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Abstract. While deep neural networks often achieve outstanding re-
sults on semantic segmentation tasks within a dataset domain, perfor-
mance can drop significantly when predicting domain-shifted input data.
Multi-atlas segmentation utilizes multiple available sample annotations
which are deformed and propagated to the target domain via multimodal
image registration and fused to a consensus label afterwards but subse-
quent network training with the registered data may not yield optimal
results due to registration errors. In this work, we propose to extend a
curriculum learning approach with additional regularization and fixed
weighting to train a semantic segmentation model along with data pa-
rameters representing the atlas confidence. Using these adjustments we
can show that registration quality information can be extracted out of a
semantic segmentation model and further be used to create label consensi
when using a straightforward weighting scheme. Comparing our results
to the STAPLE method, we find that our consensi are not only a better
approximation of the oracle-label regarding Dice score but also improve
subsequent network training results.

Keywords: domain adaptation · multi-atlas registration · label noise ·
consensus · curriculum learning

1 Introduction

Deep neural networks dominate the state-of-the-art medical image segmenta-
tion [10, 14, 20], but their high performance is depending on the availability of
large-scale labelled datasets. Such labelled data is often not available in the
target domain and direct transfer learning leads to performance drops due to
domain shift [27]. To overcome these issues transferring existing annotations
from a labeled source to the target domain is desirable. Mutli-atlas segmenta-
tion is a popular method, which accomplishes such a label transfer in two steps:
First, multiple sample annotations are transferred to target images via image
registration [7, 18, 24] resulting in multiple “optimal” labels [1]. Secondly label
fusion can be applied to build the label consensus. Although many methods for
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finding a consensus label have been developed [1,6,19,25,26], the resulting fused
labels are still not perfect and exhibit label noise, which complicates the training
of neural networks and degrades performance.

Related work In the past, various label fusion methods have been proposed,
which use weighted voting on registered label candidates to output a common
consensus label [1,6,19,26]. More elaborate fusion methods also use image inten-
sities [25], however when predicting across domains source and target intensities
can differ substantially complicating intensity-based fusion and would therefore
require handling of the intensity gap i.e. with image-to-image translation tech-
niques [29]. When using the resulting consensus labels from non-optimal regis-
tration and fusion for subsequent CNN training, noisy data is introduced to the
network [12]. Network training can then be improved with techniques of curricu-
lum learning to estimate label noise (i.e. difficulty) and guide the optimization
process accordingly [3,22] but the techniques have not been used in the context
of noise introduced through registered pixel-wise labels [2, 3, 11, 22, 28] or em-
ploy more specialized and complex pipelines [4,5,15]. Other deep learning-based
techniques to address ambiguous labels are probabilistic networks [13].

Contributions We propose to use data parameters [22] to weight noisy atlas
samples as a simple but effective extension of semantic segmentation models.
During training the data parameters (scalar values assigned to each instance
of a registered label) can estimate the label trustworthiness globally across all
multi-atlas candidates of all images. We extend the original formulation of data
parameters by additional risk regularization and fixed weighting terms to adapt
to the specific characteristics of the segmentation task and show that our adap-
tation improves network training performance for 2D and 3D tasks in the single-
atlas scenario. Furthermore, we apply our method to the multi-atlas 3D image
scenario where the network scores do not improve but yield equal performance
in comparison to normal cross-entropy loss training when using out-of-line back-
propagation. Nonetheless, we still can achieve an improvement by deriving an
optimized consensus label from the extracted weights and applying a straight-
forward weighted-sum on the registered atlases.

2 Method

In this section, we will describe our data parameter adaption1 and introduce
our proposed extensions when using it in semantic segmentation tasks, namely a
special regularization and a fixed weighting scheme. Furthermore, a multi-atlas
specific extension will be described, which improves training stability.

1 Our code is openly available on GitHub: https://github.com/multimodallearning/
deep staple

https://github.com/multimodallearning/deep_staple
https://github.com/multimodallearning/deep_staple
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Data parameters Saxena et al. [22] formulate their data parameter and cur-
riculum learning approach as a modification altering the logits input of the loss
function. By a learnable logits-weighting improvements could be shown in differ-
ent scenarios when either noisy training samples and/or classes were weighted
during training. Our implementation and experiments focus on per-sample pa-
rameters DPS of a dataset S = {(xs,ys)}ns=1 with images xs and labels ys con-
taining n training samples. Since weighting schemes for multi-atlas label fusion
like STAPLE [26] use a confidence weight of 0 indicating “no confidence” and 1
indicating “maximum confidence” we slightly changed the initial formulation of
data parameters:

DPσ = sigmoid (DPS) (1)

