
Under review as a conference paper at ICLR 2024

ANALYSIS OF TASK TRANSFERABILITY IN
LARGE PRE-TRAINED CLASSIFIERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Transfer learning is a cornerstone of modern machine learning, enabling models
to transfer the knowledge acquired from a source task to downstream target tasks
with minimal fine-tuning. However, the relationship between the source task
performance and the downstream target task performance (i.e., transferability)
is poorly understood. In this work, we rigorously analyze the transferability of
large pre-trained models on downstream classification tasks after linear fine-tuning.
We use a novel Task Transfer Analysis approach that transforms the distribution
(and classifier) of the source task to produce a new distribution (and classifier)
similar to that of the target task. Using this, we propose an upper bound on
transferability composed of the Wasserstein distance between the transformed
source and the target distributions, the conditional entropy between the label
distributions of the two tasks, and the weighted loss of the source classifier on the
source task. We propose an optimization problem that minimizes the proposed
bound to estimate transferability. Using state-of-the-art pre-trained models, we
show that the proposed upper bound accurately estimates transferability on various
datasets and demonstrate the importance of relatedness between the source and
target tasks for achieving high transferability.

1 INTRODUCTION

Transfer learning (Pan & Yang, 2010; Weiss et al., 2016) is a powerful tool for developing high-
performance machine learning models in scenarios when sufficient labeled data is unavailable or when
training large models is computationally challenging. Since large pre-trained models are becoming
the cornerstone of machine learning (Radford et al., 2021; Chen et al., 2020; 2021; Devlin et al.,
2019), understanding how these models improve the performance of a downstream task is crucial.
While the large pre-trained models achieve high performance even in the zero-shot inference setting
(Radford et al., 2021), their performance can be improved by fine-tuning them on downstream tasks.
However, due to the size of these models, fine-tuning all the layers of the models is computationally
challenging and expensive. On the other hand, fine-tuning/learning a linear layer on top of the
representations from these models is both efficient and effective and is thus, the focus of our work.

While transfer learning has achieved remarkable success the relationship between the performance of
the model on the source and the target task is not well understood. Moreover, previous analytical
works such as those based on domain adaptation (Ben-David et al., 2007; 2010; Shen et al., 2018;
Mansour et al., 2009; Le et al., 2021; Mehra et al., 2021; 2022) are not applicable to transfer learning
since both the feature and label sets can change between the source and target tasks in this setting.
Recently, Tran et al. (2019) showed that when only label sets change between the source and target
tasks, the performance gap between the two tasks can be bounded by conditional entropy between
the label sets. However, their analysis is in a limited setting and is not applicable to a general
cross-domain (different features/priors) cross-task (different label sets) setting. Another recent line of
work, score-based transferability estimation (SbTE) (You et al., 2021; Tan et al., 2021; Huang et al.,
2022; Nguyen et al., 2020) focuses on developing scores that can be computed more efficiently than
fine-tuning and are correlated with transferability. While these scores are useful for selecting the
pretrained model that can produce the best transfer of performance on a specific downstream task,
they give limited insights into how transferability relates to the performance of the source task.
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Thus, we propose a novel Task Transfer Analysis approach to analyze transferability in a general
setting in relation to the performance of the source task. Our approach works by transforming the
source distribution (and the classifier of the source task) by transforming the class-prior distribution,
label set, and feature space to obtain a new distribution (and classifier) that is similar to that of the
target task (Fig. 1). Under this transformation model, we first show that the performance of the
transformed source relates directly to the performance of the original source task (Theorem 1). Next,
since the distribution of the target task may not be a transformation of the source task, there could
still be a performance difference between the transformed source and the target distribution. We
use the Wasserstein distance (Peyré et al., 2019; Villani, 2009) between the transformed source and
target distributions to explain the residual performance difference. This leads to our Theorem 2,
which relates transferability to the performance of the transformed source distribution and type-1
Wasserstein distance between the distributions of the target and the transformed source. Using these
we upper bound transferability as a sum of three terms (Theorem 3), namely, re-weighted source loss
(due to a class prior distribution differences between tasks), label mismatch (as conditional entropy
between the label distributions of the tasks) and distribution mismatch (as Wasserstein distance).

To effectively approximate the upper bound on transferability, we propose an optimization problem
to learn the transformations to transform the source task (and classifier) to be similar to that of the
target task. The optimization works by minimizing the proposed upper bound. Using state-of-the-art
(SOTA) pre-trained models with different architectures and trained with various training methods on
computer vision and natural language processing (NLP) tasks, we show that our upper bound closely
predicts actual transferability (Sec. 4.2 and 4.4). Unlike our bound, scores from SbTE methods are
not comparable across tasks. Moreover, SbTE scores are relative measures that are meaningful only
when compared with the scores of different pretrained models on the same task (e.g., a score of 1
for CIFAR100 does not indicate whether transferability is good or bad), whereas our bound is an
absolute measure (e.g., an upper bound of 1 on CIFAR100 implies that cross-entropy loss will be less
than 1, indicating good transferability). Furthermore, when the source and target tasks are related (as
measured by a small Wasserstein distance), their performance is provably similar. This enables us to
accurately estimate the transferability to unseen target tasks that are related to the source task.

Our main contributions are summarized as follows:

• We rigorously analyze transferability for classification tasks. To the best of our knowledge, we
propose the first upper bound on transferability in terms of the performance of the source task,
in a cross-domain cross-task setting.

• We propose and solve a novel optimization for task transfer analysis to estimate transferability.
By relating transferability to the performance of the source task we can estimate transferability
based on the distance of the transformed source to unseen tasks.

• We demonstrate that the prediction from our bound is close to the actual transferability of SOTA
classifiers trained with different architectures and pre-training methods on various datasets.

2 RELATED WORK

Transfer learning: Transfer learning achieves promising results across many areas of machine
learning (Pan & Yang, 2010; Weiss et al., 2016) including NLP (Devlin et al., 2019; Sanh et al., 2020)
and computer vision (Ren et al., 2015; Dai et al., 2016). Recent works have demonstrated that the
transferability of models improves when trained with pretraining methods such as adversarial training
(Salman et al., 2020), self-supervised learning (Chen et al., 2020; Caron et al., 2020; Chen et al.,
2021) and by combining language and image information (Radford et al., 2021). The success of these
is explained in terms of different training methods helping learn an improved feature representation.
However, unlike our work, a rigorous analysis of transferability is not addressed in these works.

Analytical works for learning under distribution shifts: Prior works (Ben-David et al., 2007;
2010; Shen et al., 2018; Mansour et al., 2009; Le et al., 2021; Mehra et al., 2021; 2022) analytically
explained learning under distribution shifts in terms of the distributional divergence between the
marginal distributions and a label mismatch term. However, these results are applicable under
assumptions such as covariate shift or label shift which need not be satisfied by transfer learning
where both the data distribution and the label spaces can be different (see App B for detailed
comparison). Other works (Ben-David & Schuller, 2003; Ruder, 2017; Padmakumar et al., 2022)
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Figure 1: : Overview of our Task Transfer Analysis approach: A series of transformations are
applied to the source distribution PS(z, y) and classifier hS to produce the transformed distribution
PS′′′ and classifier hS′′′ making it comparable to those of a downstream target task. Prior transform
(S → S′) changes the class prior of the source distribution (e.g, an irrelevant Bee class in S now has
smaller prior) followed by label set transform (S′ → S′′) (e.g., to match {Lion, Wolf} with {Cat,
Dog}), followed by feature space transform (S′′ → S′′′) to match the feature distribution PT (z, y).

showed the success of learning in the multi-task setting using task-relatedness. These works showed
that when tasks are weakly related, learning a single model does not perform well for both tasks. Our
analytical results illustrate the same effect of task-relatedness on transferability (Sec. 4.3). Recently,
Tran et al. (2019) proposed an upper bound on transferability in a restrictive setting of the same
features for the source and target task. Our analysis does not make any such assumption.

Score-based transferability estimation (SbTE): These works (Bao et al., 2019; Nguyen et al., 2020;
Huang et al., 2022; You et al., 2021; Tan et al., 2021) use data from the target task to produce a score
correlated with transferability. This score is designed for choosing the best pre-trained model from a
model zoo that should be used for transfer learning to a specific target task without actual fine-tuning.
Tran et al. (2019) proposed the Negative Conditional Entropy (NCE) score that predicts transferability
using the negative conditional entropy between labels of the tasks. Nguyen et al. (2020) proposed the
LEEP score and computed NCE using soft labels for the target task from a pre-trained model. OT-CE
(Tan et al., 2021) combined Wasserstein distance (Alvarez-Melis & Fusi, 2020) and NCE whereas
(Bao et al., 2019; You et al., 2021) estimate likelihood and the marginalized likelihood of labeled
target examples to estimate transferability. While these scores are useful for a practical problem, the
goal of these works is not to derive a tight upper bound on transferability, study the relation between
transferability and the performance on the source task, or understand how relatedness between the
source and target tasks affects transferability (see App. B for detailed comparison).

3 ANALYSIS OF TASK TRANSFERABILITY

Problem setting and notations: Let PS(x, y) and PT (x, y) denote the distributions of the source and
the target tasks, defined on XS×YS and XT ×YT respectively. We assume that the feature spaces are
common (XS = XT = X ) such as RGB images, but the source label set YS = {1, 2, · · · ,KS} and
the target label set YT = {1, 2, · · · ,KT } can be entirely different to allow for arbitrary (unknown)
downstream tasks. We assume the number of source classes (KS) is greater than or equal to the
number of target classes (KT ). In the transfer learning setting, an encoder g : X → Z is first
(pre)trained with source data with or without the source labels depending on the training method
(e.g., supervised vs. self-supervised). We denote the resultant push-forward distributions of S and T
on the encoder output space as PS(z, y) and PT (z, y). With a fixed representation g, a linear softmax
classifier h(z) : Z → ∆ that outputs a probability vector is learned for the source (hS) and for the
target (hT ) separately, where ∆S/T is a KS/KT simplex for S/T , respectively. The classifiers hS

and hT are obtained by minhS∈H E(z,y)∈PS
[ℓ(hS(z; g), y)] and minhT∈H E(z,y)∈PT

[ℓ(hT (z; g), y)]
where H is the set of linear classifiers (parametrized by w) and ℓ(h(z), y) = − log(h(z)y) =

−wT
y z + log

∑
i e

wT
i z is the cross-entropy loss. Proofs for Sec. 3 are in App. A.

