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ABSTRACT

Existing approaches to lifelong language learning rely on plenty of labeled data
for learning a new task, which is hard to obtain in most real scenarios. Consid-
ering that humans can continually learn new tasks from a handful of examples,
we expect the models also to be able to generalize well on new few-shot tasks
without forgetting the previous ones. In this work, we define this more challeng-
ing yet practical problem as Lifelong Few-shot Language Learning (LFLL) and
propose a unified framework for it based on prompt tuning (PT) of T5. Our frame-
work called LFPT5 takes full advantage of PT’s strong few-shot learning ability,
and simultaneously trains the model as a task solver and a data generator. Before
learning a new domain of the same task type, LFPT5 generates pseudo (labeled)
samples of previously learned domains, and later gets trained on those samples to
alleviate forgetting of previous knowledge as it learns the new domain. In addi-
tion, a KL divergence loss is minimized to achieve label consistency between the
previous and the current model. While adapting to a new task type, LFPT5 in-
cludes and tunes additional prompt embeddings for the new task. With extensive
experiments, we demonstrate that LFPT5 can be applied to various different types
of tasks and significantly outperform previous methods in different LFLL settings.

1 INTRODUCTION

A hallmark of human intelligence is that they can learn new tasks quickly by leveraging previously
acquired knowledge from other related tasks, and they do so without forgetting prior knowledge.
However, despite the monumental success of deep learning in recent years, models face challenges
to retain and accumulate knowledge when learning new tasks due to the shift of data distribution
– they run into the overfitting issue when the data for the new task is small and they forget prior
knowledge, a phenomenon known as catastrophic forgetting (McCloskey & Cohen, 1989).

Researchers in Lifelong Learning (Thrun & Mitchell, 1995) have proposed a number of methods to
alleviate the above issues with machine learning. When it comes to language, earlier approaches to
Lifelong Language Learning (LLL) merely focus on a single type of NLP tasks (Wang et al., 2019;
d’Autume et al., 2019); see (Biesialska et al., 2020) for a survey. In contrast, humans can easily
handle tasks that vary with respect to not only domain but also task type (Figure 1). More recent
methods attempt to learn from different types of tasks. These include LAMOL (Sun et al., 2019)
and its improvements (Chuang et al., 2020; Sun et al., 2020; Kanwatchara et al., 2021). Despite
the effectiveness of these methods in LLL, there are several limitations. First, they all assume
plenty of training data for every task which is hard to acquire in most real scenarios as getting large
labeled datasets is often expensive and time-consuming. Second, they mainly consider tasks from the
decaNLP challenge (McCann et al., 2018) that can be easily framed as question answering (Kumar
et al., 2016), paying little attention to sequence labeling tasks such as Name Entity Recognition
(NER). Finally, they fine-tune the entire model for all tasks ignoring the possibility of negative
transfer (Lopez-Paz & Ranzato, 2017) between different types of tasks.
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Our work in this paper aims to address these limitations of LLL. We focus on a more challenging
yet more practical problem where the model needs to generalize well on new few-shot tasks without
forgetting the previous ones. We regard this as Lifelong Few-shot Language Learning (LFLL) and
investigate three different kinds of tasks: sequence labeling tasks, text classification tasks and text
generation tasks.
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Figure 1: Two different dimensions of lifelong lan-
guage learning. The horizontal axis (Domain) indicates
tasks of the same type (e.g., NER), whereas the vertical
axis (Task) indicates different kinds of tasks.

Based on the strong few-shot learning ability of
prompt tuning (Lester et al., 2021) of T5 (Raf-
fel et al., 2019), we propose a unified frame-
work for LFLL, named LFPT5 (Lifelong Few-
shot Language Learning with Prompt Tuning of
T5). Specifically, we reframe all types of tasks
into a text-to-text format (Figure 2). To contin-
ually learn new domains of a task, we simulta-
neously train the prompt embeddings designed
for this task type as a task solver and a data gen-
erator keeping the backbone T5 frozen. When
LFPT5 goes about learning a new domain, it
first generates pseudo labeled samples of pre-
viously learned domains, which are then com-
bined with the new domain training data to al-
leviate catastrophic forgetting. To achieve label
consistency between the previous and the cur-
rent model, LFPT5 also minimizes a KL diver-
gence loss. For the adaptation from one task
type to another, LFPT5 includes additional prompt embeddings for the new task, and tunes them
similarly. In this way the learning of new tasks minimally affects previously acquired knowledge,
mitigating the catastrophic forgetting problem. In the whole learning process, the pre-trained T5
acts as a meta-learned model (Brown et al., 2020) that is kept frozen, while the tunable soft prompt
acts as a task or domain adaptation model. In summary, our main contributions are:

• To the best of our knowledge, we are the first to consider LFLL, a challenging yet practical prob-
lem. We propose LFPT5, a unified framework for LFLL based on prompt tuning of T5. LFPT5
can generalize well on various new few-shot tasks without severe forgetting of previously acquired
knowledge, which can be seen as an important step towards general language intelligence.

• With extensive experiments and analysis, we demonstrate that LFPT5 outperforms previous base-
lines by a large margin. We have open-sourced our code base at https://github.com/
qcwthu/Lifelong-Fewshot-Language-Learning.

