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Abstract: Traditional methods optimize robot morphology independently using
evolutionary algorithms, where fitness functions are applied to evaluate each geno-
type. Control strategies are then designed based on this predefined morphology.
While the concept of co-design, considering multiple aspects simultaneously, is
not new, it is often impractical due to the time-consuming process of manufac-
turing new morphology. A common solution to this limitation is restricting the
design space to morphology with similar topologies. In this extended abstract, we
investigate a squeezable unmanned aerial vehicle (UAV) as the controlled plant
and propose a novel morphology-aware control (MAC) method leveraging deep
reinforcement learning (DRL) to solve a vision-based navigation problem under
extreme settings in this study. Our approach integrates the agent’s morphology
directly into the learning process of the control policy, enabling fast morphology-
policy co-design. To simplify the control problem, we restrict the quadrotor con-
figuration that can be transformed only between X and H via a single squeezing
angle (ξ). The quadrotor’s body shape can be horizontally reduced to 52.4 % of
its original shape. Simulation results show that the navigation policy trained with
an understanding of morphology is more effective.

Keywords: Unmanned Aerial Vehicle (UAV), Deep reinforcement learning,
Morphology-policy co-design

1 Introduction

UAVs are used for a wide range of applications, e.g., inspection, exploration [1, 2, 3], and search and
rescue [4, 5, 6]. It is commonly seen that the controllers are often designed with fixed morphology
that is assumed to be pre-defined and unchangeable for a specific task. However, morphology and
controller are strongly coupled, and any morphological change, due to changes in environments,
will influence existing controllers. This results in a need for a co-design method that considers mul-
tiple aspects simultaneously to design re-configurable or adaptable robots with learning capabilities.
Early works on co-design problems often leverage evolutionary robotics to optimize both morphol-
ogy and controller [7, 8, 9]. Alternatively, recent research focuses on the development of artificial
intelligence-empowered robots that can perceive their environment and make decisions based on
what they perceive. Towards this end, reinforcement learning has gained significant attention in
the field of robotics because it enables robots to autonomously learn and refine their behavior ac-
cording to changes in the environment, thereby enhancing their overall adaptability and robustness
[10, 11, 12]. However, these works are particularly applied to legged locomotion. For operating in
extreme environments where ground robots might not work effectively, more agile robots, such as
squeezable UAVs, [13, 14], have emerged as a promising solution. Building on that need and the
latest trends in robotics, we propose a morphology-policy co-design method for squeezable UAVs
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using DRL. In particular, we emphasize a novel end-to-end morphology-aware navigation policy
that operates solely on visual sensory data.

The remaining parts of this manuscript are organized as follows. Section 2 describes relevant
works about morphing mechanisms and control strategies regarding to these mechanisms. Section 3
presents the proposed MAC method for navigating a squeezable drone. Section 4 describes briefly
the simulation setup and results. Finally, Section 5 provides the conclusions and future works.

2 Related works

In this section, we present relevant works dealing with the morphology-policy co-design problem
of aerial robots. We first investigate morphing mechanisms as described in Sec. 2.1, and control
strategies, commonly utilized for controlling the agent due to these changes, are further discussed in
Sec. 2.2.

2.1 Morphing mechanism of aerial robots
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Figure 1: Construction of the
squeezable drone. The four
rotating arms are identical, al-
lowing them to be controlled
simultaneously by a single
variable. The body shape
can be continuously reduced
to 52.4 % of its original shape.

