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Abstract

Markov chain Monte Carlo methods have become popular in statistics as versatile techniques
to sample from complicated probability distributions. In this work, we propose a method
to parameterize and train transition kernels of Markov chains to achieve efficient sampling
and good mixing. This training procedure minimizes the total variation distance between
the stationary distribution of the chain and the empirical distribution of the data. Our
approach leverages involutive Metropolis-Hastings kernels constructed from reversible neural
networks that ensure detailed balance by construction. We find that reversibility also implies
C2-equivariance of the discriminator function which can be used to restrict its function
space.

1. Introduction

Markov Chain Monte Carlo (MCMC) is a key approach in statistics and machine learning
when it comes to sampling from complex unnormalized distributions. MCMC generates
samples by setting up a Markov chain that has the target distribution as its stationary
distribution. Once converged, samples can be obtained by recording states from the chain.
Not only have MCMC methods transformed Bayesian inference, allowing to sample from the
untractable posterior distributions of complex probabilistic models, but they are also widely
used for integral estimation, time-series analysis and many other problems in statistics and
probabilistic modelling Robert et al. (1999). We argue that this stagnation in developing
MCMC algorithms that make use of neural networks is partly due to the well-known difficulty
of measuring sample quality (see for example Gorham and Mackey (2015); Brooks et al.
(2011)), meaning that systematically establishing the convergence of a chain to its target
distribution, or defining a quality measure for samples from a Markov chain is challenging.
This makes it intrinsically hard to define an objective function that can be optimized with
stochastic gradient descent to improve the performance of the Markov chain. In general, the
design of a suitable objective function poses a challenge as one must balance two competing
goals: encouraging both high-quality samples and good exploration of all space Levy et al.
(2017).In light of this, we attempt to answer the simple question: how can we learn to sample
from a given unnormalized distribution, using neural network-based MCMC methods? To
answer, we propose a novel MCMC method that makes use of time-reversible neural networks
for the transition kernel and derive an upper bound to the total variation distance between
the stationary distribution of the resulting Markov chain and the target distribution. The
proposed objective makes use of a discriminator. We prove the optimal discriminator to be
equivariant with respect to the cyclic group of order 2 and propose a class of C2-equivariant
functions that can be used to parametrize it.
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2. Parametrizing kernels with Involutions

MCMC algorithms are defined by a transition kernel t(x′|x) that maps probability density
functions 1 pt(x) to other probability density functions: pt+1(x

′) =
∫
X t(x

′|x)pt(x)dx. The
probability density p(x) is stationary for the Markov kernel t(x′|x) if∫

X
t(x′|x)p(x)dx = p(x′). (1)

Reversible kernels, namely kernels for which the detailed balance condition holds:

t(x′|x)p(x) = t(x|x′)p(x′), ∀x, x′ ∈ X × X , (2)

have p as stationary probability distribution. Throughout the rest of the paper we consider the
following transition kernel that satisfies detailed balance with respect to a given probability
distribution p:

Definition 1 (Neklyudov et al., 2020)
Given a distribution p(x), x ∈ X and a deterministic map M : X → X , such that M ◦M =
idX , the involutive Metropolis-Hastings kernel is

t(x′|x) :=δ(x′ −Mx)min

(
1,
p(Mx)

p(x)
JM
x

)
+ δ(x′ − x)

(
1−min

(
1,
p(Mx)

p(x)
JM
x

))
, (3)

where JM
x is the absolute value of the determinant of the Jacobian of M at point x.

As specified in the definition, for this transition kernel to satisfy the fixed point equation
(1) the deterministic map M must be involutive. Given that the kernel is deterministic, this
condition would obviously restrict our chain to transition between x and x′ =Mx. In order
to cover the whole support of p(x) we introduce auxiliary variables v ∈ V . Then, instead of
sampling from p(x) we sample from p(x, v) = p(x)p(v|x), with p(v|x) being any probability
distribution we can efficiently sample from.The involutive MCMC framework formulates
MCMC algorithms in terms of two degrees of freedom: the involution M : X ×V −→ X ×V ,
and the conditional distribution p(v|x). Since we want to train a sampler that samples
optimally, we can define a family of parameterized involutions Mθ for θ ∈ Θ, and we would
like to optimize for θ to obtain a Markov chain that efficiently and effectively samples from
a target density. In determining what is efficient and effective sampling, defining what is
a natural objective is harder than it sounds. To address this, we design an adversarial game
between the mapping Mθ and a discriminator.

