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Abstract

Detecting deepfakes has been an increasingly important topic, especially given the
rapid development of AI generation techniques. In this paper, we ask: How can we
build a universal detection framework that is effective for most facial deepfakes?
One significant challenge is the wide diversity of existing deepfake generators,
which produced varied types of forgery artifacts (e.g., lighting inconsistency, color
mismatch, etc). But should we “teach” the detector to learn all these artifacts sepa-
rately? It is impossible and impractical to elaborate on them all. So the core idea
is to pinpoint the more common and general artifacts across different deepfakes.
Through systematic analysis of shared technical frameworks in existing deepfake
algorithms, we categorize deepfake artifacts into two distinct yet complementary
types: Face Inconsistency Artifacts (FIA) and Up-Sampling Artifacts (USA). FIA
arise from the challenge of generating all intricate details, inevitably causing incon-
sistencies between the complex facial features and relatively uniform surrounding
areas. USA, on the other hand, are the inevitable traces left by the generator’s
decoder during the up-sampling process, with all existing deepfakes exhibiting
either or both artifacts. Subsequently, we propose a novel image-level pseudo-fake
creation framework that constructs fake samples with only the FIA and USA, with-
out introducing extra less-general artifacts. Specifically, we reconstruct the target
face to simulate the USA, while utilize image-level blend on diverse facial regions
to create the FIA. We surprisingly found that, with this intuitive design, a standard
image classifier trained only with our pseudo-fake data can non-trivially generalize
well to unseen deepfakes.

1 Introduction

In recent years, A growing number of facial manipulation techniques have advanced due to the rapid
development of generative models [35, 36, 58, 75], which facilitate the production of highly realistic
and virtually undetectable alterations. As a result, the risks of personal privacy being violated and the
spread of misinformation have increased significantly. Therefore, developing a universal deepfake
detector that can be used to detect the existing diverse fake methods has become an urgent priority.
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Hint-1: AI-generated faces often exhibit inconsistencies at both the face level and region level compared to the surrounding areas.

Hint-2: AI-generated faces often exhibit up-sampling artifacts by the decoders during the generation process.

Figure 1: Illustration of the two identified general forgery artifacts across different face deepfakes: (a)
Face Inconsistency Artifacts and (b) Up-Sampling Artifacts. We show that the existing face deepfakes
typically exhibit both or one of these two artifacts.

In this paper, we pose the question: How can we build a universal detection framework that is effective
for most facial deepfakes? A significant challenge lies in the wide range of deepfake generators,
which lead to different types of forgery artifacts. Specifically, a large number of existing works
are dedicated to creating detection algorithms that are carefully designed to identify counterfeit
artifacts within specific handcrafted designs, including eye blinking [42], pupil morphology [25],
and corneal specularity [32]. However, these methods are mainly effective for identifying particular
forgery techniques. But should we train the detector to learn each of these artifacts separately? It is
impossible and impractical to cover them all. So, where should we start from?
The core idea is to encourage the detection model to learn the more generalizable artifacts. As
indicated in previous works [81, 63, 70], different fakes might share some common forgery patterns,
and the unlimited deepfake artifacts could be generalized and summarized by the limited generalizable
artifacts. Motivated by this, we conduct an in-depth preliminary exploration of the common patterns
of existing deepfake artifacts, through which we identify two generalizable deepfake artifacts and
categorize them into two distinct yet complementary categories: Face Inconsistency Artifacts (FIA)
and Up-Sampling Artifacts (USA), as depicted in Figure 1. FIA represents an inherent limitation that
deepfakes struggle to overcome, originating from the generator’s incapacity to precisely reproduce
facial attributes and nuances, as well as the inescapable disparities between regions induced by
amalgamation processes. Unlike FIA, Up-Sampling Artifacts (USA) are not readily apparent to the
unaided eye and originate from the generator’s inherent up-sampling process that the generator’s de-
coder cannot adequately substitute. Crucially, since decoding and up-sampling constitute fundamental
operations in facial manipulation generators, such artifacts become an inevitable byproduct across all
methods in this domain. Numerous prior investigations have substantiated this observation [22, 65].
To date, all existing deepfakes characteristically display one or both of these artifact categories.

To enable the model to simultaneously capture FIA and USA, we propose a sophisticated data aug-
mentation method: FIA-USA, which leverages super-resolution models [71] and autoencoders [57]
to introduce Up-Sampling Artifacts (USA) by reconstructing the face, and employs a strategy of
generating multiple masks to blend the reconstructed face with the original, thereby introducing
Face Inconsistency Artifacts (FIA) by creating discrepancies at both the facial and regional levels.
Augmented with the aforementioned dual artifacts, our method effectively conditions the model to
generalize across unseen deepfakes. Furthermore, to maximize the efficacy of FIA-USA, we intro-
duce two complementary technique: Automatic Forgery-aware Feature Selection (AFFS), which
streamlines feature dimensionality and augments feature discernment through adaptive selection.
Region-aware Contrastive Regularization (RCR), by juxtaposing the features of the manipulated
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region against those of the authentic region, RCR enhances the model’s focus on the upsampling
traces within the manipulated areas and the inconsistencies between different regions.

Extensive experiments conducted on seven widely used Deepfake detection datasets (encompassing
over 58 distinct forgery methods, spanning facial manipulation categories including identity
swapping, expression reenactment, generative face synthesis, and attribute editing) validate the
superior efficacy of our method. Detailed ablation experiments and robustness experiments have
demonstrated the effectiveness of each component in our method and the robustness of our method to
disturbances.

Table 1: Comparison of our framework and state-of-the-art(SOTA) methods using pseudo-
deepfake synthesis. Our method differs from previous methods in terms of the level at which
alterations are applied (local vs global), the introduced artifacts, and the level at which facial
inconsistencies are applied.

Methods
Alteration artifact Introduced Artifacts

global local Face Inconsistency Up-Samplingface-level region-level
Face Xray [40], PCL [89], OST [4] ✓ ✓
SLADD [3] ✓ ✓
SBI [63] ✓ ✓
SeeABLE [37] ✓ ✓
RBI [64] ✓ ✓
Plug-and-Play [83] ✓ ✓
Ours ✓ ✓ ✓ ✓ ✓

2 Related Work

Classic Deepfake Detection. Classic deepfake detection can be categorized into multiple aspects: On
the one hand, typical deepfake image detection methods encompass frequency-domain analysis [56,
49], identity information [17, 9, 69], contrastive learning [23, 87], network structure improvement [88,
17], watermark [85, 72], robustness [38, 51], interpretability [16, 62] and so forth. On the other
hand, deepfake video detection methods include innovative video representation formats [78], self-
supervised learning [2, 27, 92], anomaly detection [19, 20], biological signal [76, 8], multi-modal
based [54]. In addition to the above two aspects, the the remainder of the work involves forgery
localization [51, 26], multi task learning [51, 86], adversarial attack [44], and so on.