Previous studies have explored the development of morphing mech-
anisms that enable aerial robots to adapt their morphology for var-
ious functional advantages. These designs enhance gliding ef-
ficiency across a broad velocity range [15] and allow for flight
through tighter spaces [16, 13, 14]. For instance, [16] presented
an X-morf drone that contains two independent arms. These two
arms are actuated by a single scissor joint that allows to reduce a
standard X configuration up to 28.5 %. [13] presented a large drone
equipped with a folding mechanism capable of navigating cluttered
environments by reducing its wingspan by 48%, allowing it to pass
through narrow vertical gaps at 2.5 m/s. To further enhance versa-
tility, [14] introduced a sophisticated morphing design for quadro-
tors, featuring four independently rotating arms. This design allows
the quadrotor to shift from a conventional X configuration to al-
ternative configurations—such as H, O, or T—tailored for specific
tasks. Alternatively, [17] developed a morphing aerial robot with
a two-dimensional multilink structure that not only enables stable
transformations but also allows the robot to function as a complete
gripper. In this study, we choose a squeezing drone constructed as
presented in [14] and focus on developing a morphology-aware pol-
icy using the DRL framework. To simplify the control problem, we
restrict the quadrotor configuration that can be transformed only between X and H configuration via
a single squeezing angle ξ. The squeezable drone is designed as shown in Fig. 1. The designed
drone in this work can morph up to 52.4 % of its body shape horizontally, so this mechanism allows
the drone can pass through vertical gaps that are smaller than the size of the drone.

2.2 Control strategies

To control a morphing drone, common strategies divide the system into three key modules: per-
ception, planning, and control. Most approaches focus primarily on control design, assuming that
the perception and planning modules are well-designed. The control module often relies on model-
based techniques. For instance, Model Reference Adaptive Control (MRAC) has been employed to
manage uncertainties in inertia and the center of mass due to reconfiguration during flight, as shown
in [16]. In another example, [13] introduced a squeezing angle as an additional degree of freedom
and implemented position and attitude control using two PID controllers. To handle four extra de-
grees of freedom, [14] used a Linear Quadratic Regulator (LQR) controller, which recalculates the
inertial matrix and center of gravity according to morphological adjustments.
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Moving beyond model-based methods, model-free approaches present promising alternatives. In-
spired by biological systems, where animals adapt their body shapes in response to environmental
changes based primarily on visual cues, these methods leverage DRL to incorporate morphology
into policy learning. However, most recent works have applied these methods in legged locomotion
[10, 11, 12]. Thus, we develop a MAC strategy using DRL to train a navigation policy for the drone.
This approach solves navigation in an end-to-end manner, factoring in morphological changes dur-
ing policy training. In essence, the drone perceives environmental changes through a camera and
adjusts its body shape to navigate optimally.

3 Methodology

We propose an end-to-end solution for vision-based navigation that integrates the drone’s morphol-
ogy into policy learning. The system architecture, shown in Fig. 2, enables the DRL agent to receive
images as input and make navigation decisions based on visual perception. Notably, the agent is
aware of its morphing ability, allowing it to adjust its shape to pass through narrow gaps. We train
this DRL agent using the deep deterministic policy gradient (DDPG) algorithm [18], which is well-
suited for continuous action spaces. Key considerations include: (1) how to formulate the co-design
problem to incorporate morphology, and (2) the optimal policy architecture.

3.1 Morphology-aware co-design with reinforcement learning

We consider the navigation problem as an Markov decision process (MDP) with state space repre-
sented by the local observation space, while the global environment dynamics are viewed as part
of the MDP uncertainty. Hence, the problem can be formulated as a MDP described by a tuple
(S,A, p, r, γ) in which S,A, p, r, γ denote state, action, transition model, reward, and discount fac-
tor, respectively. Therefore, a maximization problem can be written as (1).
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Figure 2: The proposed MAC method incorporates the agents’ morphology in training the navigation
policy. To meet this need for realistic training environments for a model learning algorithm, this
work develops an DRL vision-based navigation benchmark by integrating high-fidelity simulation
in the NVIDIA Isaac Sim with ROS. This benchmark can be used efficiently and with minimal effort
to train and test DRL vision-based navigation algorithm.
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max
θπ

E (Q∗
θϕ(s, πθπ (s, ξsq))) (1)

In the DRL framework, the performance of DRL algorithms heavily depends on its design. Typ-
ically, reward functions include morphology-dependent components, but this approach becomes
impractical when exploring a large morphological design space. In this work, we consider squeez-
able UAVs to be a morphing agent whose design space can be restricted to squeezing angle (ξsq)
only. Thus, we train the agent policy πθπ (s, ξsq) that outputs actions a ∈ πθπ (s, ξsq) to maximize
the state action value Qθϕ(s, a). Notably, the agents’ morphology information is involved in the
learning process. The policy and state-action functions are represented by deep neural networks
characterized by the parameter sets θπ and θϕ, respectively. The formulation described by (1) im-
plies that if we know the optimal state-action function, we can determine the optimal action π∗

