = MLPbond(hu ∥ hv), (3)

where MLP∗(·) denotes a Multilayer Perceptron with a Mish Misra (2019) activation function.

For convenience, we use the same notation ei ∈ {huv}v∈N (u)
⋃

{u} to represent both the bond and atom
representations, where i is the index of the bond or atom. The final graph representations hG ∈ RD is
defined by aggregating the whole atom representations using a readout function (i.e. mean, max, sum and
attention pooling) as follows:

hG = Readout({hu|u ∈ G}). (4)

Similarly, the graph representation of synthons hsyn ∈ RD can also be computed.

3.4 Autoregressive Model

Motivated by previous works Popova et al. (2019); Shi et al. (2020b), the task of retrosynthesis prediction is
formulated as an autoregressive conditional molecule generation problem. In this method, the autoregressive
model generates a new graph structure Gt based on the incomplete graph of the previous steps, until the
reactant graph GR is finally obtained. This general process can be defined as a jointly conditional likelihood
function:

P(GR|GP ) =
N∏

t=1
P(Gt|G0, . . . , Gt−1) =

N∏
t=1

P(Gt|G<t), (5)

where N is the length of generated sequence and G0 is the given product graph GP . It is important to
note that the intermediate graph structure Gt is not directly generated by the model. Instead, the model
generates a graph editing action π, an edit object o (i.e. bond, atom, or motif), and its edit state τ (e.g. new
bond type or interface-atom) from the historical graph editing sequence. These are then applied to Gt−1 to
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obtain a new graph structure. Therefore, given the historical edited objects, edited states, and incomplete
graphs, the likelihood in Eq. (5) can be modified as:

P(GR) =
N∏

t=1
P(πt, ot, τt|o<t, τ<t, G<t). (6)

We utilize a recurrent neural network (RNN) to model the likelihood function Eq. (6), where the object,
state and incomplete graph of the previous step are encoded to decode the D-dimension output ut ∈ RD. To
incorporate the global topological information of GP in generation process, we concatenate hG and ut for
subsequent prediction. Specifically, the Gated Recurrent Unit Chung et al. (2014); Li et al. (2015b), denoted
as GRU(·), is employed as follows:

ut = GRU(inputt), where input0 = 0, (7)

where inputt ∈ RD is the input embedding of GRU at step t. The hidden state of GRU is initialized by
σG(hG), where σ∗(·) is a linear layer without nonlinear activation. The resulting vector ut is then combined
with hG using the concatenation operation as:

ψt = hG ∥ ut, (8)

The generation process starts with the Start action, and at each step t, we generate graph editing action π̂t

by follow:
π̂t = softmax(MLPact(ψt)). (9)

Edit Phase When the predicted action is Edit, the process enters the Edit phase. At step t, the model
firstly assigns an editing score ŝi to each bond and atom, indicating the likelihood that the bond or atom is
a suitable candidate for editing. The editing score is computed as follows:

ŝt
i = sigmoid(MLPtarget(ψt ∥ σe(ei))). (10)

The atom or bond with the largest editing score is selected as the edit object, and the atom or atoms at
both ends of the selected bond are set as attachment atoms. The model then predicts the new bond type r̂b

for the edit object as:

r̂t
b = softmax(MLPtype(ψt ∥ σe(earg max

i

(ŝt
i
)))). (11)

The synthon structure is then modified by applying the edit object and its new bond type, and the resulting
structure is embedded using GTN(·) to obtain the synthon embedding hsyn

t . Finally, inputt is updated by
synthon embedding, edit object and its new bond type:

inputt+1 = fπ(π̂t) + σe(earg max
i

(ŝt
i
)) + fb(r̂t

b) + ht
syn, (12)

where f∗(·) is a linear layer without activation functions, mapping entities to vectors. The model iterates
this process to generate an Edit sequence that covers all reaction centers. When the model predictes the
action to be a FinishEdit, the Edit phase ends and AddingMotif phase begins. The synthon structure is
fixed and its embedding is denoted as hsyn. Assume that after N1 Edit operations, a total of N2 attachment
atoms {a1, ..., aN2} are obtained, where aj is the atom index in target molecular graph GP . Then the set of
attachment atoms is sorted, and inputt+1 is updated as:

inputt+1 = fπ(π̂t) + σatt(em+at) + hsyn. (13)