2 RELATED WORK

2.1 LIFELONG LEARNING

In lifelong learning (LL), the model is expected to learn sequentially from a stream of tasks with dif-
ferent data distributions. The main problem in LL is catastrophic forgetting (McCloskey & Cohen,
1989) – the model forgets previously acquired knowledge after learning a new task. Prior approaches
to LL can be divided into three categories. First, architecture-based methods dynamically adjust the
model architecture to learn new knowledge while preventing the forgetting of previously learned
tasks (Chen et al., 2015; Rusu et al., 2016; Mallya et al., 2018). Second, regularization-based meth-
ods constrain the update of parameters that are important to the learned tasks to retain previous
knowledge (Li & Hoiem, 2017; Kirkpatrick et al., 2017; Aljundi et al., 2018). Third, memory-
based methods keep a number of key samples from previous tasks in memory to alleviate forgetting
(Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2018; d’Autume et al., 2019). These methods for LL
mostly focus on tasks of the same type (referred as domains in this work). Recently, Sun et al. (2019)
proposes LAMOL, a general framework designed for lifelong language learning (LLL), where the
model needs to continually learn from different domains as well as different types of NLP tasks.

2.2 FEW-SHOT LEARNING

Few-shot learning (FL) aims to learn tasks with a few labeled examples. Due to the scarcity of
labeled training data, FL faces the problem of over-fitting. Existing methods to overcome over-
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fitting include: (i) model-based methods that explore how to reduce the hypothesis space of the few-
shot task (Triantafillou et al., 2017; Hu et al., 2018), (ii) data-based methods that try to augment
additional data to the few-shot set (Benaim & Wolf, 2018; Gao et al., 2020b), and (iii) algorithm-
based solutions that aim to improve strategies for searching for the best hypothesis. Recently, a new
paradigm introducing prompts achieves promising results for few-shot language learning as shown
by GPT-3 (Brown et al., 2020), PET (Schick & Schütze, 2020) and LM-BFF (Gao et al., 2020a).

2.3 PROMPT-BASED LEARNING

Brown et al. (2020) first show that a GPT-3 frozen model can achieve impressive few-shot results
through manually designed prompts that provide a natural language description of the task. Since
then many efforts have been made on prompt-based learning (PL). In general, PL modifies the
original input, often adding a task-specific template or prompt, which usually contains some unfilled
slots to let a pre-trained language model probabilistically generate a textual response, from which
the final model output can be derived (Liu et al., 2021b). The ongoing research on PL has explored
(i) methods of prompt designing, including discrete prompts (Schick & Schütze, 2020; Shin et al.,
2020; Tam et al., 2021) and continuous or soft prompts (Li & Liang, 2021; Liu et al., 2021c; Lester
et al., 2021), (ii) applications of PL (Han et al., 2021; Ben-David et al., 2021; Ding et al., 2021), and
analysis of prompt-based learning (Liu et al., 2021a; Le Scao & Rush, 2021; Zhong et al., 2021).

Summary. Existing work in lifelong language learning aims to learn from a stream of NLP tasks
with plenty of training data, while the research in few-shot learning explores how to generalize well
on few-shot tasks. In contrast, we focus on a more challenging yet more practical problem lifelong
few-shot language learning (LFLL), where the model is expected to continually learn from a stream
of few-shot tasks while avoiding overfitting on the new task and forgetting of previously acquired
knowledge. We regard LFLL as an important step towards general language intelligence and propose
LFPT5 which takes full advantage of the strong few-shot learning ability of prompt tuning.

3 METHODOLOGY

In this section, we first formally define the LFLL problem with the two different adaption dimensions
of domains and tasks, and then illustrate how we reframe all types of tasks considered in this work
into a text-to-text format in T5. Finally, we present the details of our framework LFPT5.

3.1 PROBLEM FORMULATION

As shown in Figure 1, we identify two different dimensions of LFLL: learning of new tasks that
are of the same type but potentially of different domains (STDD), and learning of new tasks that
are of different types (DT). Specifically, STDD involves learning from a stream of domains D =
(D1, . . . ,Dn) that belong to the same type of few-shot task T , such as NER learning from CoNLL03
(Sang & De Meulder, 2003) and subsequently from OntoNotes (Hovy et al., 2006). Each task
domain Dk has its own training set Sk

train, validation set Sk
valid, and test set Sk

test. After the training on
Sk

train, the model is expected to perform well on all the k domains that it has learned so far and will
be evaluated with the same evaluation metric(s) on the combined test set Ŝk

test = ∪k
i=1S

i
test.

Different from STDD, in the DT dimension, the model is expected to continually learn from a
sequence of different types of few-shot tasks T = (T 1, . . . , T m), such as learning of NER (sequence
labeling), then text classification, and subsequently text summarization (generation). After learning
of T k, the model will be evaluated on the test set Si

test of every learned task T i separately for
1 ≤ i ≤ k as the evaluation metrics for different kinds of tasks might be different.

In both dimensions of LFLL, we assume that the validation set Sk
valid has the same size as the few-

shot training set Sk
train, that is, |Sk

valid| = |Sk
train|. The set up of using a few-shot validation set is

aligned with the overall goal of generalizing well on new tasks with limited labeled data.

3.2 LIFELONG FEW-SHOT LANGUAGE LEARNING WITH PROMPT TUNING OF T5 (LFPT5)

Without loss of generality, let Dtask denote the training dataset for any new few-shot task and Dpre
denote a large-scale pre-training dataset. Our goal is to learn a model ϕ for the task. Formally,

argmax
ϕ

log p(ϕ|Dtask,Dpre) ≈ argmax
ϕ

[log p(ϕ|Dtask, θ) + log p(θ|Dpre)] (1)
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Figure 2: Task formulation for Named Entity Recognition (NER), classification and summarization.

where θ is a prior pre-trained model, more specifically, a point estimate of the pre-trained model (see
A.1). The adaptation task for LFLL thus boils down to solving: argmaxϕ log p(ϕ|Dtask, θ). Tradi-
tionally, this has been done through fine-tuning θ. However, fine-tuning the entire model effectively
on small few-shot tasks could be challenging and may lead to overfitting (Howard & Ruder, 2018).