3. Parameterizing involutions

Recognizing that time-reversibility of deterministic dynamical systems and detail balance of
Markov chains are related, we propose as an alternative to use a class of neural networks
known as time-reversible neural networks.

1. Throughout the paper we use the words density and distribution interchangeably, since we assume every
distribution is abs. continuous w.r.t. the Lebesgue measure.
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3.1. Time-reversible neural networks

In the context of physics-informed learning and forecasting of Hamiltonian systems, Valperga
et al. (2022) introduced time-reversible neural networks. These architectures provide good
candidates for parameterizing involutions. To motivate this, we first review how (time)
reversing symmetries relate to Markov Chains and detail balance, especially in the context
of flow maps in Hamiltonian Monte Carlo.

Reversing symmetries in Hamiltonian MC kernels. We say that an invertible smooth
map R : X×V → X×V is a reversing symmetry for an invertible function L : X×V → X×V
if R◦L◦R = L−1 We call time-reversing symmetry the linear map R : (x, v) 7→ (x,−v). If R
is a reversing symmetry of a function we call the function R-reversible.Valperga et al. (2022)
provide a method for defining parametric functions that, by construction, are reversible with
respect to any linear reversing symmetry. In particular, the following theorem holds

Theorem 2 (Valperga et al., 2022) Let L : RD → RD be an R-reversible diffeomorphism2,
with R being a linear involution. Then, there exists a unique diffeomorphism g : RD → RD,
such that L = R ◦ g−1 ◦R ◦ g. If L is symplectic, then g can be chosen symplectic.

This theorem ensures that any R-reversible, or in general R-reversible and symplectic map L,
can be decomposed as L = R◦g−1◦R◦g. This shifts the problem from that of approximating
L to that of approximating the unique g of its decomposition. At this point, g can be
approximated using any universal approximator with the only constraint that we need the
analytic form of the inverse g−1. Suitable candidates are, for example, compositions of real
NVP bijective layers (Dinh et al., 2016), or, as done in Valperga et al. (2022), compositions
of Hénon maps (see Appendix D).

Involutive MCMC kernels by construction. Using the above result together with
definition 1 for the involutive Metropolis-Hastings kernels, we can construct the parametric
family of deterministic proposals Mθ : X × V → X × V

Mθ = R ◦ Lθ, with Lθ = R ◦ g−1
θ ◦R ◦ gθ, (4)

where R is is the time-reversing symmetry, so that Mθ(Mθ(x, v)) = (x, v) for all (x, v) ∈
X × V .

4. Adversarial training for involutive kernel

Having defined a parameterization for an involutive map Mθ, we are now interested in how
to train Mθ using the transition kernel in equation (3).

4.1. Bootstrap

An unbiased estimator of the objective derived in this section can be computed as a Monte
Carlo sum over samples drawn from the target distribution. Similarly to Song et al. (2017),
to get samples from the target distribution and train our transition kernel we propose a
bootstrap process that gradually increases the quality of samples over time. We first obtain
samples from p(x) using a possibly inefficient and slow-mixing kernel that nonetheless has
p(x) as its stationary distribution. The bootstrap process is outlined in Algorithm 1.

2. It must be smoothly isotopic to the identity, a mild condition for sufficiently well-behaved target functions.
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4.2. The adversarsial MH kernel

Definition 3 Let R ◦ Lθ : S → S be a deterministic involutive map, and D : S → R+ be
a positive valued deterministic function. For a generic test function r : R+ → [0, 1], such
that x · r( 1x) = r(x), and r′(x) ≥ 0, we define the Adversarial Metropolis-Hastings transition
kernel as:

tD(x
′|x) = δ(x′ 9R ◦ Lθ(x))r [D(x)] + δ(x′ 9 x)(1 9 r [D(x)]). (5)