According to Eq. 1 we limit the data parameters applied to our loss to DPσ ∈
(0, 1) where a value of 0 indicates “no confidence” and 1 indicates “maximum
confidence” such as weighting schemes like STAPLE [26]. The data parameter
loss ℓDP is calculated as

ℓDP (fθ (xB) ,yB) =

|B|∑
b=1

ℓCE,spatial (fθ (xb) ,yb) ·DPσb
with B ⊆ S (2)

where B is a training batch, ℓCE,spatial is the cross-entropy loss reduced over
spatial dimensions and fθ the model. As in the original implementation, the
parameters require a sparse implementation of the Adam optimizer to avoid
diminishing momenta. Note, that the data parameter layer is omitted for infer-
ence — inference scores are only affected indirectly by data parameters through
optimized model training.

Risk Regularisation Even when a foreground class is present in the image
and a registered target label only contains background voxels, the network can
achieve a zero-loss value by overfitting. As a consequence, upweighting the over-
fitted samples will be of no harm in terms of loss reduction which leads to the
upweighting of maximal noisy (empty) samples. We therefore add a so called
risk regularisation encouraging the network to take risk

ℓ = ℓDP −
|B|∑
b=1

# {fθ (xb) = c}
# {fθ (xb) = c}+# {fθ (xb) = c}

·DPσb
(3)

where # {fθ (xb) = c} and # {fθ (xb) = c} indicate positive and negative pre-
dicted voxel count. According to this regularisation the network can reduce loss
when predicting more target voxels under the restriction that the sample has a
high data parameter value i.e. is classified as a clean sample. This formulation is
balanced because predicting more positive voxels will increase the cross-entropy
term if the prediction is inaccurate.
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Fig. 1. Left: Inline backpropagation updating (red arrow) model and data parameters
together. Right: Out-of-line backpropagation first steps on model (gray arrow) using
normal cross-entropy loss and then steps on data parameters using the model’s weights
of the first step.

Fixed weighting scheme We found that the parameters have a strong cor-
relation with the ground-truth voxels present in their values. Applying a fixed
compensation weighting to the data parameters DPσb

can improve the correla-
tion of the learned parameters and our target scores

DPσ̃b
=

DPσb

log (# {(yb = c}+ e) + e
(4)

where # {yb = c} denotes the count of ground-truth voxels and e Euler’s num-
ber.

Out-of-line backpropagation process for improved stability The inter-
dependency of data parameters and model parameters can cause convergence
issues when training inline, especially during earlier epochs when predictions
are inaccurate. We found that a two-step forward-backward pass, first through
the main model and in the second step through the main model and the data
parameters can maintain stability while still estimating label noise (see Fig.
1). First only the main model parameters will be optimized. Secondly only the
data parameters will be optimized out-of-line. When using the out-of-line, two-
step approach data parameter optimization becomes a hypothesis of “what would
help the model optimizing right now?” without intervening. Due to the optimizer
momentum the parameter values still become reasonably separated.

Consensus generation via weighted voting To create a consensus CM we
use a simple weighted-sum over a set of multi-atlas labels M associated to a
fixed image that turned out to be effective

CM =

 |M |∑
m=1

softmax(DPM)m · ym

 > 0.5 with M ⊂ S (5)

where DPM are the parameters associated to the set of multi-atlas labels yM.
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3 Experiments

In this section, we will describe general dataset and model properties as well
as our four experiments which increase in complexity up to the successful ap-
plication of our method in 3D multi-atlas label noise estimation. We will re-
fer to oracle-labels2 as the real target labels which belong to an image and
“registered/training/ground-truth”-labels as image labels that the network used
to update its weights. Oracle-Dice refers to the overlapping area of oracle-labels
and “registered/training/ground-truth”-labels.

Dataset For our experiments, we chose a challenging multimodal segmentation
task which was part of the CrossMoDa challenge [23]. The data contains contrast-
enhanced T1-weighted brain tumour MRI scans and high-resolution T2-weighted
images (initial resolution of 384/448× 348/448× 80 vox @ 0.5 mm× 0.5 mm×
1.0− 1.5 mm and 512× 512× 120 vox @ 0.4× 0.4× 1.0− 1.5 mm). We used the
original TCIA dataset [23] to provide omitted labels of the CrossModa challenge
which served as oracle-labels. Prior to training isotropic resampling to 0.5 mm×
0.5 mm × 0.5 mm was performed as well as cropping the data to 128 × 128 ×
128 vox around the tumour. We omitted the provided cochlea labels and train
on binary masks of background/tumour. As the tumour is either contained on
the right- or left side of the hemisphere, we flipped the right samples to provide
pre-oriented training data and omit the data without tumour structures. For the
2D experiments we sliced the last data dimension.