Deepfake Detectors Based on Data Synthesis. A notable approach involves synthesizing pseudo-
fake faces during training to enhance generalization capability. Early works like Face X-ray [40]
pioneered blending-based augmentation by fusing facial regions from different identities to simulate
forgery boundaries. Subsequent methods improved upon this paradigm through different artifact
simulation strategies: SLADD [3] focused on local adversarial perturbations, SBI [63] proposed self-
blending to amplify facial inconsistencies, SeeABLE [37] which proposes fine-grained region-specific
blending, and Plug-and-Play [83] employs facial feature masks rather than full-face manipulation for
enhanced face synthesis precision. However, as highlighted in Table 1, existing methods predom-
inantly focus on isolated artifact types (Mainly focused on FIA) and single-scale modifications
(global or local), fundamentally limiting their ability to capture the artifacts interplay inherent in real
deepfakes. The paradigm of this data augmentation method can be represented as:

IF = M ⊙ It + (1−M)⊙ Is, (1)

where, It represents the target face, Is represents the source face, and M represents the mask. Our
proposed FIA-USA method injects new vitality into this paradigm by generating multiple types of
masks, introducing USA to It, as well as random combination of artifacts.

3 Method

In this section, we begin by outlining two distinct and prevalent types of forgery artifacts found in
deepfakes: Face Inconsistency Artifacts (FIA) and Up-Sampling Artifacts (USA). We then detail
the construction of data augmentation techniques (FIA-USA) designed to enable the model to learn to
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Figure 2: The overall framework of our proposed method consists of: 1) FIA-USA enhances the
capability of standard classifiers to effectively detect and generalize to unknown deepfake techniques
by generating pseudo-fake data containing Face Inconsistency Artifacts (FIA) and Up-Sampling
Artifacts (USA). 2) Region-aware Contrastive Regularization (RCR) enables the model to focus
simultaneously on forged boundaries and spatial artifacts through the contrastive regularization of
features from forged and real regions. 3) Automatic Forgery-aware Feature Selection (AFFS)
achieves efficient feature selection by assessing the similarity between the feature maps of each
channel in each layer and the mask.

detect these artifacts concurrently. Subsequently, we present the Automatic Forgery-aware Feature
Selection (AFFS) and Region-aware Contrastive Regularization (RCR).

3.1 FIA-USA.

Face Inconsistency Artifacts (FIA). As depicted in Figure 1, Face Inconsistency Artifacts (FIA)
frequently occur in deepfakes due to the inherent difficulty in rendering intricate details, which often
results in discrepancies between intricate facial features and the more uniform surrounding regions.
In essence, until deepfake technology advances to the point where it can flawlessly replicate real
faces, these artifacts are likely to persist. We explore the origins of Face Inconsistency Artifacts by
categorizing deepfake techniques into two domains: Full Face Synthesis and Face Swapping. In
deepfake-based full face synthesis, Face Inconsistency Artifacts inherently persist regardless of the
generator’s capabilities, while their severity directly correlates with the model’s performance. For
face swapping, these artifacts arise from two primary sources: 1). the efficacy of the generator. 2).
the blending boundary created during the face swapping’s blending procedure. Furthermore, we can
categorize face swapping into two main types based on the forged area: a. macro-editing realize face
swapping through 4 or 81 facial keypoints. and b. micro-editing, which enables granular control over
individual facial features. In section B of the appendix, we provide a detailed description of the
classification of forgery techniques and their differences.

Up-Sampling Artifacts (USA). These artifacts consistently present in synthetic facial regions
originate from upsampling operations within the generator’s decoder architecture, where interpolation
processes inevitably introduce characteristic distortion patterns, with the extent of USA (Up-Sampling
Artifacts) introduced varying significantly across different generator implementations. To investigate
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more universal up-sampling artifacts, we categorize forgery techniques into two types: One category
generates images of forged regions that are as clear and free of blur as the original image. And
another type result in blurred tampered areas, requiring additional facial super-resolution models
(SR) to process the blurred areas.

FIA-USA. While FIA and USA represent two fundamental artifact categories in deepfakes, con-
ventional data augmentation methods predominantly focus on simulating isolated forgery traces,
thereby hindering detection models from effectively learning cross-domain forgery patterns. To
bridge this critical gap, we propose FIA-USA—a dual-artifact collaborative enhancement framework
engineered for universal detection. Our framework systematically emulates the forgery process
through a three-pronged methodology:

1. Multi-Type Mask Synthesis(MTMS): The Multi-Type Mask Synthesis module aims to compre-
hensively model Face Inconsistency Artifacts (FIA) through a hierarchical mask generation strategy,
covering both macro-editing boundaries and micro-editing traces. This process involves two comple-
mentary approaches:
a. Macro-Editing Mask. We generate facial contours through two configurations: (1) a high-precision
mode using 81 facial keypoints to compute detailed convex hull boundaries, and (2) a rectangular
approximation mode derived from 4 keypoints. The initial mask M is formulated as:

M = H(Kn), n ∈ {4, 81} (2)

whereH(·) denotes convex hull computation and Kn represents the keypoints set. As same as [63],
the initial mask M subsequently undergoes erosion or dilation by applying two Gaussian filters with
distinct kernel sizes, where erosion occurs when the kernel of the first filter is larger than that of the
second, while dilation manifests when the first kernel is comparatively smaller.
b. Micro-Editing Masks. Given a set of 81 facial keypoints K81 = {k1, k2, . . . , k81}, we first extract
two subsets: eyes-specific keypoints Keyes ⊂ K and mouth-specific keypoints Kmouth ⊂ K. Using
convex hull computationH(·), we derive two binary masks: the eye mask Me = H(Keyes) and the
mouth mask Mm = H(Kmouth). These masks are then logically combined through union operations
∪ to generate three distinct facial regions: (1) M = Me, (2) M = Mm, and (3) M = Me ∪Mm

(combined mouth and eyes). Since other facial regions such as eyebrows and nose are rarely targeted
in localized facial manipulations (e.g., attribute editing, expression synthesis), these features were
intentionally excluded from our mask generation framework to prioritize regions most susceptible to
forgery (eyes and mouth).

2. Multi-Modal Reconstruction(MMR): We employ two complementary reconstruction paradigms
to reconstruct the target face(It) in Formula 1, thereby systematically simulating the Up-Sampling
Artifacts (USA) inherent in diverse deepfake generators: a. Autoencoder (AE) Reconstruction:
Reconstruct It through AE [57] to simulate the excessive dependency relationship between adjacent
pixels [65] caused by upsampling in GAN / Diffusion models. b. Super-Resolution (SR) Recon-
struction: Applies SR models [71] to upsample It, thereby replicating the characteristic artifacts
inherent in deepfake post-processing pipelines. Specifically, given an input face image I , we generate
reconstructed versions IAE = AE(I) and ISR = SR(I).