An example of a test function is r(x) = min(1, x). In this paper, we use the Barker

test: rB(x) =
(
1 + 1

x

)−1
. In order to sample from the target distribution, we need to satisfy

detailed balance, tD(x
′|x)p(x) = tD(x|x′)p(x′), with respect to the target distribution. We

propose to ensure this by minimising the distance between the target distribution p(x) and
the distribution obtained after one step of the chain starting from the target, that is tD ◦p(x).
As done in Neklyudov et al. (2019), we consider the total variation (TV) distance:

TV [p, tD ◦ p(x)] := 1

2

∫
S
|p(x)− tD ◦ p(x)|dx. (6)

For any kernel tD as in Def. 3 we have TV [p(x′), tD ◦ p(x)] = 0 if logD(x) = log p(R◦Lθ(x))
p(x) JR◦Lθ:

x .
Given that R ◦ Lθ is an involution, we can show that the optimal log-discriminator function
has a simple symmetry under the action of R ◦Lθ. We describe next the symmetry and how
to include it to derive our final objective.

4.3. Equivariance of the discriminator under R ◦ Lθ

Let3 R ◦ Lθ be an involutive map with R volume and density-preserving, i.e., such that
p(RLθ(x)) = p(x). It’s immediate to verify that the density ratio λ(x) = p(RLθ(x))

p(x) JRLθ
x has

the following symmetry:

λ(RLθ(x)) =
p(RLθ ◦RLθ(x))

p(I ◦RLθ(x))
JRLθ

RLθ(x)
= − log λ(x). (7)

where we used 1 = JRLθ

RLθ(x)
JRLθ
x , and (RLθ)

−1 = RLθ. Therefore, under the action of RLθ,
we would like the parametric discriminators D to transform, by construction, similar to the
density ratio λ. We enforce the above constraint using C2−equivariant functions. Let us
consider the cyclic group C2 = ⟨g, g2 = e⟩. Note that the action of the –generally non-linear–
involution R ◦ Lθ is linear if we consider its action on the lifted space: x⊕

(
R ◦ Lθ(x)

) ∼=
R2n ⊕ R2n. In this space, R ◦ Lθ is the representation ρ2n of the C2 group:

ρ2n : C2 → GL(R2n ⊕ R2n), ρ2n(g) =

[
0 I2n
I2n 0

]
. (8)

To enforce the desired transformation property we parameterize the logarithm of the
discriminator with a neural network dϕ(x) = logDϕ(x).

3. from now on, where needed for compactness, we omit the composition sign ’◦’ and simply use juxtaposition.
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Discriminator with product parameterization. A special construction of C2-equivariant
discriminator is with functions f : R2n ⊕ R2n → R that are equivariant under ρ2n and ξ1,
namely such that

f(ρ2nx) = ξ1f(x). (9)

Any equivariant function d : R2n ⊕ R2n → R can be decomposed into an equivariant and an
invariant part 4. We can then write the equivariant part as the difference of any function
η : R2n → R computed at x and RLθ(x). The invariant part can be any function ψ : R2n → R
of the sum x+RLθ(x):

dϕ(x) = ψ(x+RLθ(x))[η(RLθ(x)) 9 η(x)],

dϕ(RLθ(x)) = ψ(RLθ(x) + x)[η(x) 9 η(RLθ(x)] = 9dϕ(x).
(10)

Note that in this case it is not even necessary to lift the space to achieve the desired
equivariance property.

C2-equivariant composition of linear maps and non-linear activatons. The more
general construction for a C2-equivariant discriminator is with functions h : R2n ⊕ R2n →
R⊕ R, which are equivariant under ρ2n and ρ1:

h(ρ2nx) = ρ1h(x). (11)

Let d̂ϕ be a two-channel neural network that we use to approximate the logarithm of the
density ratio at both the pre-image and image of RLθ:

d̂ϕ(x) ≈

[
log p(RLθ(x))

p(x) JRLθ
x

− log p(RLθ(x))
p(x) JRLθ

x

]
. (12)

Then, let us consider a linear map

[
A B
C D

]
: R2n ⊕ R2n → R2s ⊕ R2s, for some s ≤ n. To

obtain functions that are equivariant with respect to ρ2n and ρ1 from compositions of such
linear maps they must satisfy the following constraint for all x:[

A B
C D

] [
0 I2n
I2n 0

] [
RL(x)
x

]
=

[
0 I2s
I2s 0

] [
A B
C D

] [
RL(x)
x

]
(13)

which is equivalent to setting A = D, B = C. We can then compose linear layers of this
form with element-wise non-linearities. The function dϕ(x), that we use to approximate the
log-density ratio can then just be the first, or the second, coordinate of the two-dimensional
output of d̂ϕ.