Brown et al. (2020) show that a large-scale pre-trained model (a frozen GPT-3) can act as a black-box
meta-learner (Chen et al., 2017) and yield impressive few-shot performance via manually designed
prompts constructed with task descriptions and some canonical examples. As model size continues
to increase (often in billions), it is indeed more appealing to have a single generalist model to perform
multiple different tasks simultaneously rather than having a separate copy for each task. However,
as Lester et al. (2021) pointed out manual prompt engineering may have several key limitations
including the human labor involved in the design process which can also be subjective and error-
prone, and its rigidness with respect to the maximum sequence length supported by the model.
Furthermore, the manual design assumes knowing the task in advance, which limits its applicability
to lifelong learning where the next task to learn may not be known in advance.

In our work for LLFL, we adopt the idea of prompt tuning proposed by Lester et al. (2021). We
freeze the pre-trained model θ and prepend a series of tunable tokens P , parameterized by ϕ (namely,
prompt embeddings), to the input sequence and optimize log p(ϕ|Dtask, θ) through gradient descent.
We use T5 (Raffel et al., 2019) as the pre-trained meta model, and the prompt embeddings are
initialized with the embeddings drawn from the vocabulary of T5.

Prompt tuning is a simple yet effective approach for learning many tasks as it only requires learning
a small number of prompt embeddings for each task. In addition, as the prompt embeddings can
condense the signal from the training data and exploit the huge amount of meta knowledge contained
in the frozen T5 model, prompt tuning also shows impressive results in few-shot learning. These
two advantages naturally make prompt tuning a good choice for LFLL.

3.2.1 TASK FORMULATION & ADAPTATION

We consider three typical task types in NLP: sequence labeling (e.g., NER), text classification and
text generation (e.g., summarization). Inspired by (Raffel et al., 2019; Lester et al., 2021), we re-
frame all tasks into a text-to-text format as shown in Figure 2. We denote the input text as X and the
output text as Y . The training objective for a task with dataset Dtask = {(X1, Y1), . . . , (Xn, Yn)}:

Ltask
ϕ = − log p(ϕ|Dtask, θ) = −

n∑
i=1

log p(Yi|[P,Xi], ϕ, θ) (2)

Where P are the prompt tokens pre-pended to the input and ϕ denote their embeddings. Wang
et al. (2019) show that memory-based methods where the model preserves some key samples from
previous tasks in memory to overcome forgetting, are more effective for lifelong learning in NLP
than the other two kinds, architecture and regularization based methods (§2.1). Instead of using an
external memory module, we tune our task prompts such that the model simultaneously acts as a
task solver and a generator. The generation capability allows the model to generate pseudo samples
of previously learned tasks that the current model can use to “refresh” its prior task knowledge.

When training as a task solver, the model learns to decode the output text (Y ) after reading the
original input text (X). We call this input-output format TASK format. For sequence labeling, the
output text is split into segment-label pairs by a special token ‘;’, and the text segment and its label in
a pair are separated by another special token ‘!’. For classification, we convert the original label into
a natural language description as the output text, e.g., converting the review score 5 into ‘wonderful’
for sentiment analysis. For text generation, we simply use the target text as the output text.

4



Published as a conference paper at ICLR 2022

pre-trained
T5 (frozen)

prompts

Type1

pre-trained
T5 (frozen)

prompts

solver & generator

data

data

pseudo 
data KL divergence

pseudo 
data KL divergence

Domain2

Domain1

pre-trained
T5 (frozen)

pre-trained
T5 (frozen)

solver & generator

data

data

pseudo 
data KL divergence

pseudo 
data KL divergence

Domain1

prompts

prompts

Domain2

pre-trained
T5 (frozen)

pre-trained
T5 (frozen)

solver & generator

data

data

pseudo 
data KL divergence

pseudo 
data KL divergence

prompts

prompts

...

... ...
Type2

...
Type3

Domain2

Domain1

Few shot 
training

Generating 
pseudo data

Minimizing KL 
divergence loss

Learning from 
different domains

Learning from
different types of tasks

Figure 3: Illustration of the learning process of LFPT5 for different task domains and task types. For learning
new domains, LFPT5 simultaneously trains the prompt embeddings as a task solver and a data generator. When
a new domain comes, it first generates pseudo samples of previous domains which will be combined with new
data for training to mitigate the forgetting of learned knowledge. A KL divergence loss is also optimized to
achieve label consistency between the previous and current model. To learn a new task type, LFPT5 includes
and tunes additional prompt embeddings for the new task while keeping the previous embeddings frozen.

When training as a data generator, the model learns to generate X as well as Y given a task-specific
generation token as input; we call this GEN format. We use different generation tokens for different
types of tasks and different domains to guide the model to generate pseudo samples for a specific
task, such as ‘GEN ner1’ for CoNLL NER, ‘GEN ner2’ for OntoNotes NER and ‘GEN class1’ for
AGNews classification. In addition, we insert one special token ‘ split ’ between X and Y . During
inference, the generated pseudo samples which do not contain this special token are discarded. The
data generation or language modeling (LM) loss can be expressed as:

Llm
ϕ = −

n∑
i=1

log p([Xi, Yi]|[G,P ], ϕ, θ) (3)

Where G is a task-specific generation token added to the prompt P . The training objective with
the TASK and LM losses becomes: Lϕ = Ltask

ϕ + λlmLlm
ϕ , where λlm is the weight of the LM loss.