3. Random Artifact Combination(RAC): To ensure comprehensive coverage of artifact interactions,
we blend original images(source face) with reconstructed variants(target face) (IAE , ISR, I) using
mask M , based on Equation 1. More specifically, given a facial imageIs, first MTMS generates mul-
tiple masks M with equal probability, then MMR generates a reconstructed images (IAE , ISR), and
finally RAC blend the I with randomly selected reconstruction variants It from (IAE , ISR, I) using
a randomly selected mask M . Before blending, Is and It will undergo data augmentation(change
color tone, saturation, contrast, blur, etc) to enhance the inconsistency of statistical information.
As shown in Table 1, compared to existing methods, FIA-USA has achieved collaborative artifact
enhancement across local / global, facial / regional levels. Please refer to Algorithm 1 for the complete
algorithmic process.

3.2 Loss Function

3.2.1 Automatic Forgery-aware Feature Selection

While FIA-USA generates discriminative training samples through dual-artifact augmentation, the
inherent feature redundancy in Feature Pyramid Networks (FPN) [45] may drive models to focus on
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Algorithm 1 Pseudocode for FIA-USA
Input: Base image I of size (H,W, 3), facial landmarks L of size (81, 2)
Output: Image I with FIA and USA

1: def T (I) : ▷ Source-Target Augmentation
2: I ← ColorTransform(I)
3: I ← FrequencyTransform(I)
4: return I
5: def Recon(I) : ▷ Reconstruct the source image
6: if Uniform(min = 0,max = 1) ∈ [0, 0.3] :
7: It ← AE(I)
8: else if Uniform(min = 0,max = 1) ∈ (0.3, 0.5] :
9: It ← SR(I)

10: else
11: It ← I
12: return I
13: It, Is ← Recon(I), I
14: if Uniform(min = 0,max = 1) < 0.5 :
15: Is, It ← T (Is), It
16: else :
17: Is, It ← Is, T (It)
18: M ← CombineFacialFeatures(L) or ConvexHull(L)
19: IPF ← Is ⊙M + It ⊙ (1−M)

non-critical forgery patterns, thereby compromising detection generalization. This limitation stems
from FPN’s naive aggregation of all channel-wise features without adaptively emphasizing FIA/USA-
correlated representations. To address this limitation, we propose Automatic Forgery-aware Feature
Selection (AFFS), a statistically-driven feature compression paradigm that quantifies channel-wise
sensitivity to forgery regions, thereby dynamically constructing lightweight yet discriminative feature
pyramids.
Given a pretrained backbone network ϕ, let fi = ϕi(I) ∈ RWi∗Hi∗Ci denote the feature map
from the i-th layer, where I ∈ RH∗W∗3 represents the input image. To identify artifact-sensitive
feature dimensions, we leverage pseudo-fake pairs {Rn, Fn,Mn}Nn=1 generated by FIA-USA and
compute the normalized response discrepancy between real and forged regions. For the k-th channel
fk
i ∈ RWi∗Hi in layer i, the selection criterion is formulated as:

Li,k
AFFS =

1

N

N∑
n=1

∥F(fk
i (Rn)− (fk

i (Fn))−Mn∥22 (3)

where F denotes feature normalization and spatial interpolation to align fk
i with mask Mn. Channels

are ranked by ascending Li,k
AFFS and the top-mi channels with minimal errors are retained to form a

compressed feature map f ′
i ∈ RWi∗Hi∗mi for FPN construction. AFFS leverages a pre-trained

model as initialization, operating as a supervised feature ranking mechanism that reduces
feature redundancy.

3.2.2 Region-aware Contrastive Regularization

Building upon the artifact-sensitive features selected by AFFS, we design Region-aware Contrastive
Regularization (RCR) to explicitly model the divergence between forged and authentic regions
through multi-granularity contrastive learning. Given the Feature Pyramid Network (FPN) P , we
denote the feature maps of real and fake faces as HR = P (ϕ(R)), HF = P (ϕ(F )). For HR, the
areas inside and outside M are real, while for HF , the areas inside M are manipulated and the areas
outside M are real. We define the region within M as Hin

R , Hin
F and the region outside M as Hout

R ,
Hout

F . RCR operates on the refined feature pyramid from AFFS, implementing multi-granularity
contrast through:
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Patch-level Contrastive Regularization. For real faces, the features f of Hin
R and Hout

R are
consistent, thus we aim to minimize the distance between them. Conversely, for fake faces, the
features f of Hin

F and Hout
F are distinct, thus we aim to maximize the distance between them.

Therefore, the loss function of Patch-level Contrastive Regularization (PCR) can be formulated as:

L1 = − log

∑
fR∈HR

eδ(f
in
R ,fout

R )/τ

∑
fR∈HR

eδ(f
in
R ,fout

R )/τ +
∑

fF∈HF

eδ(f
in
F ,fout

F )/τ
, (4)

where f i represents a pixel feature, τ is a temperature parameter and δ(·) is the normalized cosine
similarity between two features, as:

δ(f1, f2) =
∑
fi
1∈f1

∑
fi
2∈f2

f i
1

∥f i
1∥
· f i

2

∥f i
2∥

, (5)

Image-level Contrastive Regularization. Since both the region of real face and fake face outside M
are real, we aim to minimize the distance between them and maximize the distance between the fake
face and the real face in the area inside M . Therefore, the loss function for Image-level Contrastive
Regularization (ICR) can be formulated as:

L2 = − log

∑
fout∈Hout

eδ(f
out
R ,fout

F )/τ

∑
fout∈Hout

eδ(f
out
R

,fout
F

)/τ +
∑

fin∈Hin

eδ(f
in
R

,fin
F

)/τ
. (6)

Overall Loss. The network is optimized using the following loss:

L = λ1LBCE + λ2L1 + λ3L2, (7)

where LBCE denotes the cross-entropy classification loss. LBCE , L1 and L2 are weighted by the hyperparame-
ters λ1 ,λ2 and λ3, respectively.