At this point it is important to notice that in both the proposed parameterizations, the
discriminator D depends not only on the parameters ϕ, but also on θ through the proposal
map R ◦ Lθ.

4. This is trivial since any scalar equivariant function remains equivariant if multiplied by an invariant
function.
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4.4. Detailed-Balance Loss

As anticipated in the previous sections, we need to minimise TV [p, tD ◦ p]. Let tD be the
transition kernel of the type (3) with discriminator D = exp(d). Given the target density
p(x) the total variation distance between p and tD ◦ p is5

TV [p; tD ◦ p] = |p(RLθ(x))r [D(RLθ(x))] 9 p(x)r [D(x)]|1 (14)

We consider an upper bound to this quantity.

Upper Bound on TV with Pinsker Inequality We use the famous Pinsker Inequality
(Pinsker, 1964) to upper-bound the TV distance with a more malleable KL divergence.
Given two densities p and q we have

TV [p; q]2 ≤ KL[p; q]. (15)

Considering the final bound, we have the following adversarial optimization problem over
the parameters θ of RLθ and the parameters ϕ of Dϕ,RLθ

:

max
θ
Aθ = max

θ
Ep(x) (r [Dϕ,RLθ

(x)]) ,with fixed ϕ

min
ϕ

Ep(x) (r [Dϕ,RLθ
(x)] log r [Dϕ,RLθ

(x)]) ,with fixed θ.
(16)

Due to the equivariance constraints, D(x) is a function of both θ, through RLθ, and ϕ. For
any fixed RLθ the solution of the minimisation problem is the log-density ratio:

D∗(x) = argmin

∫
p(x)r [Dϕ,RLθ

(x)] log r [Dϕ,RLθ
(x)] dx = log

p(RLθ)

p(x)
JRLθ(x)
x . (17)

Algorithm 1 Ai-sampler.

Input: target p(x), initial kernel and discriminator Tθ, dϕ, initial X = {xj}Nj=1, xj ∼ p0(x),
DiscSteps, KernelSteps.
repeat
X = MH(Tθ, p,X , N) # MH is the Metropolis-Hastings algorithm.
for X ∈ X do

for i = 1 to KernelSteps do
θ → θ + ϵ∇LA(X, θ, ϕ) # Eq. (16), first line

end for
for i = 1 to DiscSteps do
ϕ→ ϕ+ ϵ∇Ladv(X, θ, ϕ) # Eq. (16), second line

end for
end for

until convergence
Return: Tθ

5. Experiments

For experiments and pseudo-code description, please see Section A

5. We use | · |1 for
∫
S ·dx
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Appendix A. Appendix: Experiments

Following Song et al. (2017), we test our method with the following experiments. The first
experiment is with four 2D densities. They highlight specific challenges, such as good mixing
in the presence of multiple modes separated by low density regions. The second experiment
is with high-dimensional complex densities from real-world scenarios. In particular, we
sample from the posterior of a logistic regression model trained with three different datasets
of varying number of covariates. For both experiments we benchmark running time and
efficiency of sampling of our method.

Baselines. For all the experiments we compare with Hamiltonian Monte Carlo (HMC)
Duane et al. (1987); Neal et al. (2011) and the method by Song et al. (2017), given its
conceptual similarities with ours. For HMC we follow Song et al. (2017) and fix the number
of leapfrog integration steps to 40 and tune the step-size to achieve the best performance.
A more detailed description of the experiments, including the analytic expression of the
densities can be found in the AppendixD and E. Code to reproduce the experiments will
be made publicly available upon acceptance.

Evaluation criteria. To compare the performances we use the effective sample size (ESS).
Practically, the ESS is an estimate of the number of samples required to achieve the same
level of precision that a set of uncorrelated random samples would achieve (for details see
the Appendix F). We report the lowest ESS among all covariates averaged over several
trials. Since MCMC methods can be very costly to run, a second often reported performance
measure is the effective sample size per second (ESS/s). This is simply the ESS obtained
per unit of time. We report this measure to evaluate efficiency.