3.1 THE TASK TRANSFER ANALYSIS MODEL FOR ANALYZING TRANSFERABILITY

The source and the target tasks share the same encoder but do not share label sets or data distributions.
Therefore, to relate the two tasks, we propose a chain of three simple transformations: 1) prior
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transformation (from S to S′), 2) label transformation (from S′ to S′′), and 3) feature transformation
(from S′′ to S′′′). The S′, S′′, S′′′ are intermediate domain names after each of the transformations
are applied. The corresponding classifier in each domain is denoted by hS′ , hS′′ , and hS′′′ . This is
illustrated in Fig. 1. The distribution after the transform PS′′′ has the same feature ZS′′′ = ZT = Z
and label sets YS′′′ = YT as the target task T , and consequently, the loss of the transformed classifier
hS′′′ can be directly related to the loss of the target classifier hT .

3.1.1 PRIOR TRANSFORMATION (S → S′)

In transfer learning, it is common that the source task has more classes than the target task (|YS | ≥
|YT |) and it is highly likely that many of the source classes are irrelevant for transfer to the target
classes. For e.g., while transferring from Imagenet to CIFAR10, only a small portion of the source
classes are relevant to the target classes. The prior transform accounts for the relative importance of
the source classes. This is illustrated in Fig. 1 where changing the class prior of S reduces the prior
of the Bee class and increases the priors of Wolf and Lion classes (shown by the changed size of
classes Wolf and Lion in S′). While transforming the prior of S, we keep the conditional distribution
and the classifier the same i.e., PS′(z|y) = PS(z|y) and hS′(z) = hS(z). Lemma 1 shows that the
expected loss of the classifier hS in S′ is a re-weighted version of the loss on the source domain S.

Lemma 1. Let C :=
[
PS′ (y)
PS(y)

]|YS |

y=1
be a vector of probability ratios and the classifier hS′(z) := hS(z),

then we have EPS′ (z,y)[ℓ(hS′(z), y)] = EPS(z,y)[C(y)ℓ(hS(z), y)], for any loss function ℓ.

3.1.2 LABEL TRANSFORMATION (S′ → S′′)

Next, we apply a label transform so that the label set of the new domain S′′ matches the label set of
the target domain. To change the label set of the domain S′, we specify the conditional distribution
Bij := P (yS′′ = i|yS′ = j) (Bij ∈ [0, 1], ∀ i, j,

∑
i Bij = 1, ∀j). The label yS′′ of an example

from the domain S′′ can be obtained via BP (yS′). This generative process doesn’t require the
feature, i.e., PS′′(yS′′ |yS′ , z) = PS′′(yS′′ |yS′). B with sparse entries (i.e., only one entry of a
column is 1) models a deterministic map from YS to YT ; B with dense entries models a weaker
association. This process is illustrated in Fig. 1 which shows the map from {Bee, Wolf, Lion} ⊂ YS′

to {Dog, Cat} ⊂ YT after applying the transform. Under this generative model, a reasonable choice
of classifier for the new domain S′′ is hS′′(z) = BhS′(z). (Note that h outputs a probability vector.)
We show the conditions under which this classifier is optimal in Corollary 2 in App. A. Lemma 2
shows that the expected loss in the new domain S′′ depends on the loss of the domain S′ and the
conditional entropy between the label sets of the tasks S′ and S′′.

Lemma 2. Let B be a |YS | × |YT | matrix with Bij = P (yS′′ = i|yS′ = j) and hS′′(z) :=
BhS′(z) and ℓ be the cross-entropy loss. Then, EPS′′ (z,y)[ℓ(hS′′(z), y)] ≤ EPS′ (z,y)[ℓ(hS′(z), y)] +
H(YS′′ |YS′), where H(YS′′ |YS′) := [−

∑
yS′∈YS′

∑
yS′′∈YS′′ PS′(yS′)ByS′′ ,yS′ log(ByS′′ ,yS′ )]

denotes the conditional entropy.

3.1.3 FEATURE TRANSFORMATION (S′′ → S′′′)

The final step involves changing the feature space of the distribution S′′. We use an invertible linear
transform via A of the distribution in S′′ to obtain the new distribution S′′′. After the transform, the
classifier associated with the new domain S′′′ is hS′′′(z) = hS′′(A−1(z)). This is illustrated in Fig. 1
after feature transform using A. Lemma 3 shows that a linear transform of the space and classifier
does not incur any additional loss. In Corollary 3 in App. A we show the optimality of hS′′ implies
optimality of hS′′′ .

Lemma 3. Let A : Z → Z be an invertible linear map of features and the classifier hS′′′(zS′′′) :=
hS′′(A−1(zS′′′)). Then EPS′′′ (z,y)[ℓ(hS′′′(z), y)] = EPS′′ (z,y)[ℓ(hS′′(z), y)] for any loss ℓ.

3.1.4 THREE TRANSFORMATIONS COMBINED

Combining Lemmas 1, 2, and 3 corresponding to the three transformations, we have the following.
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Theorem 1. Under the assumptions of Lemmas 1, 2, and 3 we have

EPS′′′ (z,y)[ℓ(hS′′′(z), y)] ≤ EPS(z,y)[C(y)ℓ(hS(z), y)]︸ ︷︷ ︸
Re-weighted source loss

+H(YS′′ |YS′)︸ ︷︷ ︸
Label mismatch

.

Theorem 1 provides an upper bound on the loss of the final transformed classifier/distribution in
terms of the loss of the source classifier/distribution. The re-weighted source loss shows that the
performance of the transformed classifier on the new domain is linked to the label-wise re-weighted
loss of the source classifier on the source domain. This implies that one can use only the relevant
source classes to contribute to the transferability bound. The second term label mismatch shows that
the performance of the distribution S′′′ and S depends on the conditional entropy H(YS′′ |YS′ ;B)
between the label distributions of the domain S′′ and S′. A high value of H implies that the
labels of the source do not provide much information about the labels of the target leading to lower
transferability, whereas a low H implies higher transferability. Corollary 1 below shows the case
when the bound in Theorem 1 becomes equality. In particular, when the number of classes is the
same between S and S′′′ and there is a deterministic mapping of the classes of the two domains,
conditional entropy can be minimized to zero making the bound equality.
Corollary 1. Let e be one-hot encoding of the labels, |YS′′′ | = |YS |, B : ∆S′ → ∆S′′ be a
permutation matrix and yS′′ := σ(yS′) := argmaxy∈YS′′ (B(e(yS′)))y then under the assumptions
of Lemmas 1, 2, and 3 we have EPS′′′ (z,y)[ℓ(hS′′′(z), y)] = EPS(z,y)[C(y)ℓ(hS(z), y)].

3.2 DISTRIBUTION MISMATCH BETWEEN PS′′′ AND PT

After the three transformations, the transformed source PS′′′(z, y) can now be compared with the
target PT (z, y). However, these are only simple transformations and PS′′′ cannot be made identical to
PT in general. This mismatch between PS′′′ and PT can be measured by the Wasserstein or Optimal
Transport distance (Peyré et al., 2019; Villani, 2009). Many prior works have provided analytical
results using Wasserstein distance for the problem of learning under distribution shift (see App. B)
Since our goal is to match two joint distributions defined on Z × Y we use

d((z, y), (z′, y′)) := ∥z − z′∥2 +∞ · 1y ̸=y′ , where z, z′ ∈ Z and y, y′ ∈ Y (1)

as our base distance (Sinha et al., 2017) to define the (type-1) Wasserstein distance

Wd(P,Q) := inf
π∈Π(P,Q)

E((z,y),(z′,y′))∼π[d((z, y), (z
′, y′))]. (2)

With this base distance, the Wasserstein distance between the joint distributions is the weighted
sum of the Wasserstein distance between conditional distributions (P (z|y)) (Lemma 4 in App. A).
Theorem 2 explains the final gap between the loss incurred on the transformed distribution S′′′ and
the target distribution T due to the distribution mismatch.
Assumption 1. 1) The composition of the loss function and the classifier ℓ ◦ h is a τ−Lipschitz
function w.r.t to ∥ · ∥2 norm, i.e., |ℓ(h(z), y) − ℓ(h(z′), y)| ≤ τ∥z − z′∥2 for all y ∈ Y , z, z′ ∈ Z
where h ∈ H. 2) The two priors are equal PT (y) = PS′′′(y).

The assumption 2), can be satisfied since we have full control on the prior PS′′′(y) via B and C.
Theorem 2. Let the distributions T and S′′′ be defined on the same domain Z ×Y and assumption 1
holds, then EPT (z,y)[ℓ(h(z), y)]− EPS′′′ (z,y)[ℓ(h(z), y)] ≤ τ Wd(PS′′′ , PT )︸ ︷︷ ︸

Distribution mismatch

, with d as in Eq. 1.