Model and training settings For 2D segmentation, we employ a LR-ASPP
MobileNetV3-Large model [9]. For 3D experiments we use a custom 3D-MobileNet
backbone similar as proposed in [21] with an adapted 3D-LR-ASPP head [8]. 2D
training was performed with an AdamW [17] optimizer with a learning rate of
λ2D = 0.0005, |B|2D = 32, cosine annealing [16] as scheduling method with
restart after t0 = 500 batch steps and multiplication factor of 2.0. For the data
parameters, we used the SparseAdam-optimizer implementation together with
the sparse Embedding structure of PyTorch with a learning rate of λDP = 0.1,
no scheduling, β1 = 0.9 and β2 = 0.999. 3D training was conducted with learn-
ing rate of λ3D = 0.01, |B|3D = 8 due to memory restrictions and exponen-
tially decayed scheduling with factor of d = 0.99. As opposed to Saxena et
al. [22] during our experiments we did not find weight-clipping, weight decay
or ℓ2-regularisation on data parameters to be necessary. Parameters DPs were
initialized with a value of 0.0. For all experiments, we used spatial affine- and b-
spline-augmentation and random-noise-augmentation on image intensities. Prior
to augmenting we upscaled the input images and labels to 256× 256 px in 2D-
and 192 × 192 × 192 vox in 3D-training. Data was split into 2/3 training and
1/3 validation images during all runs and used global class weights 1/nbins

0.35.

2 “The word oracle [...] properly refers to the priest or priestess uttering
the prediction.”. “Oracle.” Wikipedia, Wikimedia Foundation, 03 Feb 2022,
en.wikipedia.org/wiki/Oracle
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5.0: 85.8%@DP vs. 79.2%

1.0: 86.8%@DP vs. 77.3%

0.5: 86.8%@DP vs. 82.5%

0.1: 86.6%@DP vs. 86.3%
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Fig. 2. Left: Sample disturbance at strengths [0.1, 0.5, 1.0, 5.0]. Middle: Validation
Dice when training with named disturbance strenghts, either with data parameters en-
abled ( ) or disabled ( ). Right: Parameter distribution for combinations of risk reg-
ularization (RR) and fixed weighting (FW): RR+FW | RR | FW | NONE . Sat-
urated data points indicate higher oracle-Dice. Value of ranked Spearman-correlation
rs between data parameters and oracle-Dice given.

Experiment I: 2D model training, artificially disturbed ground-truth
labels This experiment shows the general applicability of data parameters in
the semantic segmentation setting when using one parameter per 2D slice. To
simulate label-noise, we shifted 30% of the non-empty oracle-slices with different
strengths (Fig. 2, left) to see how the network scores behave (Fig. 2, middle)
and whether the data parameter distribution captures the artificially disturbed
samples (Fig. 2, right). In case of runs with data parameters the optimization
was enabled after 10 epochs.

Experiment II: 2D model training, quality-mixed registered single-
atlas labels Extending experiment I, in this setting we train on real registration
noise with 2D slices on single-atlases. We use 30 T1-weighted images as fixed
targets (non-labelled) and T2-weighted images and labels as moving pairs. For
registration we use the deep learning-based algorithm Convex Adam [24]. We
select two registration qualities to show quality influence during training: Best-
quality registration means the single best registration with an average of around
80% oracle-Dice across all atlas registrations. Combined -quality means a clipped,
gaussian-blurred sum of all 30 registered atlas registrations (some sort of consen-
sus). We then input a mix of 50%/50% randomly selected best/combined labels
into training. Afterwards we compare the 100% best, 50%/50% mixed and 100%
combined selections focusing on the mixed setting where we train with and with-
out data parameters. Validation scores were as follows (descending): best@no-
data-parameters 81.1%, mix@data-parameters 74.1%, mix@no-data-parameters
69.6% and combined@no-data-parameters 61.9%.

Experiment III: 3D model training, registered multi-atlas labels Ex-
tending experiment II, in this setting we train on real registration noise but
with 3D volumes and multiple atlases per image. We follow the CrossMoDa [23]
challenge task and use T2-weighted images as fixed targets (non-labelled) and
T1-weighted images and labels as moving pairs. We conducted registration with
two algorithms (iterative deeds [7] and deep learning-based algorithm Convex
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inline
16.6% dice, r=-0.13

out-of-line
60.1% dice, r=+0.65

Fig. 3. Selected samples
with low- and high pa-
rameters: Oracle-label ,
network prediction and
deeds registered label

Fig. 4. Inline and out-
of-line backpropagation.
Validation Dice ( ) and
Spearman-corr. of params.
and oracle-Dice ( )

Fig. 5. FG: Box plots of
STAPLE and DP consen-
sus quality, mean value on
the right. BG: Bar plot
of nnUNet scores; deeds ,
Convex Adam

Adam [24]). For each registration method 10 registered atlases per image are fed
to the training routine expanding the T2-weighted training size from 40 to 400
label-image pairs each. Fig. 4 shows a run with inline and out-of-line (see Sec. 2)
data parameter training on the deeds registrations as an example how training
scores behave.