(a) (b) (c) (d)

Figure 1: Synthetic 2D densities used in the experiments. From left to right: mog2, mog6,
ring, and ring5.

A.1. 2D densities

For a fair comparison with Song et al. (2017) we choose to use the same four 2D densities they
used. Two mixtures of Gaussians with two and six modes, mog2 and mog6, a ring-shaped
distribution, ring, and one made of five concentric rings, ring5. The densities are depicted
in Fig. 1. For all experiments we ran a single chain for 1000 burn-in steps and compute
ESS and ESS/s for the following 1000 steps.
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Despite being 2D, these densities pose some challenges. In particular, the mixtures of
Gaussians, and the concentric rings are multimodal distributions with high-density regions
separated by high-energy (low-density) barriers. This characteristic represents a significant
hurdle for Hamiltonian Monte Carlo, as Hamiltonian dynamics are unlikely to overcome
these high-energy barriers, potentially leading to inefficient exploration of the state space
and convergence issues. Figure 2 shows the very different behaviour of our method compared
to HMC highlighting the fast mixing of our method compared to HMC in the presence of
high energy barriers. Results are reported in Table 1. See also Appendix F and I.

Table 1: Effective sample size for synthetic 2D energy functions.

Density
ESS

HMC A-NICE-MC Ai-sampler (ours)

mog2 0.8 355.4 1000.0
mog6 2.4 320.0 1000.0
ring 981.3 1000.0 378.0
ring5 256.6 155.57 396.5

(a) (b) (c) (d)

Figure 2: Single MCMC trajectory with the learned kernel (top) on the mog2 and mog6
synthetic 2D densities, compared to HMC (bottom). The low density regions make it unlikely
for HMC to get from one mode to another.

A.2. Bayesian logistic regression.

To compare with Song et al. (2017) we use the same posterior distribution they used, resulting
from a Bayesian probabilistic logistic regression model on three famous datasets: heart (14
covariates, 532 data points), australian (15 covariates, 690 data points), and german (25
covariates, 1000 data points). For all experiments we ran a single chain for 1000 burn-in
steps and compute ESS and ESS/s for the following 5000 steps. Table 2 reports the results.

A.3. Benchmarking running time

The advantage of learning to sample with a transition kernel parameterized by a neural
network also lies in the hardware being optimized to perform multiple operations in parallel.
Our method consists of a deterministic proposal parameterized by a neural network and, as
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Table 2: Effective sample size for Bayesian logistic regression.

Density
ESS

HMC A-NICE-MC Ai-sampler (ours)

heart 5000.0 1251.2 5000.0
german 5000.0 926.49 5000.0
australian 1113.4 1015.8 1746.5

opposed to HMC, does not require the gradient of the target density function. In HMC,
proposals are obtained by integrating Hamiltonian dynamics which requires multiple calls to
the gradient function of the density. For complex distributions, such as Bayesian logistic
regression posteriors with large datasets, calls to the gradient are costly.

We implement both our Ai-sampler and HMC in JAX Bradbury et al. (2018) and Flax
Heek et al. (2023), making use of the built-in autodifferentiation tools, vectorization, and
just-in-time (JIT) compilation. We note that, in a certain range, running time remains
approximately constant as the number of parallel chains increases. Past that range, running
time increases approximately linearly. We measure running time within the constant range.
For both HMC and the Ai-sampler we run Gelman’s R̂ diagnostic Brooks and Gelman (1998)
and find values that suggest good convergence (≤ 1.004), and close-to-zero cross-correlation
between chains. We can then assume that the ESS of parallel chains is the sum of the ESS of
the single chains. For this reason, for a better comparison, we decided to report the ESS per
second per chain. It is worth noting that, as reported in Fig. 3, we found that the Ai-sampler,
given the relatively simple architecture, can sustain many more parallel chains than HMC,
which would result in much larger overall ESS. For further details see the Appendix G.

Table 3: Effective sample size per second per chain.