Figure 3 illustrates the complete learning process of LFPT5 for new domains and task types.

Adapting to New Domains Before learning on a new domain Dk, LFPT5 first generates pseudo
samples (X̃, Ỹ ) of previous domains D1, . . . ,Dk−1 using the corresponding generation token in
the input prompt, which will be replayed later to alleviate forgetting of learned knowledge. To
achieve label consistency on the pseudo samples, we also minimize a KL divergence loss between
the previous and current models for the output tokens. More formally,

LKL
ϕ =

m∑
i=1

t∑
j=1

DKL(pj(V|[P, X̃i], ϕ
′, θ)||pj(V|[P, X̃i], ϕ, θ)) (4)

where m is the number of pseudo samples, t is the number of tokens in Ỹi, V is the T5 vocabulary
and ϕ′ is the prompt embeddings of the previous model.

The overall loss that LFPT5 optimizes for adapting to new domains is: Lϕ = Ltask
ϕ +λlmLlm

ϕ +λklLKL
ϕ ,

where λkl is the weight of KL divergence loss.

Adapting to New Task Types In order to learn a new task type Tk while not forgetting the acquired
knowledge of previous tasks T1, . . . , Tk−1, we include an additional set of prompt tokens for the new
task and fine-tune their embeddings while keeping the old ones frozen. This is indeed an instance
of dynamically expandable network (Yoon et al., 2017), where each task type has its own dedicated
prompt. The embedding of the new prompt tokens can be initialized with the learned embeddings
from a previous task to avoid forgetting and to have a better task prior. We define 300 tunable tokens
per task prompt, meaning that we only add about 0.04% of the parameters of the pretrained T5 when
learning a new task type. Compared with previous lifelong learning frameworks which fine-tune
the entire model for all tasks ignoring the negative transfer between different types of tasks, LFPT5
shows significant superiority, and it can also achieve better results than multitask learning (§4.4).
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4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Tasks, Datasets and Metrics Three different types of tasks are investigated in our work: NER as
an instance of sequence labeling, text classification, and summarization as an instance of text gener-
ation. For NER, we use CoNLL03 (Sang & De Meulder, 2003) and OntoNotes (Hovy et al., 2006)
as different domains. For classification, we conduct experiments on four different datasets/domains:
AGNews for news classification (Zhang et al., 2015), Amazon Review for sentiment analysis
(McAuley et al., 2015), DBPedia for Wikipedia article classification into topics (Lehmann et al.,
2015), and Yahoo for QA categorization (Zhang et al., 2015). The datasets for summarization in-
clude CNNDM containing CNN/DM news (Nallapati et al., 2016), WikiHow containing how-to
instructions (Koupaee & Wang, 2018) and Xsum containing BBC news (Narayan et al., 2018).

We conduct 16-shot learning for NER and classification based on Gao et al. (2020a), i.e., there are 16
samples per class in the training and validation sets. For summarization, we sample 64 examples for
training and validation per domain (see A.9 for details). For pseudo data, LFPT5 generates 2 samples
per learned class for NER and classification, and 4 samples per learned domain for summarization.
The evaluation metrics of NER, classification and summarization are F1, accuracy and ROUGE
scores, respectively. As the task order and few-shot data might influence the performance, we run
every experiment 3 times with different random seeds and report the mean results.

Methods Compared We use T5-Large as the backbone model and compare our LFPT5 with the
following methods in the experiments for learning new domains of a task:

• Fine-tuning (FT) tunes the whole T5 model during the LFLL process. We include this method as
fine-tuning is still the dominant paradigm in NLP.

• Prompt tuning (PT) continually tunes the prompt embeddings while learning on different do-
mains. PT does not include LM and KL objectives and does not generate pseudo samples.

• EWC (Kirkpatrick et al., 2017) and MAS (Aljundi et al., 2018) are two regularization-based
lifelong learning methods requiring no extra memory. They constrain the update of parameters
that are important to the learned tasks to retain previous knowledge. We apply these two methods
to both PT and FT, and get four distinct methods: EWC-PT, MAS-PT, EWC-FT and MAS-FT.

• Prompt tuning with real data (PT-R) selects the same number of randomly selected real samples
from the learned domains as the generated pseudo samples in LFPT5. These samples are used as
memory data which is replayed during the learning of the new domain. PT-R resembles a ‘real’
memory-based LFLL model with prompt tuning and its performance can be used to compare the
quality of the pseudo samples generated by LFPT5.

• Multitask prompt tuning (MT-PT) simultaneously trains on all the domains together with the
combined data. It serves as an upper bound for LFPT5 which can use only the new domain data.

In addition, we report experiments with a different backbone model (T5-Base), different numbers of
few-shot data and different number of pseudo samples in Appendix A.4, A.5 and A.6, respectively.

For adapting to new task types, we compare LFPT5 with multitask fine-tuning (MT-FT), MT-PT
and AdapterFusion (Pfeiffer et al., 2021) which learns a task-specific composition of adapters from
previous tasks.