Theorem 2 shows that ℓ ◦ h is τ−Lipschitz then the performance gap between the transformed source
distribution and the target distribution is bounded by the type-1 Wasserstein distance between the two
distributions. This result is in line with prior works that provided analytical results on performance
transfer in the domain adaptation literature. The Lipschitz coefficient of the composition can be
bounded by τ , by penalizing the gradient norm w.r.t z at training time. Thus, for linear fine-tuning, we
train the classifiers hS and hT with an additional gradient norm penalty max{0, ∥∇zℓ(h(z), y)∥2−τ}
to make them conform to the Lipschitz assumption (see App. C.5). Note that constraining the
Lipschitz constant restricts the hypothesis class. The trade-off between the Lipschitz constant and the
performance of h is empirically evaluated in App. C.5.1.
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3.3 FINAL BOUND

Here, we combine the results obtained in Theorem 1 and Theorem 2. The final bound proposed
in Theorem 3 is one of our main contributions which explains transferability as a sum of three
interpretable gaps which can be numerically approximated as will be shown in Sec. 4.
Theorem 3. Let ℓ be the cross entropy loss then under the assumptions of Theorems 1 and 2 we have,

EPT (z,y)[ℓ(hT (z), y)] ≤ EPS(z,y)[C(y)ℓ(hS(z), y)]︸ ︷︷ ︸
Re-weighted source loss

+H(YS′′ |YS′)︸ ︷︷ ︸
Label mismatch

+ τ Wd(PS′′′ , PT )︸ ︷︷ ︸
Distribution mismatch

.

The theorem shows that transferability can be decomposed into the loss incurred while transforming
the class prior distribution, label space, and feature space of the source distribution (first two terms)
and the residual distance between the distribution generated through these transformations and the
actual target distribution (last term). When the distribution of the target task is a transform of the
source task then there exist transformations A,B, and C such that the distribution S′′′ matches the
distribution of the target task exactly and the Wd(PS′′′ , PT ) = 0. When labels are deterministically
related (Corollary 1) the bound becomes an equality. Finally, while we analyze linear fine-tuning for
its simplicity, our bounds hold for non-linear classifiers and non-linear feature transformations as
well (see App. A.4).

4 EXPERIMENTS

In this section, we present an empirical study to demonstrate the effectiveness of the proposed
task transfer analysis in predicting transferability to downstream tasks. We start by describing the
optimization problem that allows us to transform the source distribution (and its classifier) to explain
transferability. Next, we demonstrate the effectiveness of learning the transformation parameters by
solving the proposed optimization problem on simple transfer tasks. Following this we demonstrate
how the relatedness between the source and target tasks impacts transferability. Finally, we present a
large-scale study showing a small gap between predicted and empirical transferability on classifiers
with different architectures and trained using various training algorithms on vision and NLP tasks.
Due to space limitation, NLP results are in the App. C, and experimental/dataset details in App. D.

4.1 OPTIMIZATION PROBLEM TO LEARN THE TRANSFORMATIONS

Here we describe the optimization problem (Eq. 3) to learn the transformations A,B, and C to
convert the source to the target task. We use two new variables: the inverse of the transformation
A, denoted by Ā := A−1 and a new source prior distribution denoted by D(y) := C(y)PS(y). We
solve the Eq. 3 with samples from the training data of the source and target tasks. Using test data
from the source task and the learned transformations we measure the upper bound on transferability.

min
A,Ā,B,D

EPS(z,y)

[
D(y)

PS(y)
ℓ(hS(z), y)

]
+H(YS′′ |YS′ ;B,D) + τWd(PS′′′ , PT ;A,B) such that

AĀ = ĀA = I, PT (y) = BD,
∑
i

Bij = 1 ∀j,
∑
y∈YS

D(y) = 1, Bij ∈ [0, 1] ∀i, j, Di ∈ [0, 1] ∀i.

(3)

Our algorithm for task transfer analysis shows how we solve this optimization problem. The first
three terms in Step 4 of our algorithm correspond to the terms in the objective of Eq. 3 while the
two additional terms are added to penalize the constraints of class prior matching PT (y) = BD and
invertibility of the matrix A, respectively as required by Theorem 3. We use the softmax operation
to ensure B and D are a valid probability matrix and vector. In Step 3 of the algorithm, we use the
network simplex flow algorithm from POT (Flamary et al., 2021) to compute the optimal coupling
for matching the distributions S′′′ and T . Since computing the Wasserstein distance over the entire
dataset can be slow, we follow (Damodaran et al., 2018) and compute the coupling over batches.
Using the optimal coupling from Step 3, we use batch SGD in Step 4 of the algorithm. Note that
we use a base distance defined in Eq. 1 in Step 3, which is non-differentiable. Therefore in Step 4,
we use a differentiable approximation d̃((z, y), (z′, y′)) := dfeatures(z, z

′) + ν · ∥Be(y)− e(y′)∥2
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(with ν = 108) where (z, y) and (z′, y′) are samples from the domains S and T and e(·) denotes the
one-hot embedding of the labels. We show in Fig. 7 in App. C.1.3 how the upper bound is minimized
as the optimization learns the parameters of the transformations. When the target task has fewer
classes, the algorithm adjusts the prior D to select a similar number of source classes leading to a
reduction in the re-weighted source loss. On one hand, the conditional entropy contributes to a sparse
selection of the source classes, while on the other, the condition PT (y)−BD and the Wasserstein
distance in Step 4 prevents the prior D from collapsing and putting all the weight on a single source
class. This is due to a high Wasserstein distance penalty that is incurred when the classes from source
and target cannot be matched. Computationally, running an epoch of our algorithm takes a mere 0.17
seconds on our hardware for learning the transformation with Imagenet as the source and Pets as the
target task with the ResNet-18 model (we ran the optimization for 2000 epochs).

Algorithm for Task Transfer Analysis

Input: Samples from the source (ZS ,YS) and the target (ZT ,YT ) tasks
Main:
1. Sample nS points (ziS , y

i
S) ∼ (ZS ,YS) from the source task based on the class prior D

along with a random sample of nT points (ziT , y
i
T ) ∼ (ZT ,YT ) from the target.

2. Compute (ziS′′′ , yiS′′′) = (AziS , argmaxy Be(yiS)), for i = 1, · · · , nS .
3. Assign YS′ = YS and YS′′ = YT .
4. Compute the optimal coupling π∗ between the distributions S′′′ and T using type-1

Wasserstein distance via network simplex flow algorithm from POT (Flamary et al.,
2021).

min
π∈Π(PS′′′ ,PT )

∑
i,j

πijd((z
i
S′′′ , yiS′′′), (z

j
T , y

j
T )) s.t.

∑
j

πij =
1

nS
∀i,

∑
i

πij =
1

nT
∀j.

5. Using the coupling π∗, solve for A, Ā,B,D using mini-batch SGD

min
A,Ā,B,D

1

nS

∑
i

D(yi)

PS(yi)
ℓ(hS(z

i
S), y

i) +H(YS′′ |YS′) +
∑
i,j

π∗
i,j

[
d̃((ziS′′′ , yiS′′′), (z

j
T , y

j
T ))

]
+ ∥PT (y)−BD∥22 + (∥AĀ− I∥F + ∥ĀA− I∥F ).

6. Repeat 1 - 4 until convergence.
Output: Bound with the optimal transformations A, Ā,B,D, and Wd(PS′′′ , PT ).

4.2 EFFECTIVENESS OF THE PROPOSED OPTIMIZATION

Here, we consider the transferability of a ResNet-18 model trained with Imagenet as the source
and CIFAR10 as the target. We compare the cross-entropy loss on CIFAR10 obtained after linear
fine-tuning with the transferability approximated via the bound in Theorem 3. We show how the
different transformations affect our upper bound in Fig. 2 and show the advantage of learning the
transformation by solving Eq. 3. We present an evaluation of two settings. In the first setting, we select
data from 10 classes at random and 10 classes that are semantically related to the labels of CIFAR10
from Imagenet (Deng et al., 2009) (see App. D) and train a 10-way classifier for both (hS). With
these, we evaluate the bound, by fixing all transformations (FixedAll: A is set to the Identity matrix,
B is a random permutation matrix, D is set to the source prior), learning only A (LearnedA: A is
optimized by solving Eq. 3 while B,C are same as in FixedAll), and learning all the transformations
(LearnedAll). The top part of Fig. 2 shows that for FixedAll, the presence of semantically related
classes in the source data does not provide an advantage in terms of the bound compared to the pres-
ence of unrelated classes. This is attributed to B being a random permutation which leads to matching
between dissimilar classes from the two tasks. The bound becomes significantly better (decreases by
∼ 0.2 from FixedAll to LearnedA) when the feature transform A is learned due to the decrease in the
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Wasserstein distance. Learning all the transformations produces the best upper bound with both ran-
dom and semantically chosen classes, and the loss with semantically chosen classes is slightly better.
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Distribution Mismatch

Figure 2: Transformations optimized us-
ing Eq. 3 produce a better bound than
obtained by naively chosen transforma-
tions, primarily due to decreased distri-
bution mismatch. The presence of se-
mantically related source classes only
has a limited impact on the bound com-
pared to the presence of random classes.

In the second setting, we select data from 20 classes from
Imagenet by selecting either 20 random classes or 10 ran-
dom and 10 semantically related classes. This setting al-
lows us to analyze transferability when the source task has
more classes than the target (for FixedAll and LearnedA,
we fix B to match two source classes entirely to a single
target class.). In all cases, we observe that the upper bound
becomes larger compared to our previous setting due to the
increase of the re-weighted source loss as learning a 20-
way classifier is more challenging than learning a 10-way
classifier, especially with the Lipschitz constraint. Despite
this, just learning the transform A (LearnedA) produces
a better upper bound. The bound is further improved by
learning all the transformations. Fig. 5 (in the Appendix)
shows that by learning C the optimization prefers to retain
the data from 10 of the 20 classes reducing the re-weighted
source loss. Based on these insights we find that selecting
the same number of classes as that present in the target
task and learning only the transform A keeping B,C fixed
to a random permutation matrix and prior of the source can
achieve a smaller upper bound. Thus, we use this setup
for all our other experiments. Additional experiments
demonstrating the effectiveness of learning the transforma-
tions by solving Eq. 3, for different datasets, are present
in App. C.1.2.

4.3 IMPACT OF TASK RELATEDNESS ON TRANSFERABILITY
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Figure 3: Task relatedness measured by Wd(PS′′′ , PT ) corre-
lates strongly with transferability (i.e., target loss). Related
tasks such as MNIST and USPS transfer better than unrelated
tasks such as MNIST and KMNIST.