AddingMotif Phase In this phase, the model proceeds by traversing all the attachment atoms {a1, ..., aN2}
sequentially and assigning a appropriate motif to each attachment. Motif prediction is treated as a multi-
classification task on the motif vocabulary Z. Once the predicted motif ẑt is obtained, the model determines
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which interface-atom on the motif corresponds to the attachment atom at. To achieve this, the model
predicts both the motif ẑt and interface-atom index q̂t as follows:

ẑt = softmax(MLPmotif (ψt)), (14)
q̂t = softmax(MLPinterface(ψt ∥ fz(ẑt))). (15)

If the predicted motif ẑt contains only one interface-atom, the input representation inputt+1 is computed
as Eq. (13). However, if ẑt contains multiple interface-atoms, and q̂t is the inputt+1 is updated as follows:

inputt+1 = fπ(π̂t) + fz(ẑt) + finterface(q̂t) + hsyn. (16)

It is worth noting that there is no need to incorporate an action to indicate the end of the process. The
generation process continues until all attachments on the synthons and added motifs have been traversed.
Finally, the model generates a transformation path, which is applied to the product to obtain reactants.

3.5 Training and Inference

Training MARS is trained to predict target transformation paths given training transformation paths. The
model is optimized using cross-entropy loss Lc for predicting new types, motifs, and interface-atom indexes,
and binary cross-entropy loss Lb for predicting reaction centers. The overall loss function for MARS is the
summation of these losses over all the steps in the Edit and AddingMotif sequences. Specifically, for the
Edit phase, the loss function includes both the binary cross-entropy loss for the reaction center prediction
and the cross-entropy loss for predicting the reaction type. For the AddingMotif phase, the loss function
includes the cross-entropy losses for predicting the motif and interface-atom indexes. Thus, the overall loss
function for MARS is summarized as:

L =
N1+N2∑

t=0
Lc(π̂t, πt) +

N1∑
t=0

[
n+m−1∑

i=0
Lb(ŝt

i, s
t
i) + Lc(r̂t

b, r
t
b)

]
+

N2∑
t=0

[
Lc(ẑt, zt) + Lc(q̂t, qt)

]
, (17)

where N1 and N2 denote the lengths of the Edit and AddingMotif sequences respectively. To reduce conver-
gence difficulties, we adopt an efficient strategy teacher-forcing Williams & Zipser (1989) to train our model.
When training model, the strategy utilizes ground truth as the input for the model instead of directly uses
the output from the last time step as the input at current time step.

Inference During inference, the beam search algorithm Tillmann & Ney (2003) with hyperparameter k is
used to rank the predictions. At each time step, the Top-k best results are selected as the input at next
time step based on the log-likelihood score function. In other words, the process can be described as the
construction of a search tree, in which the leaf nodes with the highest scores are expanded with their children
nodes while the other leaf nodes are dropped. It is important to note that atom-mapping in the testing set
is unnecessary in the inference phase.

4 Results

4.1 Experiment Setup

4.1.1 Data

We evaluate the effectiveness of our proposed approach on a widely used benchmark dataset called USPTO-
50K Schneider et al. (2016). This dataset includes a collection of 50K reactions from the US patent literature,
which are categorized into ten different classes. We follow the same training/validation/testing splits in an
8:1:1 ratio, as previously established in Coley et al. (2017); Dai et al. (2019). Notably, the USPTO dataset
has been reported to contain a shortcut in 75% of the product molecules, where the atom of atom-mapping
"1" is part of the reaction center. To address this issue, we eliminate these shortcuts by canonicalizing
product SMILES and reassigning atom-mapping to reactant atoms.
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Algorithm 1: Framework of MARS.
Input: The SMILES string of product.
Output: The SMILES string of reactants.

1 Convert the SMILES string of the product to a molecular graph GP , and compute atom feature {xu} and bond feature
{xuv} by using RDKit;

2 {ei},hG ← GraphEncoder({hu|u ∈ GP });
3 Initialize π0 ← Start, t← 0, hidden state of GRU(·)← σG(hG), input0 ← 0;
4 while πt is not FinishEdit do
5 ut ← GRU(inputt);
6 ψt ← hG∥ut;
7 π̂t ← softmax(MLPact(ψt));
8 ŝi ← sigmoid(MLPtarget(ψt ∥ σe(ei)));
9 r̂b ← softmax(MLPtype(ψt ∥ σe(earg max

i

(ŝi))));