4.2 SINGLE TASK RESULTS

To assess the learning ability of prompt tuning, we first compare single task few-shot results for T5
fine-tuning (T5-FT), T5 prompt tuning (T5-PT) and BERT-Large fine-tuning on NER and classifica-

Method NER Text classification

CoNLL03 OntoNotes AGNews Amazon DBPedia Yahoo

SoTA (full-shot) 94.6 92.07 95.55 65.83 99.38 77.62
BERT-Large 62.67±1.34 63.55±1.68 82.33±1.66 40.47±1.39 97.29±0.61 59.97±2.25

T5-FT 53.74±1.20 55.15±0.70 83.17±2.60 48.80±2.05 98.19±0.19 50.07±21.84

T5-PT 68.40±1.24 61.23±2.14 85.33±1.05 43.73±0.41 97.36±0.52 65.67±2.03

Table 1: Results on single few-shot tasks on NER (F1 score) and text classification (accuracy).
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tion in Table 1, while Figure 4 shows the comparison between T5-FT and T5-PT on summarization.
We also report the state-of-the-art (SoTA) results for the original full-shot training for each task.

CNNDM WikiHow Xsum0
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60 SOTA ROUGE-1
SOTA ROUGE-2
SOTA ROUGE-L

FT ROUGE-1
FT ROUGE-2
FT ROUGE-L

PT ROUGE-1
PT ROUGE-2
PT ROUGE-L

Figure 4: Results for T5 prompt tuning (PT) and T5
fine-tuning (FT) on summarization (ROUGE scores).

We can see that the performance of T5-PT is quite
good compared with BERT-Large and T5-FT. T5-
FT overfits on several few-shot tasks (CoNLL03,
OntoNotes and Yahoo) and achieves poor re-
sults. PT significantly improves these results
as it requires to tune only the prompt embed-
dings. In particular, T5-PT achieves better results
than fine-tuned BERT-Large in all cases except
OntoNotes NER. Similarly, on summarization,
T5-PT achieves better performance than T5-FT in
all measures across the datasets except ROUGE-
1 on WikiHow. These results suggest that PT has
the potential for LFLL if we can solve the catas-
trophic forgetting problem well.

4.3 RESULTS FOR LEARNING NEW DOMAINS

NER The LFLL results on the NER domains are shown in Table 2. We report the final F1 score
on the whole test set after learning all domains. We observe that EWC and MAS achieve slightly
better results than simply fine-tuning the parameters, meaning the catastrophic forgetting problem is
still severe. LFPT5 outperforms these two regularization-based lifelong learning methods by a large
margin, which demonstrates the superiority of our method.

Method Fine-tuning EWC- Fine-tuning MAS-Fine-tuning Prompt tuning-Real MT-Prompt tuning

F1 43.07±1.48 43.53±1.7 43.63±1.9 48.72±0.9 54.32±0.88

Method Prompt tuning EWC-Prompt tuning MAS-Prompt tuning LFPT5

F1 44.34±0.46 44.68±1.4 45.091±.45 47.59±2.16

Table 2: F1 score on the whole test set after learning all NER domains (CoNLL03, OntoNotes).

Comparing the results of PT- and FT-based methods, we can find that PT-based methods show better
performance, which can be interpreted by two factors: (i) PT has stronger ability than FT for few-
shot learning of new domains. (ii) The knowledge of the two domains is not so difficult to transfer
from one to the other as there are some overlaps between the label spaces. So even if PT needs to
continually learn knowledge from different domains with much fewer tunable parameters than FT, it
can successfully do so and outperform FT. PT-R performs better than LFPT5, which means that the
quality of generated pseudo samples could be further improved. In addition, there is a performance
gap between LFPT5 and MT-PT, indicating there still remains room for improvement.

Method Fine-tuning EWC- Fine-tuning MAS-Fine-tuning Prompt tuning-Real MT-Prompt tuning

Accuracy 40.11±7.76 40.60±3.02 40.79±6.09 67.23±1.36 76.08±0.77

Method Prompt tuning EWC-Prompt tuning MAS-Prompt tuning LFPT5

Accuracy 28.47±9.65 29.09±8.92 29.46±8.97 52.71±4.19

Table 3: Accuracy on the whole test set after learning all domains (AGNews, Amazon, DBPedia, Yahoo).

Text Classification Table 3 shows the classification results on the whole test set after learning the
four domains. We can see that LFPT5 achieves significant improvements compared with previous
lifelong learning methods. For text classification, a significant difference from NER is that FT-based
methods show much better performance than PT-based methods. We analyse the reasons as follows.
The label space of the four domains is quite different, which makes it hard to transfer knowledge
across different domains. So retaining and accumulating knowledge during the learning of different
domains is pretty challenging for the PT-based methods as they have only a few tunable parame-
ters. Acquiring of new information can easily cause forgetting of previously learned knowledge.
Compared with PT, there are much more tunable parameters in FT, improving its ability to accom-
modate knowledge from different domains. Even though LFPT5 is based on PT, it can overcome
such limitations by learning to remember consistently from its own generated pseudo samples.

In Appendix A.3, we additionally evaluate how LFPT5 performs compared to the baselines for a
large number of different tasks (domains) by considering 5 NLI tasks and combine them with the
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original 4 classification tasks to form a longer sequence of 9 classification tasks. These results verify
that LFPT5 performs much better than previous baselines when learning from many tasks.

Method Fine-tuning EWC- Fine-tuning MAS-Fine-tuning Prompt tuning-Real MT-Prompt tuning

A-RG 15.71±1.35 15.91±1.46 15.76±1.71 17.48±0.25 19.78±0.70

Method Prompt tuning EWC-Prompt tuning MAS-Prompt tuning LFPT5

A-RG 15.67±0.24 15.85±0.15 15.79±0.09 17.05±0.92

Table 4: Average of ROUGE-1, ROUGE-2 and ROUGE-L scores (A-RG) on the whole test set after learning
all domains (CNNDM, WikiHow, XSum).