Here we evaluate how relatedness
between the source task used for
training the encoder and the down-
stream target task affects trans-
ferability. We consider a setup
with convolutional neural networks
trained using various character
recognition tasks such as MNIST,
Fashion-MNIST (FMNIST) (Xiao
et al., 2017), KMNIST (Clanuwat
et al., 2018), and USPS. We com-
pute the pairwise transferability of
these networks to other tasks. The
results in Fig. 3 show that those tar-
get tasks achieve the best transfer-
ability (small loss after linear fine-tuning) for which the source task (used for training the encoder)
after transformation achieves the smallest residual Wasserstein distance, Wd(PS′′′ , PT ). Specifically,
for the encoder trained on MNIST, USPS achieves the best transferability (1.22) and the smallest
Wd = 5.85. A similar behavior is observed on MNIST for a USPS-trained encoder. This is intuitive
as both datasets contain digits and the encoder trained for digits from the MNIST, correctly maps the
corresponding digits from USPS. Moreover, the data/classifier of MNIST can be easily transformed
to explain the performance of USPS as seen by small Wd. Similarly, when the source task cannot be
transformed into the target task (indicated by high Wd) transferability suffers. Specifically, transfer-
ability is poor for KMNIST (consisting of Hiragana characters) since it is very different from the
source tasks considered (MNIST, USPS, FMNIST) here for training the encoders, as indicated by high
Wd. Moreover, the encoder trained with KMNIST also leads to poor transferability to other target
tasks since they are unrelated to KMNIST. Thus, task relatedness and transferability are correlated.
We explain the observed correlation as follows. As shown in Fig. 8 (in the Appendix), the bound
is the source loss plus the τWd. For the same source task, Wd therefore explains the difference
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of bounds for different target tasks. Since our bound is correlated well with transferability, Wd is
correlated with transferability. We also observe a similar correlation in sentence classification tasks
in App. C.2.2: Figs. 9 and 12 again show that transferability improves when the two tasks are related.
This conclusion is novel to our task transfer analysis and cannot be provided by SbTE methods since
they explain transferability using only target tasks.

4.4 EVALUATION OF TRANSFERABILITY OF SOTA PRE-TRAINED CLASSIFIERS
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Figure 4: Transferability approximated via our bound has a small
gap to empirical transferability for SOTA pre-trained models.

Here we demonstrate the ef-
fectiveness of our bound and
optimization at approximating
transferability of pre-trained
classifiers with architectures
such as Vision Transformers
(ViT) (Dosovitskiy et al., 2021),
ResNet-18/50 (He et al., 2015)
trained with different pretraining
methods including supervised
training, adversarial training
(Salman et al., 2020), SimCLR
(Chen et al., 2020), MoCo (He
et al., 2020), SwAV (Caron et al., 2020), CLIP (Radford et al., 2021), and MAE (He et al., 2022). We
consider a wide range of target datasets including, CIFAR10/100, Aircraft, Pets, and DTD whose
details are in App. D. For this experiment, we consider the source task to be Imagenet (Deng et al.,
2009) and use our optimization to learn transformations to approximate transferability. The results of
this experiment in Fig. 4 and 10 (in the Appendix) show that regardless of the pretraining algorithm,
the model architecture of the pre-trained classifier, and the target dataset, our bound achieves a small
gap to empirical transferability (i.e. loss on the target task after linear fine-tuning). This shows
that our upper bound is tight and useful for explaining the success of transfer learning in SOTA
pre-trained classifiers. Moreover, in Fig. 11 (in the App. C.3.1) we show that our bound is strongly
correlated even with the accuracy of the target task after linear fine-tuning. Our Fig. 4 and 10,
show the contribution of individual terms in our upper bound and show that the label mismatch
term has a small contribution when B matches a single source class to a single target class (as
opposed to matching a source class partially to two or more classes). From Fig. 10, we see that
when the source and target tasks have fewer classes, learning hS is easier and the contribution of
the re-weighted source loss term is relatively small but this loss increases as the number of classes
increases. We also see that as the dimension of the representation space of the models increases (e.g.,
ResNet-18/ViT-B16 has a 512-dimensional representation space whereas ResNet50 models have
2048-dimensional space) estimating the Wasserstein distance becomes challenging and consequently
minimizing it via A also becomes challenging leading to an increased gap between empirical
and approximated transferability. Nonetheless, our optimization finds a solution that consistently
produces a small gap with empirical transferability demonstrating its effectiveness. In App. C.3.2,
we present evaluation results on the sentence classification problem. Even there our upper bound
achieves a small gap compared to empirical transferability.

5 CONCLUSION

We analyzed transfer learning with linear fine-tuning using a task transfer approach that works by
transforming the source distribution and the classifier to match those of the target task. We proved a
tight upper bound on transferability relating it to the performance of the model on the source task
which can be decomposed into three terms, re-weighted source loss, label, and distribution mismatch.
We also proposed an optimization problem to effectively learn the task transfer to approximate
transferability and demonstrated its effectiveness at achieving a small gap to empirical transferability
for SOTA models pre-trained with different architectures/training methods. Our results highlight the
importance of relatedness between source and downstream tasks, measured by the relative ease with
which the source task can be transformed to the target to achieve high transferability. Extending this
analysis to full fine-tuning and different loss functions are promising directions for future research.
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Appendix
We present the missing proofs of the theoretical results from Sec. 3 along with justifications for the
classifiers (hS′ , hS′′ , hS′′′ ) as Corollaries in Appendix A followed by related work on learning in the
presence of distribution shift with the same feature and label space in Appendix B. This is followed
by additional experimental results including NLP classification tasks with large pretrained models in
Appendix C. We conclude in Appendix D with details of the experiments and datasets used.

A PROOFS FOR SEC. 3

A.1 ANALYSIS OF THE TASK TRANSFER MODEL (SEC. 3.1)

A.1.1 PRIOR TRANSFORM (S → S′)

Lemma 1. Let C :=
[
PS′ (y)
PS(y)

]|YS |

y=1
be a vector of probability ratios and the classifier hS′(z) := hS(z),

then EPS′ (z,y)[ℓ(hS′(z), y)] = EPS(z,y)[C(y)ℓ(hS(z), y)], for any loss function ℓ.

Proof.

EPS′ (z,y)[ℓ(hS′(z), y)] = EPS′ (z,y)[ℓ(hS(z), y)] =
∑
y∈YS

PS′(y)EPS′ (z|y)[ℓ(hS(z), y)]

=
∑
y∈YS

PS(y)

PS(y)
PS′(y)EPS′ (z|y)[ℓ(hS(z), y)] =

∑
y∈YS

PS(y)EPS′ (z|y)[C(y)ℓ(hS(z), y)]

=
∑
y∈YS

PS(y)EPS(z|y)[C(y)ℓ(hS(z), y)] (since PS(z|y) = PS′(z|y) by construction)

= EPS(z,y)[C(y)ℓ(hS(z), y)].

A.1.2 LABEL TRANSFORM (S′ → S′′)

Lemma 2. Let B be a |YS | × |YT | matrix with Bij = P (yS′′ = i|yS′ = j) and hS′′(z) :=
BhS′(z) and ℓ be the cross-entropy loss. Then, EPS′′ (z,y)[ℓ(hS′′(z), y)] ≤ EPS′ (z,y)[ℓ(hS′(z), y)] +
H(YS′′ |YS′), where H(YS′′ |YS′) := [−

∑
yS′∈YS′

∑
yS′′∈YS′′ PS′(yS′)ByS′′ ,yS′ log(ByS′′ ,yS′ )]

denotes the conditional entropy.

Proof. Note that P (z) := PS′(z) = PS′′(z) by construction.

EPS′′ (z,y)[ℓ(hS′′(z), y)] = EP (z,y′′)[ℓ(hS′′(z), y′′)]

= EP (z)EP (y′′|z)[ℓ(hS′′(z), y′′)] = EP (z)

∑
y′′

∑
y′

P (y′′, y′|z)[ℓ(hS′′(z), y′′)] (since y′ ∈ YS′)

= EP (z)EP (y′′,y′|z)[ℓ(hS′′(z), y′′)]

= EP (z)EP (y′|z)EP (y′′|y′)[ℓ(hS′′(z), y′′)] (since P (y′′|y′, z) = P (y′′|y′))

= EP (z)EP (y′|z)[
∑

y′′∈YS′′

ℓ(hS′′(z), y′′)By′′,y′ ] (since By′′,y′ = P (y′′|y′))

= EP (z,y′)[
∑

y′′∈YS′′

ℓ(BhS′(z), y′′)By′′,y′ ].

Since the loss ℓ is the cross-entropy loss, we have

ℓ(BhS′(z), y′′) = ℓ(
∑

j∈YS′

By′′,jh
j
S′(z)) = − log(

∑
j∈YS′

By′′,jh
j
S′(z))

≤ − log(By′′,y′hy′

S′(z)) = − log(By′′,y′)− log(hy′

S′(z)).
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Therefore, we have

EPS′′ (z,y)[ℓ(hS′′(z), y)]

= EP (z,y′)[
∑

y′′∈YS′′

ℓ(BhS′(z), y′′)By′′,y′ ]

≤ −EP (z,y′)[
∑

y′′∈YS′′

By′′,y′

(
log(By′′,y′) + log(hy′

S′(z))
)
]

= −EP (z,y′)[
∑

y′′∈YS′′

By′′,y′ log(By′′,y′)]− EP (z,y′)[
∑

y′′∈YS′′

By′′,y′ log(hy′

S′(z))]

= −EP (z,y′)[
∑

y′′∈YS′′

By′′,y′ log(By′′,y′)] + EP (z,y′)[− log(hy′

S′(z))
∑

y′′∈YS′′

By′′,y′ ]

= −EP (z,y′)[
∑

y′′∈YS′′

By′′,y′ log(By′′,y′)] + EP (z,y′)[− log(hy′

S′(z))]

= EP (z,y′)[−
∑

y′′∈YS′′

By′′,y′ log(By′′,y′)] + EP (z,y′)[ℓ(hS′(z), y′)]

= EP (y′)EPS′ (z|y′)[−
∑

y′′∈YS′′

By′′,y′ log(By′′,y′)] + EP (z,y′)[ℓ(hS′(z), y′)]

= [−
∑

y′∈YS′

∑
y′′∈YS′′

P (y′)By′′,y′ log(By′′,y′)] + EP (z,y′)[ℓ(hS′(z), y′)]

= H(YS′′ |YS′) + EPS′ (z,y)[ℓ(hS′(z), y)].