θ(s) in
any given state s. Therefore, it is important to train the critic network that ensures Qθϕ(s, a) closer
to the optimal action-value function Q∗

θϕ(s, a). This can be done by minimizing the mean-squared
error described by

L(θϕ,R) = E(st,ξsq,at,rt,st+1,T )∼R
[
(Qθϕ(st, at)−Qtarget)

2
]

(2)

where
Qtarget =

[
rt + γ(1− d)Qθϕ

target
(st+1, πθπ

target
(st+1)

]
(3)

and R denotes an experience replay buffer. The variable d ∈ {0, 1} indicates whether the state
terminated or not. In DDPG [18], target critic Qθϕ

target
and policy πθπ

target
networks are used to stabilize

the training process by introducing a delay when updating target networks.

3.2 Policy network architecture

The network architecture of the policy is depicted in Fig. 3. We define actor and critic networks,
whose architecture includes variational autoencoder (VAE) followed by two fully connected layers.
This architecture takes raw depth images and actual squeezing angles and outputs directly linear
velocities, yaw rate, and squeezing actions.

Depth Image: 480× 848

Probabilistic
Encoder
qϕ(z|x)

µ

σ

z

Latent space z ∼ N (µ, σ)

squeezing angle ξsq

DDPG

Figure 3: The architecture of the policy network employs a VAE [19] to encode images into a latent
space. We utilize the VAE model trained by [20]. Subsequently, we freeze the weights of the VAE
model and only train the actor and critic networks of the DDPG.

The encoder receives a depth image input of size 480 × 848 and outputs a latent space vector with
a dimension of 64× 1. This latent space will be concatenated with the squeezing angle to form the
input to the DDPG. The output of the DDPG is a vector of 5 actions, including linear velocities, yaw
rate, and squeezing actions. The common hyperparameters, used for training the actor and critic
networks of these methods, are given in Table 1. The fully connected layers 1 and 2 for both actors
and critics are defined as 400, and 300, respectively.

4 Simulation study

4.1 Scenario setup

To validate our proposed approach, we design a scenario where the drone is requested to navigate
a hallway to search for a person in the presence of walls and obstacles that define a narrow gap,
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shown in Fig. 4a. The gap is defined with a dimension of the width and height 500mm× 500mm.
The width is slightly larger than the full wingspan of the agent, as described in Fig. 1. To prove the
concept of the co-design problem, the agent is expected to adjust its body in order to improve the
success rate of passing through that narrow gap.

4.2 Training results

The training is conducted over 2500 episodes, each running for 1000 iterations. We use fixed and
squeezable drones to evaluate our proposed MAC method. The training environment is randomized
at the start of each episode. Figure 4b shows that the agent with the squeezable mechanism achieves
higher rewards compared to the fixed one. It implies that the agent with the squeezable mechanism
navigates through narrow gaps more easily and reaches the target person more effectively.

(a) Simple setting (b) Training results

Figure 4: We train both the fixed and squeezable drones for 2,500 episodes, running the algorithms
five times using different random seeds.

Table 1: Training parameters
Parameters Values Description
ηa 0.25e-3 Actor learning rate
ηc 0.25e-2 Critic learning rate
ρ 0.99 Polyak factor
γ 0.95 Discounted factor
ωc 1e-4 Weight decay factor for the critic
b 64 Batch size
Mrb 500000 Memory size of the replay buffer

5 Conclusion

In this extended abstract, we present a proof of concept for a morphology-aware control method
utilizing the DRL framework applied to control a squeezable drone. We incorporate the agent’s
morphology during the training of the navigation policy. This co-design approach enhances the
trained policy, enabling the squeezable drone to complete tasks more effectively. In the future, we
plan to do more experiments and compare our method with other approaches that also incorporate
the squeezing angle into their control policies. Additionally, we will increase the training environ-
ment’s complexity to analyze data efficiency and learning convergence issues. Subsequently, we
will evaluate the proposed MAC algorithm in real time through sim-to-real transfer experiments.
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