Summarization For summarization, we find that the generated pseudo summaries (that follow the
generated pseudo source documents) are often ambiguous. This could be because summarization
has a large search space and is often an underconstrained task for the model as showed by Kryscinski
et al. (2019). As the leading three sentences (a.k.a. Lead-3) already construct a strong baseline for
summarization (especially for news articles), we use the leading three sentences of the generated
document as its summary to form the pseudo data. From the results in Table 4, we can see that PT-
based methods achieve similar performance to FT-based methods. This is different from NER and
text classification, showing that the difficulty of transferring knowledge across different domains
in summarization might be between that of NER and classification. Here also LFPT5 outperforms
previous lifelong learning methods by a large margin.

Summary LFPT5 achieves much better performance than previous lifelong learning methods on
three different types of tasks, which verifies its effectiveness and strong generalization ability.

4.4 RESULTS FOR LEARNING NEW TASK TYPES

To investigate LFPT5’s performance on learning new task types, we consider two different variants:
(i) LFPT5 with FKT initializes the prompt embeddings of one task using the prompt embeddings of
the previously learned task, which we regard as forward knowledge transfer (FKT), and (ii) LFPT5
w.o. FKT initializes the prompt embeddings of every task with the embeddings drawn from the
vocabulary of T5. For these experiments, we use CoNLL03 for NER, AGNews for text classification
and CNNDM for summarization. From the results in Table 5, we can observe the following:

• Both variants of LFPT5 can achieve better performance than MT-FT and MT-PT. Multitask learn-
ing simultaneously trains all tasks together. The learning of one task might cause negative effect
on the learning of others. In contrast, LFPT5 variants include and tune additional prompt embed-
dings for new types of tasks which avoids the negative cross-task knowledge transfer.

• LFPT5 performs better than AdapterFusion (Pfeiffer et al., 2021) which demonstrates its superi-
ority. Moreover, LFPT5 is much more parameter-efficient than AdapterFusion. In the course of
learning these three different task types, AdapterFusion introduces about 21.72% of the parame-
ters of the pretrained T5, while LFPT5 only adds about 0.12%.

• Comparing the two variants of LFPT5, the effect of forward knowledge transfer can be positive
or negative, depending on the tasks. The forward knowledge transfer between classification and
summarization is positive. However, they have negative effect on NER; transferring knowledge
from them to NER or from NER to them negatively affect the learning of the new task.

Method Task Order

(i) (ii) (iii)
Summ-Class-NER Class-NER-Summ NER-Summ-Class

Multitask fine-tuning 23.24, 78.25, 57.81 81.50, 58.28, 21.28 50.21, 22.49, 82.25
Multitask prompt tuning 24.16, 85.50, 50.80 82.75, 65.31, 23.36 62.83, 11.51, 83.25
AdapterFusion 22.26, 83.25, 55.62 81.25, 63.19, 22.37 62.99, 21.20, 82.50
LFPT5 w.o. FKT 25.48, 84.75, 63.28 83.25, 67.66, 23.68 66.65, 22.97, 84.50
LFPT5 with FKT 25.48, 86.00, 62.44 83.25, 65.01, 24.92 66.65, 22.80, 84.25

Table 5: Results for learning three different task types: NER (CoNLL), Classification (AGNews) and Summa-
rization (CNNDM). The tasks are presented in three different orders with different few-shot samples (results
are shown in the same order). The metrics reported are F1 for NER, accuracy for Classification and Average-
ROUGE for Summarization.
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Method
Domain Order

Average(i) (ii) (iii)
DB-Amazon-Yahoo-AG (Avg.) DB-Amazon-AG-Yahoo (Avg.) Yahoo-Amazon-AG-DB (Avg.)

Prompt tuning 00.00, 00.00, 07.29, 81.71 (18.88) 00.00, 00.00, 52.57, 64.57 (24.85) 00.71, 00.00, 00.00, 97.86 (41.67) 28.47±9.65

EWC-Prompt tuning 00.00, 00.00, 10.86, 82.43 (19.79) 00.00, 00.00, 56.14, 68.14 (26.36) 00.00, 00.00, 00.00, 96.93 (41.12) 29.09±8.92

MAS-Prompt tuning 00.00, 00.00, 12.57, 83.86 (20.45) 00.00, 00.00, 58.00, 65.71 (26.24) 00.29, 00.00, 00.57, 97.86 (41.70) 29.46±8.97

Fine-tuning 26.71, 06.40, 09.43, 85.71 (32.48) 21.36, 05.40, 57.00, 71.29 (37.09) 04.43, 17.80, 25.86, 98.14 (50.76) 40.11±7.76

EWC-Fine-tuning 38.21, 00.20, 21.00, 86.29 (39.00) 24.07, 04.00, 59.86, 68.14 (37.97) 00.14, 12.80, 05.86, 98.07 (44.82) 40.60±3.02

MAS-Fine-tuning 37.29, 00.60, 15.71, 83.29 (36.91) 20.79, 00.40, 61.14, 67.00 (36.06) 01.00, 11.40, 27.57, 98.07 (49.39) 40.79±6.09

Prompt tuning-Real 85.79, 31.20, 43.14, 82.00 (67.67) 82.57, 37.40, 67.29, 64.43 (68.64) 43.71, 24.20, 58.71, 94.29 (65.39) 67.23±1.36

LFPT5 48.57, 23.20, 32.43, 78.43 (47.64) 54.93, 12.20, 61.86, 67.43 (52.58) 10.57, 09.20, 59.86, 98.00 (57.91) 52.71±4.19

MT-Prompt tuning 95.00, 47.40, 62.29, 75.57 (76.73) 93.57, 47.80, 73.86, 65.57 (76.52) 61.71, 43.00, 74.71, 93.21 (75.00) 76.08±0.77

Table 6: Text classification accuracy on the whole test set for three runs with different domain order.