Corollary 2 below, shows the conditions under which the optimal softmax classifier for the domain
S′ remains optimal for the domain S′′, justifying our choice of classifier change from S′ to S′′.

Corollary 2. Let e be one-hot encoding of the labels, |YS′′ | = |YS′ |, B be a |YS | × |YT |
permutation matrix and hS′ be the optimal softmax classifier for S′ and yS′′ := σ(yS′) :=
argmaxy∈YS′′ (Be(yS′))y then under the assumptions of Lemma 2, hS′′(z) := BhS′(z) is the
optimal softmax classifier for S′′.

Proof. Since yS′′ := σ(yS′) := argmaxy∈YT
(Be(yS′))y we have

EPS′′ [ℓ(hS′′(z), yS′′)] = EP (z,y′′)[ℓ(BhS′(z), y′′)] =
∑

y′′∈YS′′

P (y′′)EP (z|y′′)[ℓ(BhS′(z), y′′)]

=
∑

y′∈YS′

P (σ(y′))EP (z|σ(y′))[ℓ(BhS′(z), σ(y′))]

=
∑

y′∈YS′

P (y′)EP (z|y′)[ℓ(hS′(z), y′)] = EPS′ [ℓ(hS′(z), yS′)].

The second last equality follows due to the symmetry of cross-entropy loss, i.e., ℓ(h, y) = − log hy =
− logBhσ(y) = ℓ(Bh, σ(y)).

Since minhS′′ EPS′′ [ℓ(hS′′(z), yS′′)] = minhS′ EPS′ [ℓ(hS′(z), yS′)] and hS′ is optimal for S′ we
have hS′′(z) := BhS′(z) is the optimal softmax classifier for S′′.

A.1.3 FEATURE TRANSFORM (S′′ → S′′′)

Lemma 3. Let A : Z → Z be an invertible linear map of features and the classifier hS′′′(zS′′′) :=
hS′′(A−1(zS′′′)). Then EPS′′′ (z,y)[ℓ(hS′′′(z), y)] = EPS′′ (z,y)[ℓ(hS′′(z), y)] for any loss ℓ.

Proof. EPS′′′ (z,y)[ℓ(hS′′′(z), y)] = EPS′′′ (z,y)[ℓ(hS′′(A−1(z)), y)] = EPS′′ (z,y)[ℓ(hS′′(z), y)].
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Our Corollary 3 below shows that the optimal softmax classifier for domain S′′ remains optimal for
domain S′′′ too.
Corollary 3. Let hS′′ be the optimal softmax classifier in domain S′′ then under the assumptions of
Lemma 3, hS′′′(xS′′′) = hS′′(A−1(xS′′′)) is the optimal softmax classifier in domain S′′′.

Proof. When hS′′′(xS′′′) = hS′′(A−1(xS′′′)), minhS′′ EPS′′ (z,y)[ℓ(hS′′(z), y)] =
minhS′′′ EPS′′′ (z,y)[ℓ(hS′′′(z), y)] by Lemma 3, hence if hS′′ is optimal for S′′ then so is
hS′′′ for the domain S′′′.

A.1.4 THREE TRANSFORMATIONS COMBINED (S → S′′′)

Theorem 1. Under the assumptions of Lemmas 1, 2, 3 we have

EPS′′′ (z,y)[ℓ(hS′′′(z), y)] ≤ EPS(z,y)[C(y)ℓ(hS(z), y)] +H(YS′′ |YS′).

Proof.

EPS′′′ (z,y)[ℓ(hS′′′(z), y)] = EPS′′ (z,y)[ℓ(hS′′(z), y)] (Lemma 3)

≤ EPS′ (z,y)[ℓ(hS′(z), y)] +H(YS′′ |YS′) (Lemma 2)

= EPS(z,y)[C(y)ℓ(hS(z), y)] +H(YS′′ |YS′) (Lemma 1).

Corollary 1. Let e be one-hot encoding of the labels, |YS′′′ | = |YS |, B : ∆S′ → ∆S′′ be a
permutation matrix and yS′′ := σ(yS′) := argmaxy∈YS′′ (Be(yS′))y then under the assumptions of
Lemmas 1, 2, and 3 we have EPS′′′ (z,y)[ℓ(hS′′′(z), y)] = EPS(z,y)[C(y)ℓ(hS(z), y)].

Proof. Since yS′′ := σ(yS′) := argmaxy∈YT
(Be(yS′))y we have

EPS′′ [ℓ(hS′′(z), yS′′)] = EP (z,y′′)[ℓ(BhS′(z), y′′)] =
∑

y′′∈YS′′

P (y′′)EP (z|y′′)[ℓ(BhS′(z), y′′)]

=
∑

y′∈YS′

P (σ(y′))EP (z|σ(y′))[ℓ(BhS′(z), σ(y′))]

=
∑

y′∈YS′

P (y′)EP (z|y′)[ℓ(hS′(z), y′)] = EPS′ (z,y)[ℓ(hS′(z), y)].

The second last equality follows due to the symmetry of cross-entropy loss, i.e., ℓ(h, y) = − log hy =
− logBhσ(y) = ℓ(Bh, σ(y)).

Therefore, we have

EPS′′′ (z,y)[ℓ(hS′′′(z), y)] = EPS′′ (z,y)[ℓ(hS′′(z), y)] (Lemma 3)

= EPS′ (z,y)[ℓ(hS′(z), y)] (from above)

= EPS(z,y)[C(y)ℓ(hS(z), y)] (Lemma 1).

A.2 DISTRIBUTION MISMATCH BETWEEN S′′′ AND T (SEC. 3.2)

Lemma 4. Let R and Q be two distributions on Z × Y with the same prior PR(y = i) =
PQ(y = i) = P (y = i). With the base distance d defined as in Eq. 1, we have Wd(PR, PQ) =∑

y P (y)W∥·∥2
(PR(z|y), PQ(z|y)).

Proof. Let ω∗
y denote the optimal coupling for the conditional distributions (PR(z|y), PQ(z|y))

for y ∈ Y and π∗ denote the the optimal coupling for the joint distributions (PR(z, y), PQ(z, y)).
Then, under the definition of our base distance d, π∗((z, y), (z′, y′)) = 0 when y ̸= y′ i.e. no
mass from the distribution R belonging to class y can be moved to the classes y′ ̸= y of the
distribution Q when the class priors of R and Q are the same. Moreover, since

∑
ij(ω

∗
y)ij = 1 and
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∑
{i,j:yi=y′

j=k} π
∗
ij = P (y = k) for k ∈ Y we have π∗((z, y), (z′, y′)) = ω∗

y(z, z
′)P (y)1y=y′ for

every y, y′ ∈ Y .

Then, we can show that the total Wasserstein distance between the joint distributions can be expressed
as the sum of conditional Wasserstein distances, as follows

Wd(PR(z, y), PQ(z, y))

=
∑
y,y′

∫
π∗((z, y), (z′, y′))d((z, y), (z′, y′))dzdz′

=
∑
y,y′

∫
π∗((z, y), (z′, y′))(∥z − z′∥2 +∞ · 1y ̸=y′)dzdz′

=
∑
y,y′

∫
ω∗
y(z, z

′)P (y)1y=y′(∥z − z′∥2 +∞ · 1y ̸=y′)dzdz′

=
∑
y,y′

∫
ω∗
y(z, z

′)P (y)1y=y′∥z − z′∥2dzdz′ (since 1y=y′ · 1y ̸=y′ = 0)

=
∑
y,y′

P (y)1y=y′

∫
ω∗
y(z, z

′)∥z − z′∥2dzdz′

=
∑
y

P (y)

∫
ω∗
y(z, z

′)∥z − z′∥2dzdz′

=
∑
y

P (y)W∥·∥2
(PR(z|y), PQ(z|y)).

Theorem 2. Let the distributions T and S′′′ be defined on the same domain Z × Y and assumption 1
holds, then EPT (z,y)[ℓ(h(z), y)]− EPS′′′ (z,y)[ℓ(h(z), y)] ≤ τ Wd(PS′′′ , PT )︸ ︷︷ ︸

Distribution mismatch

, with d as in Eq. 1.

Proof.

EPT (z,y)[ℓ(h(z), y)]− EPS′′′ (z,y)[ℓ(h(z), y)]

= EPT (y)EPT (z|y)[ℓ(h(z), y)]− EPS′′′ (y)EPS′′′ (z|y)[ℓ(h(z), y)]

= EPT (y)[EPT (z|y)[ℓ(h(z), y)]− EPS′′′ (z|y)[ℓ(h(z), y)]] (since PT (y) = PS′′′(y))

≤ EPT (y)[ sup
ℓ′◦h′∈τ−Lipschitz

EPT (z|y)[ℓ
′(h′(z), y)]− EPS′′′ (z|y)[ℓ

′(h′(z), y)]]

= EPT (y)[τ W∥·∥2
(PT (z|y), PS′′′(z|y))] (Kantorovich− Rubinstein duality)

= τ Wd(PS′′′ , PT ) (Lemma 4).

A.3 FINAL BOUND (SEC. 3.3)

Theorem 3. Let ℓ be the cross entropy loss then under the assumptions of Theorems 1 and 2 we have,

EPT (z,y)[ℓ(hT (z), y)] ≤ EPS(z,y)[C(y)ℓ(hS(z), y)] +H(YS′′ |YS′) + τ Wd(PS′′′ , PT )

Proof. Let ℓ ◦ hT , ℓ ◦ hS , and ℓ ◦ hS′′′ be τ−Lipschitz (from Assumption 1).