4 Experiments

4.1 Settings

Datasets. To evaluate the effectiveness of our proposed method, we conducted extensive experiments on seven
widely-adopted benchmark datasets spanning both classical facial manipulation paradigms and emerging
generative deepfake architectures.a. Traditional Deepfake Datasets: 1. FaceForensics++ (FF++) [59], 2.
Deepfake Detection (DFD) [12], 3. Deepfake Detection Challenge (DFDC) [15], 4. preview version of DFDC
(DFDCP) [14], and 5. CelebDF (CDF) [43]. FF++ comprises 1,000 original videos and 4,000 fake videos forged
by four manipulation methods, namely, Deepfakes(DF) [13], Face2Face(F2F) [68], FaceSwap(FS) [18], and
NeuralTextures(NT) [67]. FF++ offers three levels of compression: raw, lightly compressed (c23), and heavily
compressed (c40), under storage constraints, our implementation adopts the FF++_c23 (including DFD)
with training conducted following the SBI protocol [63], employing exclusively real facial samples from
FF++_c23 subset. Although many previous studies have utilized the same dataset for both training and testing,
the preprocessing and experimental configurations can differ, making fair comparisons difficult. Therefore, in
addition to testing on the raw data of the aforementioned datasets, we also performed generalization assessments
on the unified new benchmark for traditional deepfakes, (DeepfakeBench) [82]. b. Generative Deepfake
Datasets. 6. Diffusion Facial Forgery (DiFF) [5] contains over 500,000 images synthesized using 13 different
generation methods under four conditions: Text to Image (T2I), Image to Image (I2I), Face Swapping (FS) and
Face Editing (FE). Text to Image encompasses four generation methods: Midjourney [50], Stable Diffusion XL
(SDXL) [55], Free-DoM_T [84], and HPS [77]. Image to Image comprises Low Rank Adaptation(LoRA) [31],
DreamBooth [60], SDXL Refiner [55], and Free-DoM_I. Face Swapping includes DiffFace [36] and DCFace [36].
Face Editing comprises Imagic [35], Cycle Diffusion(CycleDiff) [75], and Collaborative Diffusion(CoDiff) [34].
7. DF40 [80] encompasses 40 state-of-the-art deepfake generation methodologies spanning four core
categories: face swapping, facial reenactment, full-face synthesis, and advanced facial manipulation.
Significantly surpassing existing benchmarks in both scope and volume, DF40 integrates cutting-edge generative
architectures from 2024 alongside widely adopted commercial software solutions.
Evaluation Metrics. We report the Frame-Level Area Under Curve (AUC) metric on the DeepfakeBench and
DIFF dataset, report the Video-Level Area Under Curve (AUC) metric on the traditional deepfake datasets, to
compare our proposed method with prior works.
Implementation Details. We adopt EfficientNetB4 [66] as the backbone network architecture (We also
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Table 2: Cross-dataset Evaluations: Cross-dataset evaluations were conducted using the Frame-
level AUC. All experiments were trained on the c23 version of FF++ and tested on other datasets.
* indicates the results are cited from [10] and † indicates our reproduction results using the
checkpoints provided by the authors, otherwise, the results are from DeepfakeBench [82].

Detector Backbone Venues CDF-v1 CDF-v2 DFD DFDCP Avg.
FWA [41] Xception CVPRW’18 0.790 0.668 0.740 0.638 0.714

CapsuleNet [52] Capsule ICASSP’19 0.791 0.747 0.684 0.657 0.720
CNN-Aug [29] ResNet CVPR’20 0.742 0.703 0.646 0.617 0.677
Face X-ray [40] HRNet CVPR’20 0.709 0.679 0.766 0.694 0.712

FFD [11] Xception CVPR’20 0.784 0.744 0.802 0.743 0.768
F3Net [56] Xception ECCV’20 0.777 0.798 0.702 0.735 0.749
SPSL [47] Xception CVPR’20 0.815 0.765 0.812 0.741 0.783
SRM [49] Xception CVPR’21 0.793 0.755 0.812 0.741 0.775

CORE [53] Xception CVPRW’22 0.780 0.743 0.802 0.734 0.764
Recce [2] Designed CVPR’22 0.768 0.732 0.812 0.734 0.761
SBI* [62] EfficientNet-B4 CVPR’22 - 0.813 0.774 0.799 -
UCF [81] Xception ICCV’23 0.779 0.753 0.807 0.759 0.774
ED* [1] ResNet-34 AAAI’24 0.818 0.864 - 0.851 -

ProDet† [6] EfficientNet-B4 NeurIPS’24 0.909 0.842 0.848 0.774 0.843
LSDA* [79] EfficientNet-B4 CVPR’24 0.867 0.830 0.880 0.815 0.848

Forensic-Adapter* [10] CLIP (ViT-B/16) CVPR’25 - 0.837 - 0.799 -
Ours EfficientNet-B4 - 0.901 0.867 0.821 0.818 0.852

investigate alternative network architectures and their respective outcomes), trained for 50 epochs using the
SAM optimizer [21] with a batch size of 12 and initial learning rate of 0.001. For video processing, each input is
uniformly sampled into 32 frames during both training and inference phases. Our data augmentation pipeline
combines the proposed FIA-USA strategy with conventional techniques including RandomHorizontalFlip,
RandomCutOut, and AddGaussianNoise. The loss coefficients λ1, λ2, λ3 are empirically set to 1, 2.5, and
0.25 respectively (We also explored the impact of other variants on the detection results), with the temperature
parameter τ fixed at 0.7. All experiments were conducted on a single NVIDIA 3090.

4.2 Generalization Evaluation

4.2.1 Traditional Deepfake Datasets.

We first compare our method with previous work at the frame level. To ensure the fairness of the experiment, we
conducted the experiment on the DeepfakeBench, and adhered to the data preprocessing and experimental settings
provided by them. For previous work, we utilized the experiment data provided by DeepfakeBench. As shown in
Table 2, our method outperforms other methods on the majority of deepfake datasets and competes with state-of-
the-art methods on the CDF-v1 dataset. In addition to comparing at the frame-level, we also compared our method
at the video-level with state-of-the-art detection algorithms, including various data augmentation methods. The
comparison results, as shown in Table 3, strongly demonstrate the effective generalization of our method.

Table 3: Comparison with SOTA methods us-
ing the Video-Level AUC.

Model Venues CDF-v2 DFDC DFDCP
Face X-Ray [40] CVPR’20 - - 0.711
LipForensics [28] CVPR’21 0.824 0.735 -
FTCN [90] ICCV’21 0.869 - 0.740
PCL + I2G [89] ICCV’21 0.900 0.675 0.743
HCIL [24] ECCV’22 0.790 0.692 -
ICT [17] CVPR’22 0.857 - -
SBI [63] CVPR’22 0.928 0.719 0.855
AltFreezing [74] CVPR’23 0.895 - -
SAM [7] CVPR’24 0.890 - -
LSDA [79] CVPR’24 0.911 0.770 -
CFM [48] TIFS’24 0.897 - 0.802
LAA-Net† [51] CVPR’24 0.840 - 0.741
Ours - 0.941 0.732 0.866

Table 4: Comparison with universal deepfake
detection methods using the Frame-Level AUC
on the DiFF dataset. † indicates models that are
designed for deepfake detection, while ‡ signifies
models intended for generated image detection.

Method Test Subset
T2I I2I FS FE

Xception† [59] 62.43 56.83 85.97 58.64
F3-Net† [56] 66.87 67.64 81.01 60.60
EfficientNet† [66] 74.12 57.27 82.11 57.20
DIRE‡ [73] 44.22 64.64 84.98 57.72
SBI† [63] 80.20 80.40 85.08 68.79
Ours 86.05 84.95 89.42 72.73

4.2.2 Generative Deepfake Datasets

Our evaluation on DIFF and DF40 datasets demonstrates the superior generalization capabilities of our archi-
tecture compared to state-of-the-art detection methods. Comprehensive metrics are detailed in Table 4 and
Table 5. As shown in Table 5, our method achieves an average AUC of 87.8%, surpassing RECCE by 9.7%
and outperforming SBI by 23.4%, and enables 10% higher AUC than LSDA’s latent space augmentation on
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Table 5: Comparative Analysis of Detection Performance Between the Proposed Method and
State-of-the-Art Approaches on Six Representative Face Swapping Forgery Types in DF40 [80].