10 inputt+1 ← fπ(π̂t) + σe(earg max
i

(ŝi)) + fb(r̂b) + hsyn
t ;

11 t← t + 1
12 hsyn ← GraphEncoder({hu|u ∈ Gsyn});
13 The set of attachment atoms is sorted according to their atom index in GP ;
14 inputt = fπ(π̂t) + σatt(a1) + hsyn;
15 foreach set of attachment atoms {a} do
16 ut ← GRU(inputt);
17 ψt ← hG∥ut;
18 π̂t ← softmax(MLPact(ψt)).;
19 ẑt ← softmax(MLPmotif (ψt));
20 q̂t ← softmax(MLPinterface(ψt ∥ fz(ẑt)));
21 if motif ẑt has only one interface-atom then
22 inputt+1 ← fπ(π̂t) + σatt(eat ) + hsyn;
23 else
24 inputt+1 = fπ(π̂t) + fz(ẑt) + finterface(q̂t) + hsyn;
25 t← t + 1
26 Convert the reactant molecular graph to SMILES string;

4.1.2 Evaluation

We employ a standard evaluation metric known as Top-k accuracy. This metric is calculated as the percentage
of ground truth reactants that appear in the Top-k suggestions provided by our model. Specifically, the
accuracy is determined by comparing the predicted reactants with the ground truth reactants, both of which
are represented in canonical SMILES format.

4.1.3 Implementation Details

We use PyTorch Paszke et al. (2019) and Pytorch Geometric Fey & Lenssen (2019) library to implement our
model. For Graph Transformer, we stack six eight-head self-attention modules, and the attention pooling
Li et al. (2015a) is used as the readout function. The GRU network is implemented with three layers. All
embedding size D in our model is set to 512. In all experiments, we train on USPTO-50K for 100 epochs,
using a batch size of 32 and the Adam Kingma & Ba (2014) optimizer with initial learning rate of 0.0003.
The learning rate is adjusted with the strategy of cosine annealing learning rate with restart Loshchilov &
Hutter (2016), and the restart cycle is set to 20 epochs. The training on USPTO-50K takes approximately
17h on a single NVIDIA Tesla V100 GPU. The beam size k is set to 10 in the inference phase.

4.1.4 Baseline

We take three template-based and eight template-free methods as our competitors.

For template-based models,

• RetroSim Coley et al. (2017) selects reaction centers based on Morgan fingerprint similarity between
target molecules and known precedents.
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• NeuralSym Segler & Waller (2017) combines a fully-connect layer and a deep highway network to
learn knowledge of potential correlations between molecular functional groups and reactions.

• GLN Dai et al. (2019) models the joint probability of single-step retrosynthesis to select templates
and generate reactants.

Template-free models can be divided into four sequence-based models and four graph-based models. For
sequence-based models,

• SCROP Zheng et al. (2019) combines an extra Transformer to correct predicted SMILES strings.

• LV-Transformer Chen et al. (2019) uses a pre-training strategy and introduces latent variables to
improve prediction diversity.

• RetroPrime Wang et al. (2021) uses two Transformers to model reaction center identification and
synthons completion, respectively.

• DualTF Sun et al. (2021a) unifies sequence-based and graph-based models using energy functions
and uses an extra order model to help inference.

For graph-based models,

• G2Gs Shi et al. (2020a) employs a graph neural network to select reaction centers and generates
reactants using a variational autoencoder.

• RetroXpert Yan et al. (2020) leverages a graph neural network to predict disconnections and
regards reactant generation as a sequence translation task.

• GraphRetro Somnath et al. (2021) determines the synthon through an edit prediction model and
then performs a single full-connected network to complete the synthons by using predefined leaving
groups.

• MEGAN Sacha et al. (2021) defines five graph editing actions, using two stacked graph attention
networks to perform retrosynthesis predictions.

All results are derived from their original reports, except for NeuralSym Segler & Waller (2017) reported by
GLN Dai et al. (2019), and corrected results reported by RetroXpert Yan et al. (2020) on their website 2.

4.2 Overall Performance

We present the Top-k accuracy in Table 2, where N ranges from {1, 3, 5, 10}. We evaluate both the reaction
type unknown and reaction type known.