EPT (z,y)[ℓ(hT (z), y)] ≤ EPT (z,y)[ℓ(hS′′′(z), y)] (Optimality difference)

≤ EPS′′′ (z,y)[ℓ(hS′′′(z), y)] + τ Wd(PS′′′ , PT ) (Theorem 2)

≤ EPS(z,y)[C(y)ℓ(hS(z), y)] +H(YS′′ |YS′) + τ Wd(PS′′′ , PT ) (Theorem 1).
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In our experiments, we enforce the τ−Lipschitz constraint for ℓ ◦ hS and ℓ ◦ hT and verify that the
Lipschitz constant of ℓ ◦ hS′′′ remains close to τ within tolerance.

A.4 EXTENSION TO NON-LINEAR CLASSIFIERS AND NON-LINEAR TRANSFORMATIONS

To extend our analysis, we allow A : Z → Z to be a non-linear map and the classifiers h ∈
Hnon_linear to be also non-linear (such as multi-layer perceptron). In addition to the Assumption 1
that ℓ ◦ hS′′′ is τ−Lipschitz, we also require that hS′′′ belongs to the same class Hnon_linear as hT

and hS for any A. For example, this holds when h is linear and A is also linear. For another, this
holds when h is a multilayer perceptron and A is linear. With the additional assumption, all proofs
of this paper are in fact general and work for any linear/non-linear transformation of the feature
space. Thus, Theorem 1, Theorem 2 and Theorem 3 hold for non-linear classifiers as well. With these
extensions, our bounds can be used to explain transferability even with non-linear classifiers.

B ADDITIONAL RELATED WORK

Distributional divergence-based analyses of learning with distribution shifts (under same feature
and label sets): Here we review some of the previous works that analyzed the problem of learning
under distribution shifts in terms of distributional divergences such as the Wasserstein distance. These
analyses apply when the feature and label spaces remain the same between the original and the shifted
distribution.

Early works (Ben-David et al., 2007; Shen et al., 2018; Mansour et al., 2009) showed that the
performance on a shifted distribution (target domain) can be estimated in terms of the performance of
the source domain and the distance between the two domains’ marginal distributions and labeling
functions. Specifically, (Ben-David et al., 2007) showed that that

ET (h, fT ) ≤ ES(h, fS) + d1(PS , PT ) + min{EPS
[|fS(z)− fT (z)|],EDT

[|fS(z)− fT (z)|]},

where d1 denotes the total variation distance, f : Z → [0, 1] denotes the labeling function, h : Z →
{0, 1} denotes the hypothesis and EP (h, f) := Ez∼P [|h(z)− f(z)|] denote the risk of the hypothesis
h. A follow up work (Shen et al., 2018), showed a similar result using type-1 Wasserstein distance
for all K−Lipschitz continuous hypotheses i.e.,

ET (h, fT ) ≤ ES(h, fS) + 2K ·W1(PS , PT ) + λ,

where λ is the combined error of the ideal hypothesis h∗ that minimizes the combined error
ES(h, fS) + ET (h, fT ). Another recent work (Le et al., 2021) used a target transformation-based
approach and Wasserstein distance to quantify learning in the presence of data and label shifts. Other
works (Kumar et al., 2022; Sehwag et al., 2021) also presented an analysis based on Wasserstein
distance to understand how the accuracy of smoothed classifies and robustness change in the pres-
ence of distribution shifts. Compared to these works the bound proposed in Theorem 2 considers
cross-entropy loss (which is a popular choice of the loss function in the classification setting) and
uses a joint feature and labels Wasserstein distance rather than only marginal Wasserstein distance.
These differences make the bound proposed in Theorem 2 useful in the analysis of transfer learning
than those proposed in previous works when we have access to labeled target domain data.

Comparison with Tran et al. (2019): The closest work to ours is that of (Tran et al., 2019), which
also proposed an upper bound on transferability in terms of the performance of the source task.
However, the bound is proposed in a restrictive setting when the source and target tasks have the
same features but different labels (i.e. same images labeled differently between the source and target
tasks). In this setting, Tran et al. (2019), showed that transferability is upper bounded by loss of the
source classifier on the source task and the conditional entropy (CE) of the label sets of the two tasks.
We significantly extend this analysis to general source and target tasks which is the most commonly
used setting in practice (for e.g., our analysis allows us to study transfer learning from Imagenet with
1000 classes to CIFAR-100 with 100 unrelated classes, where source and target tasks do not have
the same images). In this setting, our main result in Theorem 3, shows that transferability involves
additional terms such as the distribution mismatch term (in the form of Wasserstein distance), the
prior mismatch term (in the form of re-weighted source loss) and the conditional entropy between the
label sets. Moreover, the bound proposed by Tran et al. (2019) is a special case of our bound with C
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being the vector of all ones (no prior change) and A being Identity (data distributions of source and
target are the same).

Comparison with score-based transferability estimation (SbTE) methods: The problem of
transferability estimation has gained a lot of attention recently, especially due to the availability of
a larger number of pretrained models. As a result, a large body of work (Bao et al., 2019; Nguyen
et al., 2020; Huang et al., 2022; You et al., 2021; Tan et al., 2021; Shao et al., 2022; Ding et al., 2022;
Dwivedi & Roig, 2019; Dwivedi et al., 2020) focuses on the problem of pretrained model selection
where the goal is to find the best pretrained classifier from a model zoo that will achieve the highest
transferability to a particular downstream task. The main challenge of this problem is to be able to
estimate transferability in a way that is more efficient than actually fine-tuning the pretrained models
on the downstream tasks. To this end, researchers have proposed several scores that have been shown
to be correlated with the accuracy of the models after fine-tuning them on the target task. However,
unlike our work, the goal of SbTE works is not to propose a universal bound or identify terms that
govern transferability from source to target tasks.

Moreover, while the scores proposed in SbTE works correlate well with transferability, they are only
meaningful in a relative sense. Concretely, a score of 1 (e.g., for LogMe [46]) on a CIFAR-100
task for a particular model does not indicate whether transferability is good or bad and requires
comparison with scores of other pre-trained models on the same target task. On the other hand, our
upper bound directly approximates transferability, e.g., an upper bound of 1 on the CIFAR-100 task
for a model implies that transfer learning will incur an average cross-entropy loss of less than 1
implying a highly accurate transfer. Our results in Figs. 4, 10 and 12 attest that our upper bound is
indeed a good estimate of the transferability.

Another disadvantage of the scores proposed in these works is that they cannot be compared across
target tasks, unlike our upper bound. As observed from Fig. 4 of LogMe [46], scores for CIFAR-
10 are lower than scores for CIFAR-100 on the same pretrained model, but, the transferability
to CIFAR-10 is better than that to CIFAR-100. On the other hand, from our Fig. 10, the upper
bounds on CIFAR-10 are lower than those of CIFAR-100 implying better transferability of classifiers
pretrained on Imagenet to CIFAR-10. Thus, our work is more suitable for estimating the absolute
performance on various target tasks given a particular pretrained classifier. Lastly, our upper bound
also encodes how task-relatedness affects transferability (Fig. 3 and 9) which cannot be explained by
SbTE approaches since transferability is not studied in comparison to the performance on the source
task in these works.

Thus, the goal of our work differs fundamentally from SbTE approaches since both serve different
purposes. Specifically, if the goal is pretrained model selection then SbTE approaches are more
suitable but if the goal is to analyze the transferability of models to downstream tasks, a rigorous
analysis as proposed in our work is necessary.

For completeness, we present a comparison of using our upper bound for the problem of pre-trained
model selection in App. C.4 and show that it achieves a competitive performance compared to various
SbTE metrics.

C ADDITIONAL EXPERIMENTS

C.1 ADDITIONAL RESULTS FOR THE EFFECTIVENESS OF THE PROPOSED OPTIMIZATION
(SEC. 4.2)

C.1.1 VISUALIZATION OF THE TRANSFORMED DATA VIA T-SNE FOR VARIOUS SETTINGS IN
SEC. 4.2

In this section, we use the setting considered in Sec. 4.2 where we consider 20 randomly selected
classes from Imagenet as the source and consider the transfer to CIFAR-10. We plot the results
of using different transformations using t-SNE to show how various transformations affect the
upper bound in Theorem 3. Our results in Fig. 5(left) show that when no transformations are
learned (FixedAll), the 20 random source classes do not overlap with the 10 target classes leading
to an increased Wasserstein distance which in turn leads to a larger upper bound. By learning the
transformation A (LearnedA), Fig. 5(center) shows a significantly better alignment between the
classes of the source and target which leads to a decreased Wasserstein distance and hence a tighter
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Figure 5: (Best viewed in color.) t-SNE visualizations of the effect of various transformations on
the bound in Theorem 3 when data from 20 randomly selected classes from Imagenet are used to
transfer to CIFAR-10. When all transformations are fixed (FixedAll, left) the distance between the
distribution S′′′ (transformed source) and T is high explaining the large upper bound. Learning just
the transformation A using the algorithm proposed in Sec. 4.1 significantly reduces the distance
between S′′′ and T leading to a tighter upper bound (center). Learning all the transformations further
improves the matching (right). Especially, learning B and D change the class priors of the source so
that the same number of classes from the source are used for matching as those present in the target.
This is evident from the right plot where only 10 unique source clusters are visible compared to 20 in
the center plot, with fixed D. Moreover, the zoomed-in portion shows that for the center figure two
classes from the source (green 2 and 3) match with class 1 (blue) of the target whereas a single class
from the source (green 18) matches class 1 (blue) of the target in the right figure.
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Figure 6: Comparison of using various transformations on the upper bound for different datasets.
For all datasets learning the transformation by solving the optimization problem in Eq. 3 leads to a
significantly tighter upper bound on the loss incurred after linear fine-tuning.

upper bound. Moreover, by learning all the transformations (LearnedAll), Fig. 5(right) shows that
not only do the distributions align well but also the prior of the source is changed to only keep 10
source classes to match the prior of the target distribution providing a further improvement in the
upper bound. This clearly shows the effectiveness of our proposed optimization algorithm in learning
various transformations to minimize the upper bound.