Method Venues uniface e4s facedancer fsgan inswap simswap Avg.
RECCE [2] CVPR 2022 84.2 65.2 78.3 88.4 79.5 73.0 78.1

SBI [63] CVPR 2022 64.4 69.0 44.7 87.9 63.3 56.8 64.4
CORE [53] CVPRW 2022 81.7 63.4 71.7 91.1 79.4 69.3 76.1

IID [33] CVPR 2023 79.5 71.0 79.0 86.4 74.4 64.0 75.7
UCF [81] ICCV 2023 78.7 69.2 80.0 88.1 76.8 64.9 77.5

LSDA [79] CVPR 2024 85.4 68.4 75.9 83.2 81.0 72.7 77.8
CDFA [46] ECCV 2024 76.5 67.4 75.4 84.8 72.0 76.1 75.9

ProgressiveDet [6] NeurIPS 2024 84.5 71.0 73.6 86.5 78.8 77.8 78.7

Ours - 91.8 87.5 83.0 86.3 87.4 91.0 87.8

(a) Ablation Study of Method Components. We re-
port the Video-Level AUC for traditional deepfake
datasets and the Frame-Level AUC for generative
deepfake datasets. SR signifies the process of super-
resolution, and AE refers to the reconstruction achieved
through autoencoders.

Setting
Test Dataset

Avg.Traditional Generative
CDF-v2 DFDCP FS FE

w/o MTMS 91.99 87.06 88.00 71.93 84.74
w/o SR 93.25 86.81 80.73 61.07 80.46
w/o AE 92.53 86.37 88.67 70.31 84.47
w/o FIA-USA 93.18 89.45 80.68 62.99 81.57
w/o PCR 90.12 86.13 89.61 66.87 83.18
w/o ICR 90.85 85.00 89.95 75.01 85.20
w/o RCR 90.14 86.13 89.61 66.87 83.18
w/o AFFS 94.70 86.30 88.33 70.62 84.98
Ours 94.10 86.66 89.42 72.73 85.72

(b) Ablation Study on Model Architectures.

Model
Test Dataset

Avg.Traditional Generative
CDF-v2 DFDCP FS FE

Res50 82.45 79.14 68.82 58.59 72.25
Res101 85.51 82.35 71.26 60.44 74.89
Effb1 91.88 82.30 83.73 70.69 82.15
Effb4 94.10 86.66 89.42 72.73 85.72

(c) Experiment on Hyperparameter Configuration.

λ1, λ2, λ3

Test Dataset
Avg.Traditional Generative

CDF-v2 DFDCP FS FE
1, 1, 1 90.86 85.01 89.91 70.19 83.99

1, 1, 0.25 91.88 86.01 89.91 72.19 85.00
1, 2.5, 1 91.82 86.00 89.95 71.01 84.70

1, 0.25, 2.5 91.11 85.59 89.61 70.92 84.30
1, 2.5, 0.25 94.10 86.66 89.42 72.73 85.72

Table 6: Ablation experiment. We conducted ablation experiments on method components, model
frameworks, and hyperparameter configuration. The best results are presented in bold.

average. The results notably contradict recent findings [79] about RGB-based methods’ limitations against
generative deepfakes, proving that properly designed RGB-level artifacts retain critical discriminative signals.
For comprehensive experimental results on forgery techniques supported by the DF40 and DIFF, please
refer to the extended analysis in Appendix Section G.

4.2.3 Robustness

In Figure 3, we assessed the influence of different levels of random perturbations on the detection perfor-
mance. We quantified the effects of different levels of Gaussian Blur, Block Wise, Change Contrast, and JPEG
Compression on the detectors. Notably, to gauge accuracy, we employed the reduction rate of Video-Level
AUC to assess the robustness of the detector to different degrees of disturbance, which could be expressed as
RAUC = (AUC −AUCraw)/AUCraw , where AUCraw refers to no perturbations. As shown in the Figure 3,
our method exhibits superior robustness compared to other methods.

Figure 3: Robustness to Unseen Perturbations. We reported the Video-Level AUC Reduction
Ratio for four specific types of perturbations at five different levels.
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4.3 Ablation Study

Original        Mask            Ours

Traditional
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Figure 4: GradCAM visualization of fake
samples across various deepfake datasets.

The impact of method components. To systematically
evaluate the contribution of each component in our frame-
work, we conducted comprehensive ablation studies across
seven benchmark datasets. As detailed in Table 6a, our
analysis focuses on three core innovations: (1) the FIA-
USA augmentation mechanism, (2) Automatic Forgery-
aware Feature Selection (AFFS), and (3) Region-aware
Contrastive Regularization (RCR). We adopt video-level
AUC for traditional deepfakes and frame-level AUC for
generative deepfakes. The empirical results demonstrate
progressive performance degradation when removing indi-
vidual components, with the complete framework achieving
optimal detection accuracy . The combination of FIA-USA,
AFFS, and RCR yields optimal performance. As intended
in our design, AFFS and RCR are crucial for fully leverag-
ing the potential of FIA-USA. Removing any component
degrades performance, with the absence of FIA-USA hav-
ing the most significant impact (a 4.15% decrease). It is
important to clarify that "w/o FIA-USA" specifically refers to using only the data augmentation proposed by
SBI. Furthermore, RCR exerts a stronger influence on FIA-USA’s effectiveness compared to AFFS.

The ablation specifically targeting FIA-USA (components within it) reveals: Various data augmentation tech-
niques contribute differently. SR and AE are shown to be effective for detecting generative forgeries. Conversely,
MTMS appears to suppress performance on this specific forgery type. This aligns with our theoretical analysis:
generative forgeries constitute global manipulations that produce fewer Face Inconsistency Artifacts (FIA) but
primarily exhibit Up-Sampling Artifacts (USA). As seen from MTMS’s performance on traditional forgeries,
increasing the diversity of FIA proves beneficial for detecting face swapping forgery.

Regarding the RCR ablation: The results align well with our chosen hyperparameters. They indicate that the
PCR contributes substantially more to the model’s performance than the ICR. This observation is consistent
with the hyperparameter sensitivity analysis presented in Table 6c: increasing the loss weight for PCR while
decreasing that for ICR leads to significant performance gains. Conversely, increasing the ICR weight while
reducing the PCR weight results in only marginal improvements.

The impact of model framework. Our architectural analysis in Table 6b systematically benchmarks detection
performance across backbone networks, quantitatively comparing the effects of EfficientNet [66], ResNet [29],
and different depth configurations on detection performance, demonstrates the compatibility of our method
with various network frameworks, while also illustrating the critical impact of model parameter size and
architectural design on detector performance. This highlights the ongoing importance of developing more robust
and specialized deep learning architectures for counterfeit detection tasks.
Impact of hyperparameters. We also examined the effect of hyperparameters of the loss function on model
performance, as detailed in the Table 6c. Our analysis of the weights revealed that increasing the weight of
λ2 relative to the weights of cross entropy enhances model performance, whereas decreasing the weight of λ3

relative to cross entropy also improves performance, which is consistent with the ablation experiment results for
RCR components in Table 6a. However, conversely, model performance will not be significantly improved.