4.2.1 Reaction Type Unknown

When reaction type is unknown, our model surpasses both template-based and template-free models. Our
model outperforms GraphRetro by 0.9% and MEGAN by 6.5% in terms of Top-1 accuracy. Moreover,
for larger k, our model still enjoys high performance, which is over 8.1% than GraphRetro and 2.4% than
MEGAN. We notice that both our model and MEGAN outperform two-stage models when n ≥ 3. Benefiting
from an end-to-end model, our model is able to explore the underlying relationship between reaction centers
and synthon completion, rather than relying on two separate modules with different optimization objectives.
Furthermore, our model takes advantage of motifs that are larger than individual atoms and smaller than
leaving groups, allowing it to avoid the high complexity of long prediction sequences without sacrificing
flexibility.

2https://github.com/uta-smile/RetroXpert
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Table 2: Top-k accuracy for retrosynthesis prediction on USPTO-50K.

Methods Top-k Accuracy (%)
Reaction Type Known Reaction Type Unknown
1 3 5 10 1 3 5 10

Template-based
RetroSim 52.9 73.8 81.2 88.1 37.3 54.7 63.3 74.1
NeuralSym 55.3 76 81.4 85.1 44.4 65.3 72.4 78.9
GLN 64.2 79.1 85.2 90.0 52.5 69 75.6 83.7

Sequence-based

SCROP 59.0 74.8 78.1 81.1 43.7 60.0 65.2 68.7
LV-Transformer - - - - 40.5 65.1 72.8 79.4
RetroPrime 64.8 81.6 85.0 86.9 51.4 70.8 74.0 76.1
DualTF 65.7 81.9 84.7 85.9 53.6 70.7 74.6 77.0

Graph-based

G2Gs 61.0 81.3 86.0 88.7 48.9 67.6 72.5 75.5
RetroXpert 62.1 75.8 78.5 80.9 50.4 61.1 62.3 63.4
MEGAN 60.7 82.0 87.5 91.6 48.1 70.7 78.4 86.1
GraphRetro 63.9 81.5 85.2 88.1 53.7 68.3 72.2 75.5
Ours 66.2 85.8 90.2 92.9 54.6 76.4 83.3 88.5

4.2.2 Reaction Type Known

When reaction type is given, our model outperforms MEGAN and GraphRetro by 5.5% and 2.3% in Top-1
accuracy. For larger k, our model also achieves state-of-the-art Top-k accuracy of 85.8%, 90.2% and 92.9%,
which is over 4.3% higher than GraphRetro. Even though template-based methods can exploit the reaction
type to narrow the template space and improve the accuracy, they also suffer from poor generalization. In
contrast, our model can improve accuracy while still maintaining high generalization performance.
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Figure 3: Comparison of the Top-10 accuracy across the USPTO-50K reaction types. We report the results
of GLN and GraphRetro with beam size of 10. The labels on the x-axis represent reaction types and their
proportion in USPTO-50K dataset.

4.2.3 Reaction Type Performance

The performance of MARS for each reaction type is investigated in Fig. 3. The results show that MARS
achieves competitive performance in eight categories compared with the template-based method GLN. Ad-
ditionally, MARS outperforms the baseline methods on reaction types with fewer samples, such as class 5
and 9. This suggests that MARS does not suffer from overfitting even on an imbalanced dataset. Notably,
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the reaction type 4 is heterocycle formation, which contains multiple reaction centers. GraphRetro only
considered the samples with a single reaction center, resulting in inaccurate predictions for such samples.
Our model requires no additional chemical knowledge and reaches the Top-10 accuracy of 54.9%, the same
as GLN.

4.3 Parameter Analysis
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Figure 4: (a). Performance comparison of different graph encoders. (b). Performance comparison of different
representation readout functions. (c). Performance comparison of different dimension sizes.

4.3.1 Effects of Graph Encoder

The graph encoder is responsible for learning the representations of nodes by aggregating their neighbors’
information, which is used to capture the topological information of molecular graphs. We investigate the
effect of different graph encoders on the performance of MARS, including GCN Kipf & Welling (2016), GAT
Veličković et al. (2017), GraphSAGE Hamilton et al. (2017) and GTN Shi et al. (2020c). As shown in Fig.
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4(a), GTN outperforms the other graph encoders. This is because the self-attention module in GTN can
better fuse bond features into the atom representations, leading to more effective learning of the molecular
graph.

4.3.2 Effects of Representation Readout Function

The representation readout function is utilized to aggregate all atom representations to obtain the molec-
ular graph representation. We compare the effects of several readout functions on performance of MARS,
including max, sum, mean and attention pooling. Fig. 4(b) shows the Top-k accuracy of different readout
functions. We find that attention pooling achieves the best performance for learning the representation of
molecular graphs. This is because attention pooling can better extract information from atom representations
that is beneficial to downstream tasks.