Experiment IV: Consensus generation and subsequent network train-
ing Using the training output of experiment III, we built 2x40 consensi: [10
deeds registered @ 40 fixed] and [10 Convex Adam registered @ 40 fixed]. Con-
sensi were built by applying the STAPLE algorithm as baseline and opposed to
that our proposed weighted-sum method on data parameters (DP) (see Sec. 2).
On these, we trained several powerful nnUnet-models for segmentation [10]. In
Fig. 5 in the foreground four box plots show the quality range of generated con-
sensi regarding the oracle dice: [deeds, Convex Adam registrations]@[STAPLE,
DP]. In the background the mean validation Dice of nnUnet-model trainings
(150 epochs) is shown. As a reference, we trained directly on the T1-moving
data with strong data augmentation (nnUNet “insane” augmentation) trying
to overcome the domain gap directly (GAP). Furthermore, we trained on 40
randomly selected atlas labels (RND), all 400 atlas labels (ALL), STAPLE con-
sensi, data parameter consensi (DP) and oracle-labels either on deeds or Convex
Adam registered data. Note that the deeds data contained 40 unique moving at-
lases whereas the Convex Adam data contained 20 unique moving atlases, both
warped to 40 fixed images as stated before.

4 Results and discussion

In experiment I we could show that our usage of data parameters is generally
effective in the semantic segmentation scenario under artificial label noise. Fig.
2 (middle) shows an increase of validation scores when activating stepping on
data parameters after 10 epochs for disturbance strengths > 0.1. Stronger dis-
turbances lead to more severe score drops but can be recovered by using data
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parameters. In Fig. 2 (right) one can see that data parameters and oracle-Dice
correlate most, when using the proposed risk regularization as well as the fixed
weighting-scheme configuration (see Sec. 2). We did not notice any validation
score improvements when switching between configurations and therefore con-
clude that a sorting of samples can also be learned inherently by the network.
However, properly weighted data parameters can extract this information, make
it explicitly visible and increase explainability. In experiment II we show that
our approach works for registration noise during 2D training: When comparing
different registration qualities, we observed that training scores drop from 81.1%
to 69.6% Dice when lowering registration input quality. By using data parameters
we can recover to a score of 74.1% meaning an improvement of +4.5%. Exper-
iment III covers our target scenario — 3D training with registered multi-atlas
labels. With inline training of data parameters (used in the former experiments),
validation scores during training drop significantly. Furthermore the data param-
eters do not separate high- and low quality registered atlases well (see Fig. 4,
inline). When using our proposed out-of-line training approach (see Sec. 2) val-
idation Dice and ranked correlation of data parameter values and oracle-Dice
improve. Experiment IV shows that data parameters can be used to create
a weighted-sum consensus as described in Sec. 2: Using data parameters, we
can improve mean consensus-Dice for both, deeds and Convex Adam registra-
tions over STAPLE [26] from 58.1% to 64.3% (+6.2%, ours, deeds data) and
56.8% to 61.6% (+4.8%, ours, Convex Adam data). When using the consensi in
a subsequent nnUNet training [10], scores behave likewise (see Fig. 5). Regarding
training times of over an hour with our LR-ASPP MobileNetV3-Large training,
one has to consider that applying the STAPLE algorithm is magnitudes faster.

5 Conclusion and outlook

Within this work, we showed that using data parameters in a multimodal predic-
tion setting with propagated source labels is a valid approach to improve network
training scores, get insight into training data quality and use the extracted info
about sample quality in subsequent steps namely to generate consensus seg-
mentations and provide these to further steps of deep learning pipelines. Our
improvements over the original data parameter approach for semantic segmen-
tation show strong results in both 2D- and 3D-training settings. Although we
could extract sample quality information in the multi-atlas setting successfully,
we could not improve network training scores in this setting directly since using
the data parameters inline of the training loop resulted in unstable training.
Regarding that, we want to continue investigating how an inline training can di-
rectly improve training scores in the multi-atlas setting. Furthermore our empir-
ically chosen fixed weighting needs more theoretical foundation. The consensus
generation could be further improved by trying more complex weighting schemes
or incorporating the network predictions itself. Also we would like to compare
our registration-segmentation pipeline against specialized approaches of Ding et
al. and Liu et al. [4, 5, 15] which we consider as very interesting baselines.
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