Density
ESS/s

HMC Ai-sampler (ours)

mog2 0.4 1052.6
mog6 0.98 1041.7
ring 2725.8 402.1
ring5 333.2 434.7

heart 989.0 1736.0
german 672.0 1618.0
australian 171.95 1724.0

Appendix B. Conclusions

We propose the Ai-sampler : an MCMC method with involutive Metropolis-Hastings kernels
parameterized by time-reversible neural networks to ensure detailed balance. We derive
equivariance conditions for the discriminator and a novel simple objective to train the
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Figure 3: Time vs. number of parallel chains for a single RTX3090 GPU, sampling from
the Bayesian logistic regression posterior with German dataset. Every chain consists of 100
steps. For more more than 104 parallel chains, the jitting time becomes prohibitively long
and therefore not worthy.

parameterized kernel. The proposed objective is an upper-bound on the total variation
distance between the target distribution and the stationary distribution of the Markov
chain. We use the C2-equivariance of the optimal discriminator to restrict the hypothesisis
space of the parametric discriminators. We learn to sample with a bootstrap process that
alternates between generating samples from the target density and improving the quality
of the kernel with the adversarial objective. We demonstrate good mixing properties of
the resulting Markov chain on some synthetic distributions and Bayesian inference with
real-wold datasets.

In the future, we plan to further explore the potential of our approach as a generative
model, given that the adversarial objective is computed from an empirical distribution. In
this regard, we would like to point out the similarity of our work with Normalizing Flows. In
the generative model setting NFs have shown good results and our approach can be applied
there two. We expect promising results, as instead of learning a global transformation from
a simple probability distribution to a more complex one, e.g., transforming Gaussian noise
into good-looking images, our approach consists of learning local transition kernels that map
points (e.g., images) to other points in the target distribution.

Appendix C. Related work

We highlight works that are close to ours in that they make use of neural networks to define
MCMC methods. For general MCMC techniques, the reader is referred to comprehensive
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surveys such as Roberts and Rosenthal (2004); Brooks et al. (2011); Luengo et al. (2020).
To address the challenge in the design of an objective for MCMC methods, previous works
Titsias and Dellaportas (2019); Hirt et al. (2021); Roberts and Rosenthal (2009) propose
a specific type of deterministic proposal that targets a particular acceptance ratio while
promoting mixing with entropy-like regularization. However, this approach imposes restric-
tions on the type of proposal used and introduces a hyperparameter, that is either the
target acceptance rate or the weight of the regularization. Pasarica and Gelman (2010)
develop an adaptive MCMC method that selects the parametric kernel that maximizes the
expected squared jump. Another solution proposed by Levy et al. (2017) involves optimizing
the difference between the average Euclidean distance after one step and its inverse. An
interesting method that mixes Variational Inference with Hamiltonian Monte Carlo is the
work of Hoffman et al. (2019) where autoregressive flows are used to correct unfavorable
geometry of a posterior distribution.A notable method for learning to sample, that is also the
closest to our approach, is the work of Song et al. (2017) where a method for training Markov
kernels parameterized using neural networks with an autoencoder architecture is proposed. It
consists of a GAN-like objective justified by the assumption that GANs attempt to minimize
the Jensen-Shannon divergence. Similar to our approach, their method involves a bootstrap
process where the quality of the Markov chain kernel increases over time. One key difference
is that, to achieve reversibility, Song et al. (2017) make use of an additional random variable,
whereas our parameterized deterministic proposals are reversible by construction.

Appendix D. Architectures

All experiments are performed using compositions of parametric Hénon maps. Hénon maps
are symplectic transformations on Rn × Rn, (x, y) 7→ (x̄, ȳ), defined by{

x̄ = y + η

ȳ = −x+ V (y),
(18)

with V : Rn → Rn, and η a constant. The reason why we use Hénon maps, other than
their approximation properties (see Valperga et al. (2022)), is because they are invertible
analytically: for given V and η the inverse is simply{

x = −ȳ + V (x̄− η)

y = x̄− η.
(19)

For experiments with 2D distributions we use Hénon maps with the function V being a
two-layer MLP with hidden dimension 32 and compose 5 of such layers to construct the
function gθ from Eq. (4). To sample from the Bayesian logistic regression posterior we set
the hidden dimension of the two-layer MLP is 64.

For the discriminator we use the product parameterization using two three-layer MLP
with hidden dimensions 32 for the experiments with the 2D distribution, and 128 for the
Bayesian posterior.