4.3.3 Effects of Dimension Size

Embedding size K has a significant impact on performance. As shown in Figure 4(c), we test the performance
of MARS when K takes on values of 64, 128, 256, 512, 1024. We find that the Top-1 accuracy is optimal
when the embedding size is 512, and the performance does not increase further when the embedding size is
1024. For larger k, the accuracy of MARS is not sensitive to K. This demonstrates that 512 dimensions are
sufficient for our model to perform optimally.

4.4 Ablation Study

To gain insight into the importance of synthon embedding, we conduct an ablation study by removing it
in MARS. As shown in Table 3, when the synthon embedding is not included, the top-1 accuracy drops by
4.9% if the reaction type is given and 10.5% otherwise. This demonstrates that synthon embedding plays
an indispensable role in the generation process. We observe that synthon structure information helps the
model determine FinishEdit action, while the model without synthon embedding suffers from the problem
of repeatedly predicting edit objects in Edit phase.

In addition, we also examined the importance of bond features by removing them from MARS and testing
the performance of the model. The Top-k accuracy of MARS without the bond feature is shown in Table 3.
The Top-1 accuracy of MARS-w/o B is 2.8% lower than the MARS when the reaction type is unknown, and
2.2% lower when the reaction type is known. This demonstrates that the use of bond features enables MARS
to better learn molecular representations, which can improve the accuracy of downstream predictions.

Table 3: Top-k accuracy of synthon embedding ablation study. MAR-w/o S indicates MAR without synthon
embedding. MAR-w/o B indicates MAR without bond feature.

Method Top-k Accuracy (%)
Reaction Type Known Reaction Type Unknown
1 3 5 10 1 3 5 10

MARS-w/o S 61.3 73.5 76.3 81.8 44.1 58.5 63.0 69.3
MARS-w/o B 64.0 84.4 89.3 92.4 51.8 74.6 81.5 86.8
MARS 66.2 85.6 90.2 92.9 54.6 76.4 83.3 88.5

4.5 Prediction Visualization

To provide a more comprehensive understanding of the prediction performance of our model, we visualize
four ground truth reactants and Top-1 predicted reactants from USPTO-50K test set in Fig. 5. In Fig.
5a and 5b, our model correctly predicts the reactants with accurate identification of the reaction centers
and addition of appropriate motifs. Notably, our model is insensitive to the size of motifs, indicating its
ability to assign the correct motifs for the synthons. Compared to methods that add atoms or benzene rings
one by one, our model’s predictions demonstrate high accuracy and chemical rationality. Fig. 5c shows a
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failure case in which the reaction center is correctly predicted but motifs are different from the ground truth.
However, the predicted reactants are chemically reasonable, since they can be more conveniently obtained
in some cases. In Fig. 5d, our model predicts another disconnection site and adds corresponding motifs
based on the predicted synthons. The predictions are also correct (checked by chemists), as the prediction
and ground truth differ only in the disconnection order from multi-step retrosynthesis perspective. These
examples illustrate that our model can inherently learn underlying reaction rules and provide predictions
with high chemical rationality.
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Figure 5: Example Predictions. Red indicates the correct reaction centers while yellow represents the error
one predicted by our model, and blue indicates the added motifs. (a)(b). Examples of successful predictions
by our model. (c). Correctly predicted reaction center but added wrong motif. (d). Incorrectly predicted
reaction center.

5 Conclusion

Motivated by the classical retrosynthesis theory proposed by Nobel Prize laureate E.J.Corey, we have pro-
posed a graph generative model MARS for retrosynthetic analysis. Our model benefits from the flexibility
and low prediction complexity of motifs. The end-to-end architecture enables our model to explore latent
relationships between reaction centers and motifs. Moreover, the motifs are functional groups in chemistry.
It is very reasonable to treat them as elementary entities in retrosynthetic prediction task. All these account
for why the high accuracy and excellent generalization performance are obtained by our model. In the future,
pre-training a model to learn more reasonable motifs from existing chemical compounds will be tried.

Our work and the existing retrosynthesis methods share the limitation that lacking a more reasonable
evaluation metric. Our work is capable of obtaining multiple chemically plausible reactants to synthesize
products, but existing evaluation metrics only consider a given reaction.
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