5 ANALYSIS

Influence of Domain Order To evaluate the influence of domain orders when LFPT5 is learning
different task domains, we show the results of three runs with different domain order on the clas-
sification task in Table 6. We can see that the order of domains influences the performance of all
methods a lot. For example, PT can achieve 41.67 accuracy on the third run while the accuracy of the
first run is only 18.88. This phenomenon indicates that the difficulty of transferring knowledge from
one domain to another might be quite different from that of the opposite transfer direction. Though
the performance is affected by the order, LFPT5 outperforms previous regularization-based lifelong
learning methods by a large margin for all different orders (see Appendix A.8 for more analysis).

λkl 0 0.02 0.04 0.10 0.20 0.40

A-RG 16.27±0.50 16.41±0.27 17.05±0.92 17.11±0.59 16.97±0.88 16.26±0.32

Table 7: Average Rouge (A-RG) score of LFPT5 with different λkl on summarization.

Influence of KL Loss To investigate the influence of the label consistency loss LKL (Eq. 4),
we conduct experiments with different λkl on summarization. From the results in Table 7, we
observe that the model achieves the best A-RG score of 17.11 with λkl = 0.10 and score of 16.26
with λkl = 0.40. The performance of the variant without LKL (i.e., λkl = 0) is worse than the
performance of all other variants except the variant with λkl = 0.40 (too large), which demonstrates
the effectiveness of LKL.

High-quality Data

SAN FRANCISCO 1996-08-25 
__split__ SAN FRANCISCO ! 

location

Low-quality Data

" We have to work through the issues. 
__split__ We ! location

So nice! this book is beautiful, the 
pictures are great and the story is 
fascinating. __split__ wonderful

Nike, Samsung unveil new HD mobile phones The 
New York based company today unveiled the 
GoogleHD mobile phone, which has been designed 
with Nokia fans in mind. __split__ sports

Figure 5: Examples of generated pseudo samples for
text classification (top) and NER (bottom).

Quality of Pseudo Samples We show a few
pseudo samples generated by LFPT5 in Fig-
ure 5. We can observe that LFPT5 can generate
high-quality pseudo samples which are useful
for remembering previous knowledge. How-
ever, as shown in the right part of the figure, the
label of generated data could also be incorrect,
which explains the performance gap between
LFPT5 and PT-R. In addition, there are several
obvious errors, e.g., the pseudo data might not
have the ‘ split ’ token or belong to the re-
quired domain. We can automatically discard these samples. We believe that exploring methods to
generate more reliable pseudo data should be a quite promising research direction in LFLL.

Abbreviation Variations When learning NER, LFPT5 as a task solver needs to generate the en-
tities in the original input (Figure 2). We observe an entity error related to abbreviation during the
generation, such as generating ‘the United States’ while the original entity is ‘U.S.’. This kind of
error unfairly penalizes LFPT5’s F1 score, but it also indicates that T5 does not just copy words
from the original input but thinks about the relevant knowledge and expresses it in its own way.

6 CONCLUSION

In this work, we introduce LFPT5, a unified framework for lifelong few-shot language learning
(LFLL) where the model needs to generalize well on various new few-shot tasks without forgetting
previous acquired knowledge. Extensive experimental results and analysis show that LFPT5 can
easily adapt to new types of tasks or new domains while retaining the knowledge of learned tasks,
which we regard as an important step towards general language intelligence. In the future, we would
like to investigate ways to improve the quality of generated pseudo samples.
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A APPENDIX

A.1 DERIVATION OF EQUATION 1

Assuming ϕ ⊥⊥ Dpre|θ, we can write:

argmax
ϕ

log p(ϕ|Dtask,Dpre) = argmax
ϕ

∫
θ

[log p(ϕ|Dtask, θ) + log p(θ|Dpre)]dθ

≈ argmax
ϕ

[log p(ϕ|Dtask, θ̂) + log p(θ̂|Dpre)] ⇒ with point estimate of θ.

A.2 DERIVATION OF EQUATION 2

Lϕ = − log p(ϕ|Dtask, θ) = − log[p(Dtask|ϕ, θ) p(ϕ)]

= −
n∑

i=1

log p(Yi|[P,Xi], ϕ, θ) ⇒ assuming uniform p(ϕ).

A.3 LEARNING FROM A LARGE NUMBER OF DIFFERENT DOMAINS

To evaluate whether our method can perform better than the baselines when learning from a large
number of different domains, we consider 5 NLI tasks (GLUE-MNLI (Williams et al., 2017), Scitail
(Khot et al., 2018), SICK (Marelli et al., 2014), SuperGLUE-CB (De Marneffe et al., 2019) and
GLUE-RTE (Wang et al., 2018)) as classification and combine them with the original 4 classification
tasks to form a long sequence of 9 classification tasks. We evaluate LFPT5, MAS-Prompt tuning and
MAS-Fine-tuning on this long sequence. The accuracy after learning all tasks is shown in Table 8.
From the results, we can observe that LFPT5 still performs much better than previous baselines
when learning from a large number of tasks.
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Method LFPT5 MAS-Prompt tuning MAS-Fine-tuning

Accuray (%) 43.98±2.68 9.37±3.17 34.37±6.21

Table 8: Accuracy (%) of different methods after learning all 9 domains.