C.1.2 ADDITIONAL EXPERIMENTS FOR TRANSFERRING IN DIFFERENT SETTINGS/DATASETS

Here we extend the experiment presented in Sec. 4.2 to the Pets dataset. Specifically, we select data
from 37 random and semantically related (list in App. D) source classes from Imagenet and use them
to transfer to the Pets dataset. Results for this experiment are present in Fig. 6 (2 right-most plots).
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Figure 7: Reduction of the proposed upper bound is shown as transformations are learned by
solving the optimization problem in Eq. 3. After 600 epochs, the upper bound stabilizes showing the
convergence of the optimization problem. Each subplot shows the effect of learning the transformation
parameters for the transfer learning task with Imagenet as the source and ResNet-18 (trained in a
supervised way) for different target tasks. The solid line is the average after 5 random restarts and the
shaded portion shows their standard deviation.

Consistent with the results presented in the main paper, we find that learning just the transformation
A produces a significantly better upper bound than when all transformations are fixed. Moreover,
learning all the transformations produces a similar or slightly better result than learning only A in this
setting. Lastly, the presence of semantically related or random classes in the source does not produce
a significant difference in terms of the bound.

Next, we evaluate the effectiveness of the optimization on datasets such as MNIST, FMNIST, and
USPS. For these datasets, we first train a convolutional neural network model on the data from the
source task and then perform linear fine-tuning using the data from the target task. Similar to the
previous experiments, the results in Fig. 6 (first 4 plots) show that when the transformations are
fixed, the gap between the loss on the target data after linear fine-tuning and the upper bound is
large. Learning the transformations by solving the proposed optimization in Eq. 3 reduces this gap
significantly. For the experiment with the source as MNIST and target as USPS and vice-versa, we
additionally compare our results to a setting where only A is learned and B is set to an identity matrix
(rather than a permutation matrix, as used in LearnedA setting). This matrix B contains the correct
matching between the labels of the source and target. We find that the upper bound obtained when
B is fixed to identity is only marginally better than the case when B is a random permutation or is
learned through solving our optimization problem. Specifically, with B fixed to identity the upper
bound improves by 0.15 for the MNIST→USPS task (from 2.91 with LearnedAll to 2.76) and by 0.3
for the USPS→MNIST task (from 3.36 with LearnedAll to 3.06). As expected the primary reason for
the decrease in the upper bound comes from the reduced Wasserstein distance Wd(S

′′′, T ) and the
label mismatch term. While the upper bound improves slightly when the ideal matching between the
labels is known, such a mapping may not be known when the labels of the tasks are not related such
as for FMNIST and MNIST. Moreover, due to the difficulty of the optimization problem (different
label associations producing similar upper bounds) recovering the true association between the labels
could be hard. Similar to (Alvarez-Melis & Fusi, 2020), a different version of the label distance
that depends on the features of the data could be used to remedy this problem, but analyzing the
compatibility of such a label distance with the proposed bound requires further research.

C.1.3 EFFECTIVENESS OF MINIMIZING THE UPPER BOUND IN THEOREM 3 VIA SOLVING EQ. 3

In Fig. 7, we show how the upper bound changes as the optimization progresses for transfer learning
from Imagenet to four target tasks with the ResNet-18 model. Similar to experiments in Sec. 4.4 of
the paper we optimize over the transformation A while B and D are fixed to a random permutation
matrix and the source prior. After about 600 epochs the optimization problem converges to a local
minima.
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Figure 8: Decomposition of the bound in Theorem 3 into its three components illustrates that the
distribution mismatch term explains the difference in transferability. Similar tasks such as USPS
and MNIST have the smallest loss after fine-tuning and also have the smallest residual Wasserstein
distance, Wd(S

′′′, T ), after learning the transformations using our optimization.
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Figure 9: Task relatedness measured by Wd(PS′′′ , PT ) correlates with transferability (i.e., target loss).
A target task related to DBPedia such as AG News achieves a smaller loss and a smaller residual
Wasserstein distance compared to less-related tasks such as SST-5 and Yelp5.

C.2 ADDITIONAL RESULTS FOR THE IMPACT OF TASK RELATEDNESS ON TRANSFERABILITY
(SEC. 4.3)

C.2.1 ADDITIONAL RESULTS FOR IMAGE CLASSIFICATION

Here we provide details of the experiment presented in Sec. 4.3 about the effect of task relatedness
on the transferability after linear fine-tuning. Similar to the results presented in Fig. 3 of the main
paper the results in Fig. 8 show that when the source and the target tasks are related then both the
loss after linear fine-tuning and our bound are small as in the case when the source is MNIST and
target is USPS or vice versa. When the target tasks are unrelated to the source data then both the loss
after linear fine-tuning and our bound remain the same regardless of the chosen source data. For e.g.,
when the target task is KMNIST, using MNIST, USPS or FMNIST produces the same loss and the
upper bound. Lastly, for any particular source, Fig. 8 shows that the bound only differs because of
the differences in the distribution mismatch term which measures Wd(S

′′′, T ). This shows that when
the distribution mismatch can be minimized, both the empirical and predicted transferability improve,
demonstrating transfer between related source and target tasks is both easier and explainable.

C.2.2 RESULTS FOR NLP SENTENCE CLASSIFICATION TASK

In this section, we use sentence classification NLP task to further demonstrate the effect of task
relatedness on transferability and the proposed upper bound. For this experiment, we first fine-tune
the entire DistilBERT (Sanh et al., 2020) and DistilRoBERTa (Liu et al., 2019) models distilled on
English Wikipedia and Toronto Book Corpus, and OpenAI’s WebText dataset, respectively, using
a subsample of 10,000 points from the DBPedia dataset. We then use these fine-tuned models to
evaluate the transferability to AG news, SST-5, and Yelp datasets. The results in Fig. 9 show that the
loss after linear fine-tuning on AG News is the smallest among the three datasets. This coincides with
the Wasserstein distance obtained after learning the transformations which explains why transfer to
AG News is more successful compared to other datasets. This observation is reasonable, especially
considering that both DBPedia and AG News have structured information. Moreover, since DBPedia
is related to Wikipedia, the terms and entities appearing in AG News are more related to those
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Figure 10: Additional results for comparison of empirical versus predicted transferability for large
pre-trained models. Our upper bound proposed in Theorem 3 consistently achieves a small gap to
empirical transferability obtained after linear fine-tuning.

appearing in DBPedia in comparison to terms/entities appearing in SST-5 and Yelp which consist of
movie reviews and reviews collected from Yelp.

For our experiments, in this section, we follow a similar setting of fixing B to be a random permutation
matrix, C to the prior of the source, and only learn the transformation A. We sample 10,000 points
from DBPedia belonging to the same number of classes as those present in the target task (for e.g.,
for AG News we sample data from 4 randomly selected classes of DBPedia) and use this data as the
source data to train hS with gradient norm penalty (τ = 0.02). All experiments are run for 3 random
seeds and average results are reported in Fig. 9.

C.3 ADDITIONAL RESULTS FOR PREDICTING TRANSFERABILITY USING LARGE PRE-TRAINED
MODELS (SEC. 4.4)

C.3.1 ADDITIONAL RESULTS IMAGE CLASSIFICATION

Here we present additional results on computer vision classification tasks of predicting transferability
through the bound proposed in Theorem 3 which were omitted in the main paper due to space
limitation. Consistent with the results shown in Fig. 4 of the main paper, from the results in Fig. 10
we observe that there is a small gap between the loss after linear fine-tuning and the bound for models
trained with various pre-training methods and architectures. Moreover, the bound is tighter for models
trained with architectures that have a smaller representation space such as ResNet18 and ViT-B-16
which have 512-dimensional representation space. This is attributed to the difficulty of optimizing
the Wasserstein distance in higher dimensional representation space.

In Fig. 11, we demonstrate that the proposed upper bound is strongly (negatively) correlated with
accuracy after linear fine-tuning (when hT is trained without the gradient norm penalty). The
proposed upper bound correlates negatively since the upper bound predicts the loss (lower is better)
but it is compared to accuracy (higher is better). The Pearson correlation coefficient varies from
(−0.69 to −0.84) for the models used in Fig. 4.

C.3.2 RESULTS FOR NLP SENTENCE CLASSIFICATION TASK

In addition to vision tasks, we also evaluate the effectiveness of our optimization at minimizing the
upper bound for NLP classification tasks. Similar to Sec. C.2.2, we focus on the task of sentence
classification here. For this experiment, we fine-tune the entire DistilBERT (Sanh et al., 2020) and
DistilRoBERTa (Liu et al., 2019) models distilled on English Wikipedia and Toronto Book Corpus,
and OpenAI’s WebText dataset, respectively, using a subsample of 10,000 points from the DBPedia
dataset. Using the encoder of this new model, we linearly fine-tune using the data from the target
tasks as well as use our optimization to learn the transformations to minimize the upper bound. The
results present in Fig. 12, show that our bound consistently achieves a small gap to the loss after linear
fine-tuning. These results show that our task transfer analysis can effectively explain transferability
across a wide range of tasks.
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Figure 11: The proposed upper bound on transferability is highly (negatively) correlated with the
accuracy of the models after linear fine-tuning. This shows that a task with a smaller upper bound is
more transferable. Each subplot shows transfer learning with Imagenet as the source task to various
target tasks for a specific model architecture and training method. The Pearson correlation coefficient
is reported in the title of each subplot.
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Figure 12: Transferability predicted by our analysis consistently achieves a small gap to empirical
transferability even for NLP classification tasks (AG News, SST-5, Yelp5) using DistilBERT and
DistilRoBERTa as pre-trained models which are fully fine-tuned with DBPedia.