The models have been trained on one NVIDIA A100. Training times are around 2 to 3
minutes for the simple distributions and about 5 to 10 minutes for the Bayesian posterior.
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Appendix E. Analytic form of the densities

Following Song et al. (2017), for all experiments p(v|x) is a Gaussian centered at zero with
identity covariance. Now with f(x|µ, σ) denoting the log density of the Gaussian N (µ, σ2),
the 2D log densities U(x) = log p(x) used in the experiments are

mog2:

U(x) = f(x|µ1, σ1) + f(x|µ2, σ2)− log 2

where µ1 = [5, 0], µ2 = [−5, 0], σ1 = σ2 = [0.5, 0.5].

mog6

U(x) =
6∑

i=1

f(x|µi, σi)− log 6

where µi =

[
5 sin

(
iπ
3

)
5 cos

(
iπ
3

)] and σi = [0.5, 0.5].

ring

U(x) =

(√
x21 + x22 − 2

0.32

)2

ring5

U(x) = min(u1, u2, u3, u4, u5)

where ui =
(√

x21 + x22 − i
)2
/0.04.

For the Bayesian logistic regression, we define the likelihood and prior as

p(y|X,β) =
n∏

i=1

[
σ(xT

i β)
]yi [

1− σ(xT
i β)

]1−yi
(20)

where σ(z) = 1
1+e−z

Then the unnormalized density of the posterior distribution for a dataset D = {X,y} is

p(β|y,X,µ,Σ) ∝ p(y|X,β) · p(β|µ,Σ) (21)

where the Gaussian prior is p(β|µ,Σ) = N (β|µ,Σ) is a Gaussian with diagonal covari-
ance.

We use three datasets: german (25 covariates, 1000 data points), heart (14 covariates,
532 data points) and australian (15 covariates, 690 data points).

p(y|X,β) =
n∏

i=1

[
σ(xT

i β)
]yi [

1− σ(xT
i β)

]1−yi
(22)
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Ai-Sampler

Appendix F. Effective sample size

Following Song et al. (2017) given a chain {xi}Ni=1 we compute the ESS as:

ESS
(
{xi}Ni=1

)
=

N

1 + 2
∑N−1

s=1

(
1− s

N

)
ρs

(23)

where ρs is the autocorrelation of x at lag s. We use the empirical estimate ρ̂s of ρs:

ρ̂s =
1

σ̂2(N − s)

N∑
n=s+1

(xn − µ̂)(xn−s − µ̂) (24)

where µ̂ and σ̂ are the empirical mean and variance obtained by an independent sampler.

Following Song et al. (2017), we also truncate the sum over the autocorrelations when
the autocorrelation goes below 0.05 to due to noise for large lags s.

Appendix G. Benchmarking time

We report in figure 4 the time it takes to perform one forward pass of the parametric
proposal in the Ai-sampler compared to a single call to the gradient function of the Bayesian
logistic regression posterior obtained with JAX autodifferentiation. We do not compare

Figure 4: Time taken for a single call of the gradient function and neural network proposal
vs. batch size.

running time with Song et al. (2017) as their implementation uses TensorFlow 1 which is
not as efficient as JAX, which XLA to compile and run code on accelerators. We stress that
time benchmark is to highlight the cost of multiple calls to the density gradient functions,
especially in the case of complex Bayesian posterior distributions.

Appendix H. Additional figures

In Fig. 5 we show an example of training curve, with the acceptance rate, during training.
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(a) (b) (c) (d)

Figure 5: Adversarial objective and acceptance rate during training. Sample quality
increasing during training.

Appendix I. The role of the discriminator

We can investigate how the discriminator is ”guiding” the parametric proposal by looking
the value of dϕ(x) after training. In particular, we artificially turn d into a function of two
points. For example, for the product parameterization we look at

dϕ(x, y) = ψ(x+ y)[η(y) 9 η(x)], (25)

for a fixed x and different values of y. Figure 6 shows a discriminator, trained with mog6
for three different values of x.

(a) (b) (c) (d)

Figure 6: Discriminator artificially turned into a function of two inputs as in Eq. (25), for
three different values of x: one far from the six modes and two at the center of one mode.

Note that, for the discriminator to be effective it only needs to be consistent with the
ground truth density ratio where the deterministic proposal is likely to propose the new
sample from the current state of the chain.
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