A.4 DIFFERENT BACKBONE MODEL

To investigate how the model scale affects the LFLL capability, we compare the performance of
LFPT5, EWC-Prompt tuning and EWC-Fine-tuning on summarization using T5-Base backbone.
From the results in Table 9, we can observe that LFPT5 performs much better than EWC-Prompt
tuning. However, it is slightly worse than EWC-Fine-tuning. This is consistent with the finding in
Lester et al. (2021) that prompt tuning performs better when applied to larger pretrained language
models.

Method LFPT5 EWC-Prompt tuning EWC-Fine-tuning

A-RG 14.93±0.82 13.05±1.23 15.15±1.38

Table 9: A-RG score of different methods with T5-Base backbone on summarization.

A.5 DIFFERENT NUMBERS OF FEW-SHOT DATA

We conduct experiments to compare the performance of LFPT5, EWC-Prompt tuning and EWC-
Fine tuning with different numbers (16, 32) of few-shot data on summarization. The A-RG score
is shown in Table 10. From the results, we can see that LFPT5 consistently outperforms previous
baselines with different numbers of few-shot samples.

Few-shot Number LFPT5 EWC-Prompt tuning EWC-Fine-tuning

16 15.11±0.44 14.16±0.42 13.75±2.35

32 15.58±0.27 14.30±0.48 14.78±1.49

Table 10: A-RG score of different methods with different numbers (16, 32) of few-shot data on summarization.

A.6 INFLUENCE OF THE NUMBER OF PSEUDO SAMPLES

As generating pseudo samples is feasible and cheaper, we can use any number of pseudo samples.
We conduct experiments on summarization to analyze the influence of different numbers of pseudo
samples. From the results in Table 11, we can find that increasing the number of pseudo samples
will not always improve the performance. The model achieves the best A-RG score 17.05 with 4
pseudo samples.

A.7 MULTIPLE PROMPTS IN MULTITASK PROMPT TUNING

We use a single prompt for multitask prompt tuning in Table 5, which is different from LFPT5 in
model capacity. To better support our claim, we conduct multitask prompt tuning experiments using
the same number of tunable tokens as LFPT5 (multiple prompts). The tunable tokens are shared
among all three tasks. From the results in Table 12, we can see that LFPT5 performs better than
both multitask prompt tuning methods.

A.8 ANALYSIS ON PT-BASED EWC AND MAS

From the results in Table 6, we can observe that the performance on previous tasks for PT-based
EWC and MAS is almost 0. There could be two reasons:

• There are only a few tunable parameters in prompt tuning, which is difficult for retaining and
accumulating knowledge. So the learning of new knowledge from different domains is more
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Number 2 4 8 16 32

A-RG 16.28±0.95 17.05±0.92 16.80±0.52 16.74±0.45 16.79±0.64

Table 11: A-RG score of LFPT5 with different numbers of pseudo samples on summarization.

Method Task Order

(i) (ii) (iii)
Summ-Class-NER Class-NER-Summ NER-Summ-Class

Multitask prompt tuning (single prompt) 24.16, 85.50, 50.80 82.75, 65.31, 23.36 62.83, 11.51, 83.25
Multitask prompt tuning (multiple prompts) 21.01, 82.25, 58.59 83.00, 64.83, 22.73 63.23, 21.41, 84.00
LFPT5 w.o. FKT 25.48, 84.75, 63.28 83.25, 67.66, 23.68 66.65, 22.97, 84.50
LFPT5 with FKT 25.48, 86.00, 62.44 83.25, 65.01, 24.92 66.65, 22.80, 84.25

Table 12: Comparison results of single prompt multitask prompt tuning, multiple prompts multitask prompt
tuning and LFPT5.

likely to cause the forgetting of previously learned knowledge. LFPT5 utilizes pseudo samples to
alleviate this problem.

• Few-shot language learning is more challenging. The model training is already sub-optimal even
without lifelong learning. So the performance is relatively low.

A.9 DATASETS DETAILS

There are 4 and 18 classes in CoNLL03 and OntoNotes, respectively. And the number of classes in
AGNews, Amazon, DBPedia and Yahoo is 4, 5, 14 and 10, respectively. We sample 16 examples per
class, which means that there are at least 64 samples in the training and validation sets. Therefore,
we sample 64 examples for the training and validation set per domain (dataset) for summarization.

A.10 PARAMETER SETTINGS

We use the Adafactor (Shazeer & Stern, 2018) optimizer with a learning rate of 0.5. For NER,
we set λlm and λkl to 0.10 and 0.03, respectively. For text classification, we adopt 0.25 and 0.01
for the loss weights λlm and λkl, respectively. We set 0.10 for λlm and 0.04 for λkl when learning
summarization. Hyperparameter search is done on the validation sets when comparing the single
task few-shot results in Section 4.2.

For EWC and MAS based methods, we conduct hyper-parameter search and report the optimal
results. For AdapterFusion (Pfeiffer et al., 2021), we adopt the implementation from AdapterHub
and use the default adapter settings for T5. The default bottleneck reduction factor is 16, i.e., the
bottleneck size is 64. We adopt a learning rate of 1e-4 with AdamW and a linear learning rate decay
following the orginal AdapterFusion paper. All other hyper-parameter settings (such as batch size
and evaluation interval) are the same as LFPT5.
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