5 Visualizations

Our GradCAM [91] analysis in Figure 4 demonstrates precise localization of facial forgery artifacts across both
conventional and emerging generative architectures. Notably, the visualization framework not only pinpoints
manipulation traces in traditional deepfakes but also effectively in state-of-the-art synthetic media, validating our
method’s generalization capability.

6 Conclusion

In conclusion, this study presents a universal framework for deepfake detection by focusing on common artifacts
that span various types of face forgeries. By categorizing deepfake artifacts into Face Inconsistency Artifacts
(FIA) and Up-Sampling Artifacts (USA), we enhance the generalization capability of detection models. This
targeted approach allows the model to focus on detecting fundamental artifact patterns, and potentially improving
its performance across diverse deepfake variations. In doing so, our framework may help address some challenges
in current detection methods and could provide a promising foundation for developing more adaptable deepfake
detection systems in future research.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Yes, the limitations of our methodology are systematically analyzed in Appendix.
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• The answer NA means that the paper has no limitation while the answer No means that the paper
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these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.
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• The answer NA means that the paper does not include theoretical results.

16
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• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
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reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: The code is currently not open source.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).
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• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Yes, the paper provides comprehensive details regarding the training and testing setup to
ensure reproducibility and clarity.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Yes, the paper explicitly specifies the type of computational hardware used (RTX3090).
However, resource requirements are minimal, detailed information about execution time or memory
consumption is not provided, as these aspects are unlikely to affect reproducibility for experiments.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully read the NeurIPS Code of Ethics, but this paper does not involve any
issues that violate ethical standards.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: Yes, the impacts of our methodology are systematically analyzed in Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
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Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A Appendix

This supplementary material provides:

• Sec. B: We discussed the classification and basic process of forgery techniques.

• Sec. C: We reviewed the application of data augmentation methods in forgery detection and discussed
more details about FIA-USA.

• Sec. D: We introduced the construction process of FPN.

• Sec. E: We provided a detailed introduction to AFFS was provided, along with visual evidence.

• Sec. F: We provide a visualization example of which boundary pixels were discarded by RCR.

• Sec. G: We provided test results on more forgery techniques.

• Sec. H: We provide experimental results combining FIA-USA with other state-of-the-art detection
methods.

• Sec. I: We discussed the limitations of this paper.

• Sec. J: We discussed the impacts of this paper.

• Sec. K: We provided more visual examples.

B Face forgery techniques

In this section, we discuss the classification of facial forgery technology and the basic process of forgery
technology, and at which nodes FIA and USA will be introduced.

B.1 Classfication of facial forgery technology

According to different processing procedures and technical principles, we first divide forgery techniques into
two categories:
1). Full Face Synthesis: Generate the entire image/video directly through the image / video generation model,
without involving facial cropping and stitching in the basic process. Therefore, the artifacts involved in such
forgery techniques mainly include USA and a small amount of FIA, where USA is the dependency between
adjacent pixels in the forgery area due to the performance of the generator, and FIA is the inconsistency in the
generator’s ability to generate face areas with dense details and background areas with sparse details.
2). Face Swapping. Crop the original face, generate fake regions through a generator (optional), and then stitch
it with the target face. Therefore, this forgery technique can be divided into two situations: a. It includes FIA
and USA: FIA is mainly caused by cropping and stitching, as well as generator performance, while USA is
mainly determined by generator performance. b. It only includes FIA: FIA is mainly caused by ropping and
stitching. Furthermore, based on the forged area, we can divide face swapping into two parts: Macro-editing and
Micro-editing. Macro-editing can be further classified into two subtypes: Editing based on 4 facial keypoints
and Editing based on 81 keypoints. Micro-editing allows for precise adjustments to each facial feature.
Figure 5 provides a detailed overview of our classification concept.

B.2 Basic Process

In Figure 6, we depict the basic process of each type of forgery technique. We can see from this that the main
difference between full face synthesis and face swapping lies in whether they include face cropping and stitching
operations, which leads to the emergence of a large number of FIA, and whether the background is generated by
the generator. The main difference between macro-editing and micro-editing in face swapping is whether the
forged area is the entire face or can finely fabricate facial features. Further, macro editing based on 81 key points
is more detailed, and the edges of the forged area are more similar to the edges of a real face, while 4 key points
result in the forged area being a square. This discovery is mainly due to a detailed observation of the widely
used forgery technique ROPE [30] and roop [61], which provides two types of face cropping techniques.

B.3 At what stage will FIA and USA be introduced

In Figure 7, we demonstrate which operations lead to the emergence of FIA and USA in the basic process. The
observation of a phenomenon led to the refinement of our FIA-USA design.
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Figure 5: We categorize forgery techniques into two main types: Full face synthesis and Face
swapping. Face swapping is further divided into macro-editing (based on 4 or 81 keypoints) and
micro-editing.

C Details of FIA-USA

C.1 Blend-based data augmentation

In Deepfake detection, a successful approach is to manually construct negative samples for training, where data
augmentation in the RGB domain is based on Blend, which can be represented as follows:

IF = M ⊙ It + (1−M)⊙ Is, (8)

Among them, It represents the target face, Is represents the source face, and IF represents the negative sample.
The earliest design [40] was to use facial similarity to find the most suitable Is for It. Later, SBI [63] proposed
self-blend to improve the statistical consistency of IF . There are also works [64] that separate the background
and face of It, add noise to the background, and reconstruct It, using the reconstructed It for blend. However,
to our knowledge, there has been no work so far that considers the introduction of both global and local
artifacts, let alone the introduction of FIA at both the full face and regional levels while introducing USA.

C.2 Other types of data augmentation

In recent years, many other data augmentation methods have been proposed, such as frequency domain [39]
and latent space [79]. Many studies suggest [39, 79] that compared to data augmentation in other domains, data
augmentation in the RGB domain [40, 63, 64] exhibits weak robustness and limited effectiveness. However,
we have demonstrated through extensive experiments that our proposed data augmentation in the RGB domain
is not weaker or even better than that in other domains. It is worth mentioning that our proposed data
augmentation belongs to the image level, and we surprisingly found that it is superior to the most
advanced data augmentation methods at the video level [74].

C.3 The detailed process of generating masks in FIA-USA

Here we have detailed the processing of generating masks in FIA-USA, as shown in Figure 8. Firstly, we divide
mask generation into two types: 1) Macro editing masks and 2) Micro editing masks.
Macro editing mask: We follow the mask generation process in SBI [63], which includes the following steps: a.
Calculate the convex hull of 81 facial keypoints to obtain the mask of facial contour b. Erosion or expansion of
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Facial keypoint detection

Output:  Fake images /videos

Facial cropping

Facial stitching

The model modifies the source 

face based on the target face

Optional

(a) Basic processes of full face synthesis and face swapping.