C.4 COMPARISON WITH SBTE APPROACHES ON PRETRAINED MODEL SELECTION PROBLEM

In Table 1, we show that our proposed upper bound achieves a high correlation with the accuracy after
linear fine-tuning (when hT is trained without the gradient norm penalty) on pretrained model selec-
tion problem using six pretrained models (supervised ResNet-50/101/152, SIMCLR/MOCO/SWAV
trained ResNet50). However, since we need to solve Eq. 3 to learn the transformations, our approach
is not as computationally efficient as SbTE approaches. We use the official code from You et al.
(2021) to compute the scores for NCE, Leep, and LogMe along with the official code of (Shao
et al., 2022) for SFDA. For PACTran Ding et al. (2022), we also use their official code with the
PACTran-Gaussian method with N/K = 100, β = 10N, σ2 = D/100 where N denotes the number
of samples and K denotes the number of classes. This setting is similar to the PACTran-Gaussfix
setting used in their work with the difference that we use N/K = 100 so as to use a sufficiently large
number of samples, especially considering that all our other results for SbTE methods are computed
on the full training set.

C.5 LIPSCHITZ CONSTRAINED LINEAR FINE-TUNING

C.5.1 IMPLEMENTING SOFTMAX CLASSIFICATION WITH τ−LIPSCHITZ LOSS

To use the bound Theorem. 3, it is required that the loss be τ−Lipschitz continuous w.r.t. z in the
input domain Z . To enforce this, while learning the weights of the softmax classifier (aka linear
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Table 1: The proposed upper bound achieves competitive performance on the pretrained model
selection task considered by popular score-based transferability estimation works. Pearson correlation
between accuracy after linear fine-tuning and scores from different SbTE methods are reported. For
NCE (Tran et al., 2019), Leep (Nguyen et al., 2020), LogMe (You et al., 2021), and SFDA (Shao
et al., 2022) a higher correlation is better whereas for PACTran (Ding et al., 2022) and our bound a
higher negative correlation is better.

Target task NCE Leep LogMe SFDA PACTran Ours
CIFAR-100 0.98 0.67 0.87 0.93 -0.86 -0.66

Pets 0.94 -0.24 0.87 -0.19 -0.54 -0.64
DTD 0.09 0.81 0.76 0.05 0.63 -0.72
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Figure 13: Trade-off between the cross-entropy loss after linear fine-tuning and the upper bound in
Theorem 3 as a function of τ , for ResNet18 and ResNet50 models pretrained on Imagenet and linearly
fine-tuned on the Pets dataset. Increasing the value of τ leads to a decrease in the cross-entropy loss
after fine-tuning but increases in the proposed bound mainly due to the τ ·Wd term.

fine-tuning) for the source or the target, we add the gradient norm penalty as used in previous works
(Shen et al., 2018; Arjovsky et al., 2017) and solve the following optimization problem

min
h

1

N

∑
i

[
ℓ(h(zi), yi) + ρmax

y
max{0, ∥∇zℓ(h(zi), y)∥2 − τ}2

]
(ρ ≈ 104)

where ℓ(h(z), y) = −wT
y z + log

∑
j e

wT
j z is the cross-entropy loss.

C.5.2 TRADE-OFF BETWEEN EMPIRICAL AND PREDICTED TRANSFERABILITY

Constraining the Lipschitz coefficient of the classifier increases both the target and the source cross-
entropy loss since the hypothesis set is being restricted. The smaller the τ is, the larger the loss
becomes. On the other hand, the smaller τ makes the distribution mismatch term in Theorem 3
also smaller. Since the bound is the sum of the source loss and the distribution mismatch (and label
mismatch), there is a trade-off determined by the value of τ . We illustrate the effect of the values of τ
on the empirical and predicted transferability. As mentioned previously, we train both the classifier
for the source hS and the target hT with an additional penalty on the gradient norm to make them
τ−Lipschitz. In Fig. 13, we present results of varying the value of τ for the transfer to the Pets dataset
with Imagenet as the source. For this experiment, we selected 37 random classes from Imagenet and
only learned the transform A by keeping B fixed to a random permutation and C fixed to the uniform
prior over source classes. We observe that the performance of linear fine-tuning degrades as we
decrease the value of τ but explainability through the bound improves since the distribution mismatch
term (dependent on τ ) decreases in the bound. However, making τ too small is not preferable since
it leads to an increase in the first term of the bound (re-weighted source loss) increasing the bound
overall. Moreover, it also leads to a degradation in the accuracy after linear fine-tuning. For our
experiments, we use τ = 0.02 since it doesn’t decrease the accuracy of fine-tuning significantly and
leads to a small gap between empirical and predicted transferability.
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D DETAILS OF THE EXPERIMENTS

All codes are written in Python using Tensorflow/Pytorch and were run on an Intel(R) Xeon(R) Plat-
inum 8358 CPU with 200 GB of RAM and an Nvidia A10 GPU. Implementation and hyperparameters
are described below. Our codes can be found in the supplementary material.

D.1 DATASET DETAILS

In our work, we used the standard image classification benchmark datasets along with standard
natural language processing datasets1.

Aircraft (Maji et al., 2013): consists of 10,000 aircraft images belonging to 100 classes.

CIFAR-10/100 (Krizhevsky et al., 2009): These datasets contain 60,000 images belonging to 10/100
categories. Additionally, we created two subsets of CIFAR100 with the first 25 (small) and 50
(medium) classes.

DTD(Cimpoi et al., 2014): consists of 5,640 textural images belonging to 47 categories.

Fashion MNIST (Xiao et al., 2017): consists of 70,000 grayscale images belonging to 10 categories.

Pets (Parkhi et al., 2012): consists of 7049 images of Cats and Dogs spread across 37 categories.

Imagenet (Deng et al., 2009): consists of 1.1 million images belonging to 1000 categories.

Yelp (Zhang et al., 2015): consists of 650,000 training and 50,000 test examples belonging to 5
classes.

Stanford Sentiment Treebank (SST-5) (Zhang et al., 2015): consists of 8,544 training and 2,210
test samples belonging to 5 classes.

AG News (Zhang et al., 2015): consists of 120,000 training and 7,600 test examples belonging to 4
classes

DBPedia (Zhang et al., 2015): consists of 560,000 training and 70,000 test examples belonging to
14 classes

D.2 SEMANTICALLY SIMILAR CLASSES FOR CIFAR-10 AND PETS FROM IMAGENET

For our experiments with CIFAR-10 in Sec. 4.2, we selected the following semantically
similar classes from Imagenet, {airliner, minivan, cock, tabby cat, ox,
chihuahua, bullfrog, sorrel, submarine, fire engine}. For our ex-
periments with the Pets dataset in App. C.1.2, we selected the following classes for
Dogs {boston bull, miniature schnauzer, giant schnauzer, standard
schnauzer, scotch terrier, chrysanthemum dog, silky terrier, a
soft-coated wheaten terrier, west Highland white terrier, lhasa,
lat-coated retriever, curly-coated retriever, golden retriever,
labrador retriever, chesapeake bay retriever, german short-haired
pointer, vizsla, hungarian pointer, english setter, irish setter,
gordon setter, brittany spaniel, clumber, english springer, welsh
springer spaniel, cocker spaniel} and the following for Cats {tabby,
tiger cat, persian cat, siamese cat, egyptian cat, cougar, lynx,
leopard, snow leopard, jaguar, lion, tiger}. Since some species of Cats and
Dogs present in the Pets dataset are not present in Imagenet, we select broadly related classes for our
experiments.

D.3 ADDITIONAL EXPERIMENTAL DETAILS

In our experiments, in Sec. 4.4, we used pre-trained models available from Pytorch for ResNet18/50,
along with publically available pre-trained models provided in the official repositories of each training
method. For each experiment, we subsample data from the Imagenet dataset belonging to the same

1All NLP datasets and models are obtained from https://huggingface.co/.
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number of classes as those present in the target dataset and use this data to train the linear layer on
top of the representations extracted from the pre-trained model along with a gradient norm penalty.
To speed up the experiments, we use only 10,000 points from the subsample of Imagenet for training
the linear classifier and computing the transfer. For evaluation, we use a similar subsample of
the validation dataset of Imagenet containing all the samples belonging to the subsampled classes.
Fine-tuning on this dataset takes about 0.05 seconds per epoch for the task of transfer from Imagenet
to Pets with the ResNet-18 model (we run the fine-tuning for a total of 5000 epochs).

Along with training the linear classifiers with a gradient norm penalty, we standardize the features
extracted from the pre-trained models to remove their mean (along each axis) and make them have a
unit standard deviation (along each axis). While standardizing the features do not have a significant
impact on the loss of the classifiers, including it makes it easier to match the distributions of the
source and target data after transformations. Since our optimization problem transforms the source
distribution to match the distribution of the target by solving the optimization problem in Eq. 3 by
working on mini-batches, it is important that the size of the batch be greater than the dimension of
the representation space of the pre-trained encoder. For e.g., for ResNet18 models which have a
representation dimension of 512, we use a batch size of 1000 and for ResNet50 models which have a
representation dimension of 2048, we use a batch size of 2500. Having a smaller batch size than the
dimension could lead to a noisy gradient since for that batch the transformation can achieve a perfect
matching, which may not generalize to data from other batches or unseen test data.

While computing the transformations, we apply the same augmentation (re-sizing and center crop-
ping)/normalization to the training data as those applied to the test data. Along with this, we extract
the features of the training and test data from the pre-trained model once and use these to train
the linear layer. We note that this is done to save the computation time and better results could be
obtained by allowing for extracting features after data augmentation for every batch.

Finally, for our experiments in Sec. 4.3, the encoders are trained end-to-end on the source task. This
is in contrast to our other experiments where the encoders are pre-trained and data from the source
task is only used for linear fine-tuning. This is done since there are no pre-trained models available
for MNIST-type tasks considered in this section and training a model on these datasets is relatively
easy and cheap. Using these models, task relatedness is evaluated by fine-tuning a linear layer using
the data from the target task as well as the transformations are computed by solving Eq. 3. We used
τ =0.2 here. We run the experiments with 3 random seeds and report the average results.
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