Face swapping

Facial keypoint detection

Facial stitching
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Facial cropping
Based on 
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(b) Basic processes of macro-editing (4 vs 81 keypoints) and micro-editing

Figure 6: We illustrates the basic processes of forgery techniques, full face synthesis and face
swapping differ in face cropping and stitching, while macro-editing (4 vs 81 keypoints) and micro-
editing vary in forgery scope and detail.

the mask; Besides, we also considered the case of calculating convex hull based on 4 facial keypoints, which
originated from the observation of two methods for extracting raw faces provided by the open-source deepfake
project that is truly available [61, 30].
Micro-editing masks: The main method is to simulate the forgery process of manipulating facial details
randomly by randomly combining facial features.
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Figure 7: The operations that led to the occurrence of FIA and USA in the basic process.
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Figure 8: The generation of macro and micro-editing masks in FIA-USA, using convex hull and
erosion / expansion for macro masks and random feature combination for micro masks.
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Figure 9: We divide the generation models into two categories based on whether facial super-
resolution models is needed for post-processing.

C.4 Why use Autoencoder and Super-Resolution models to reconstruct images

As shown in Figure 9, we divide the processing flow of the generative model into two categories: One category
generates images of forged regions that are as clear and free of blur as the original image (using Diffusion models
and GANs as the main methods, and upsampling the latent code through AE to generate images). And another
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Figure 10: We demonstrate through graphical representation that our proposed FIA-USA covers all
possible scenarios that may lead to the occurrence of FIA and USA.

type (especially older voice driven lip shape modification techniques) will result in blurred tampered areas,
requiring additional facial super-resolution models to process the blurred areas. Therefore, we use utoencoder
(AE) to reconstruct images or facial Super-Resolution (SR) to process faces, in order to approximate the USA
introduced by the generator in the forged area.

C.5 FIA-USA covers all possible situations that may occur in FIA and USA

As shown in the Figure 10, our proposed FIA-USA framework covers every possible situation that may occur in
FIA and USA, which is also the most intuitive explanation why our method is effective.
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nearest neighbor interpolation 

method

Figure 11: We illustrated the construction process of FPN.
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D Details of FPN

As shown in the Figure 11, our FPN follows the framework proposed by [45], using the output features of the
2nd, 3rd, 4th, and 5th layers of the backbone to construct an FPN, In our experimental setup, the number of
feature map channels is 128 and 196, corresponding to EfficientNet [66], and Resnet [29], respectively.

E Details of AFFS

Here we provide a detailed description of the process of AFFS and a visual explanation of its effectiveness.

E.1 Why is AFFS proposed

Let’s consider a neural network ϕ and an FPN P , as well as the process of performing RCR on the FPN’s
maximum resolution layer. The output of ϕ is a set of features {d1, d2, d3, d4}, P takes this set of features as
input to construct a set of feature maps with same dimensions and different resolutions, while RCR performs
feature differentiation learning on the feature map with the highest resolution. One intuition is that there is a
significant amount of redundancy in the output features of the ϕ, and not every dimension of the features di, i ∈
[1, 2, 3, 4] is suitable for constructing FPN for RCR. Therefore, we propose AFFS for feature dimensionality
reduction of each feature di before constructing FPN. Moreover, this feature dimensionality reduction method
effectively exploits the potential advantages of our proposed FIA-USA and lays the foundation for the effective
execution of RCR.

Abandon 

boundary 

pixels

Figure 12: We provide a visual example to illustrate which pixels will be discarded.

E.2 AFFS

1) First, let’s consider multiple positive and negative sample pairs generated by FIA-USA, along with their
corresponding masks {Rn, Fn,Mn}Nn=1. The usual method is to directly construct an FPN using a set of
features fi from a neural network ϕ as input, where i represents the i-th layer of the ϕ.
2) Next, let’s discuss the initialization process of AFFS. For the output of each layer of the neural network, we
hope that the difference between the real image and the fake image after normalization is as consistent as
possible with the mask M used to represent forged areas. However, we have noticed that not every channel
meets this requirement, so we would like to reserve channels that meet the requirements for each layer. Therefore,
for fi ∈ RWi∗Hi∗Ci , we calculate the following loss for each channel on a set of FIA-USA generated samples
{Rn, Fn,Mn}Nn=1 to obtain those excellent dimensions,

Li,k
AFFS =

1

N

N∑
n=1

∥F(fk
i (Rn)− (fk

i (Fn))−Mn∥22 (9)

F represents normalization and scaling operations, fk
i ∈ RWi∗Hi , k ∈ [0, Ci], represents the feature map of

the k−th dimension of the fi . During the training process, we only select the channels reserved for fi during
the AFFS initialization process. After AFFS processing, the original features fi ∈ RWi∗Hi∗Ci will become
f ′
i ∈ RWi∗Hi∗mi .

E.3 Visual Explanation of AFFS

Here we provide a set of visual examples of AFFS in Figure 13. The experiment was conducted on the 2-th
layer of EfficientNetB4. Unlike the actual situation, in order to enhance readability, we only calculated LAFFS

for a single epoch on a single pair of samples. And based on this, sort the 32 dimensions of the features in the
2-th layer. Here, we present the dimensions ranked in the top 14 and bottom 4. In the actual process, we iterate
for 5 epochs on all samples on the training set to initialize AFFS. In Table 7, we present the changes in feature
dimensions of different backbone features before and after performing AFFS.
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Figure 13: The result of calculating LAFFS for the 32 dimensions of the 2-th layer features of
EfficientNetB4 on a single sample and sorting them by similarity.

Table 7: Feature dimension parameters of AFFS.

Model Input Dimension Output Dimension

Res50 {256,512,1024,2048} {196,384,768,1536}
Res101 {256,512,1024,2048} {196,384,768,1536}
Effb1 {24,40,112,320} {16,24,40,112}
Effb4 {32,56,160,448} {24,32,56,160}

Table 8: We report the Video-level AUC. The combination of our data augmentation method with
other SOTA detection algorithms. † represents the method used in the original paper.

Method Training set CDFv2 DFDCP Avg.
LAA-Net SBI + EPPN † 0.840 0.741 0.791
LAA-Net FIA-USA + EFPN 0.875 0.782 0.829
Ours FIA-USA + FPN (AFFS) 0.901 0.861 0.881
Ours FIA-USA + FPN (AFFS) +RCR 0.941 0.866 0.904
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F Details of RCR

In the LAA Net [51], a very interesting hypothesis is the pixels on the fake boundary contain both the features of
the fake area and the features of the real area, so in our designed RCR, such pixels will be discarded. Figure 12
provides a visual example.

G Testing on more forgery techniques

In addition to several widely used forgery detection datasets mentioned in the paper, we also conducted
experiments on other forgery techniques based on the DF40 dataset [80], where real samples were obtained from
FF++ and fake samples were constructed using corresponding forgery techniques based on FF++ settings. As
shown in the Table 9a, our proposed forgery detection framework has achieved excellent detection results on the
vast majority of forgery methods. Meanwhile, Table 9b shows the comparison between our method and other
state-of-the-art methods on various forgery techniques in DIFF.

Table 9: Test results on more forgery techniques.

(a) We tested all forgery techniques provided on the DF40 dataset and reported Frame-Level AUC. All
results with AUC greater than 80 are highlighted in bold, while those with AUC less than 80 but greater than 70
are underlined.

Type mobileswap MidJourney faceswap styleclip DiT lia ddim mcnet RDDM StyleGAN3
AUC 0.97 0.97 0.89 0.82 0.66 0.91 0.97 0.84 0.70 0.93
Type e4e pixart whichfaceisreal deepfacelab StyleGANXL heygen facedancer MRAA pirender VQGAN
AUC 0.95 0.93 0.42 0.77 0.41 0.58 0.83 0.85 0.81 0.85
Type StyleGAN2 facevid2vid simswap inswap one_shot_free wav2lip e4s starganv2 tpsm sd2.1
AUC 0.93 0.83 0.91 0.87 0.85 0.76 0.88 0.48 0.83 0.97
Type blendface hyperreenact uniface CollabDiff fsgan danet SiT sadtalker fomm
AUC 0.94 0.80 0.92 0.95 0.86 0.80 0.72 0.74 0.85

(b) Comparison with universal deepfake detection methods using the Frame-Level AUC on the DiFF
dataset. The notation † indicates models that are designed for deepfake detection, while ‡ signifies models
intended for general generated detection. All experiments were trained on the c23 version of FF++. The best
result is bolded.

Method Test Subset
Cycle CoDiff Imagic DiFace DCFace Dream SDXL_R FD_I LoRA Midj FD_T SDXL HPS

F3-Net† [56] 36.14 35.00 32.56 25.61 53.29 55.45 65.04 40.90 - - 45.00 61.64 68.96
EfficientNet† [66] 56.51 38.38 48.50 64.45 89.13 71.64 65.04 59.93 - - 69.67 64.94 74.63
CNN_Aug‡ [70] 50.31 46.84 75.95 43.10 80.69 58.75 60.10 43.65 - - 47.90 61.95 60.56
SBI† [63] 82.32 64.70 49.84 73.64 89.92 75.66 77.73 87.67 89.18 79.56 90.55 80.37 83.30
Ours 84.76 72.61 52.92 76.86 93.63 83.43 80.54 92.68 93.48 82.57 94.85 82.15 88.40

H Combining with SoTA detection method

In this section, we aim to validate the effectiveness of our FIA-USA data augmentation by integrating it with
state-of-the-art image-level detection methods. While our comprehensive evaluation currently focuses on LAA-
Net [51] (CVPR 24) due to limited availability of open-source image-level detection implementations, Table 8
reveals significant performance improvements. Notably, the original LAA-Net implementation was trained
on raw version FF++ data, whereas our experiments utilize the c23 version. Compared with the baseline
implementation, our data augmentation strategy has significantly improved the performance of the original
detector. To address requests for detailed comparisons with LAA-Net, our table shows two key findings: First,
our method achieves a 7.5% performance advantage over LAA-Net when using identical data augmentation
conditions. Second, even without employing RCR (Robust Context Refinement), our approach substantially
outperforms LAA-Net’s EFPN component, demonstrating the inherent strength of our core methodology.

I Limitations

The proposed detection framework primarily focuses on image-level data augmentation and matching detection
architectures. While we categorize image-level artifacts into FIA and USA, and have achieved satisfactory
video-level detection performance, we acknowledge that video-level artifacts present more complex challenges -
including temporal inconsistencies and audio-visual asynchrony - which fall outside the current research scope
but represent our intended future research direction.
Second, although recent approaches increasingly incorporate large models’ zero-shot capabilities for deepfake
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detection, existing work has not yet explored the integration of data augmentation methods with such models
due to practical constraints including variations in training methodologies and model scales. This does not mean
that our method cannot be applied to large models, but currently we are still unfamiliar with large models and
have not fully explored this part.
Regarding experimental validation, we mainly compared and analyzed our proposed method with previous
data augmentation methods, which is consistent with the main contribution of our paper. Of course, we
also compared state-of-the-art detection methods that are not data augmentation based. Following established
practices in data augmentation research, we conducted comprehensive evaluations across four widely adopted
network architectures to ensure fair comparison. However, we note that detection performance may vary across
different network frameworks depending on their baseline performance and inherent compatibility with deepfake
detection tasks. We cannot guarantee that all model frameworks will achieve excellent detection results after
using our method.
Finally, while our method demonstrates effectiveness across a substantial majority of forgery methods (validated
on over 58 different techniques), we acknowledge relatively weaker performance in specific edge cases.
Nevertheless, the framework maintains robust detection capability for most common forgery approaches,
achieving satisfactory overall performance that meets our research objectives.

J Broader impacts

The proposed framework offers positive societal impacts by enhancing detection of sophisticated face deepfakes,
thereby mitigating disinformation campaigns, fake news, and fraudulent content that erode public trust in digital
media. Additionally, it safeguards individual privacy by identifying forged facial manipulations that enable
identity theft, unauthorized face swapping, and other privacy violations. The method could further support
content authenticity initiatives through integration into social media platforms or news verification systems
to prioritize legitimate visual content. However, potential negative impacts include the risk of adversaries
reverse-engineering the detection framework to refine deepfake generation methods, potentially escalating the
adversarial "arms race" between forgery creators and detectors. Furthermore, false positives in detection could
lead to unintended censorship, where legitimate content is erroneously flagged as fake.

K More visual examples

From Figure 14 to Figure 16, we demonstrate the fake samples that FIA-USA can generate through different
reconstruction methods, including autoencoderr (AE) and facial super-resolution (SR), and multiple types of
masks based on three real faces. Figure 17 shows the negative samples randomly generated by FIA-USA during
the real training process. Figures 18 to 22 list the images in the DF40 dataset [80] that were misclassified by our
method.
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Figure 14: More examples of FIA-USA.
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Figure 15: More examples of FIA-USA.
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Figure 16: More examples of FIA-USA.
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Figure 17: More examples of FIA-USA.
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Figure 18: Images misclassified by our method in the DF40 dataset.
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Figure 19: Images misclassified by our method in the DF40 dataset.
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Figure 20: Images misclassified by our method in the DF40 dataset.
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Figure 21: Images misclassified by our method in the DF40 dataset.
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Figure 22: Images misclassified by our method in the DF40 dataset.

39


	Introduction
	Related Work
	Method
	FIA-USA. 
	Loss Function 
	Automatic Forgery-aware Feature Selection
	Region-aware Contrastive Regularization


	Experiments
	Settings
	Generalization Evaluation
	Traditional Deepfake Datasets.
	Generative Deepfake Datasets
	Robustness

	Ablation Study

	Visualizations
	Conclusion
	Appendix
	Face forgery techniques
	Classfication of facial forgery technology
	Basic Process
	At what stage will FIA and USA be introduced

	Details of FIA-USA
	Blend-based data augmentation
	Other types of data augmentation
	The detailed process of generating masks in FIA-USA
	Why use Autoencoder and Super-Resolution models to reconstruct images
	FIA-USA covers all possible situations that may occur in FIA and USA

	Details of FPN
	Details of AFFS
	Why is AFFS proposed
	AFFS
	Visual Explanation of AFFS

	Details of RCR
	Testing on more forgery techniques
	Combining with SoTA detection method
	Limitations
	Broader impacts
	More visual examples

