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Abstract
In recent years, pre-trained large language models
(LLMs) have demonstrated remarkable efficiency
in achieving an inference-time few-shot learning
capability known as in-context learning. How-
ever, existing literature has highlighted the sensi-
tivity of this capability to the selection of few-shot
demonstrations. Current understandings of the
underlying mechanisms by which this capability
arises from regular language model pretraining ob-
jectives remain disconnected from the real-world
LLMs. This study aims to examine the in-context
learning phenomenon through a Bayesian lens,
viewing real-world LLMs as implicit topic mod-
els. On this premise, we propose an algorithm to
select optimal demonstrations from a set of anno-
tated data with a small LLM, then directly gener-
alize the selected demonstrations to larger LLMs.
We demonstrate a significant 12.5% improvement
relative to the random selection baseline, aver-
aged over eight GPT models on eight real-world
text classification datasets. Our empirical findings
support our hypothesis that LLMs implicitly infer
a latent variable containing task information.

1. Introduction
Transformer-based (Vaswani et al., 2017) pre-trained large
language models (LLMs) have demonstrated significant
advancements in a variety of natural language processing
(NLP) tasks. As the size of these LLMs increases, they
gain “in-context learning” capabilities, whereby the models
achieve state-of-the-art (SOTA) or near-SOTA performance
by conditioning on a small number of demonstration exam-
ples at inference time, without any need for updating model
parameters (Brown et al., 2020). Below is an example input
sequence for semantic analysis with in-context learning:
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Great movie. Positive.

The worst movie ever. Negative.

Can’t wait to see the second movie!

The first two lines are two demonstrations, and the third line
is a test input. We expect an LLM to output the correct label
Positive as a continuation.

In-context learning has been demonstrated to be an effective
technique for a wide range of NLP tasks. However, it is
sensitive to the choice, format, and even the order of the
demonstrations used (Perez et al., 2021; Lu et al., 2022).
This makes achieving optimal performance with in-context
learning a significant challenge, requiring real human effort
to adjust the format and selection of demonstration exam-
ples. Heuristic solutions, such as selecting demonstrations
based on the similarity between the demonstrations and test
input (Liu et al., 2022; Su et al., 2022) have been proposed,
but a comprehensive understanding of why certain demon-
strations are effective while others are not remains elusive.
Additionally, the mechanisms by which LLMs acquire in-
context learning capabilities through training on natural text
under the standard language model pre-training objective
are not fully understood. Recent works on understanding
in-context learning provide valuable insights and theoretical
results (Chan et al., 2022; Akyürek et al., 2022; von Oswald
et al., 2022; Jiang, 2023; Hahn & Goyal, 2023), but are lim-
ited in scope, focusing on synthetic experiments to validate
their hypotheses, while it remains unclear if these results
generalize to LLMs pre-trained on real-world natural lan-
guage data. Xie et al. (2022) introduced a prominent result
providing a latent topic (concept) variable interpretation for
in-context learning. They showed that the in-context learn-
ing predictor approaches the Bayes optimal predictor when
the number of demonstrations approaches infinity, under the
assumption that both the pre-training data distribution and
task-specific data distribution are Hidden Markov Models
(HMM). However, the assumption that the data generation
process is Hidden Markovian makes extrapolation of the re-
sult to natural language questionable, and restricts empirical
verification to synthetic data with toy models.

We are inspired by this prior work and introduce a more
general and natural explanation built on realistic assump-
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tions, which gives rise to a practical demonstration selection
algorithm. Our explanation is inspired by the generation
process of a generic topic model:

P (w1:T ) =

∫
Θ

P (w1:T |θ)P (θ)dθ

Where θ ∈ Θ represents a potentially high dimensional
topic/concept variable, Θ is the space of the topic/concept
variable, and w1:T refers to the token sequence of a piece of
text. On the other hand, generative LLMs model text data
according to the general probabilistic decomposition:

P (w1:T ) =

T∏
i=1

P (wi|wi−1, ...,w1)

While in practice, LLMs generate new tokens based on
all previous tokens, we investigate whether a simplified
assumption similar to that of topic models can be made for
LLMs:

PM (wt+1:T |w1:t) =

∫
Θ

PM (wt+1:T |θ)PM (θ|w1:t)dθ

In this scenario, the generated tokens are assumed to be
conditionally independent of previous tokens, given the la-
tent topic (concept) variable that acts like an approximate
sufficient statistic for the posterior information related to the
prompt w1:t. For in-context learning, this concept variable
includes format and task information. By conditioning on an
appropriate latent concept variable, LLMs would generate
the desired continuation with P (wt+1:T |θ). As LLMs do
not explicitly learn a latent variable distribution like LDA-
style topic models (Blei et al., 2003), we can instead utilize
this formulation under an Empirical Bayesian formulation
inspired by Lester et al. (2021) to only approximate the op-
timal latent variable value for a desired task, using a small
LLM (with less than 1B parameters), which is computation-
ally efficient.

We empirically validate our explanation by selecting ex-
amples (w1:t in the equations) that are most likely to infer
the optimal latent variable value (those with the highest
posterior probability P (θ|wt+1:T )). We then directly use
them as demonstrations for in-context learning with other
larger LLMs (up to 175B parameters) and observed a sig-
nificant performance improvement. The generalization of
demonstrations between LLMs is likely a result of similar
pre-training data distributions.

While our work is inspired by that of Xie et al. (2022), our
approach differs significantly in both theoretical analysis
and experimental settings. Our main contributions are as
follows:

• We assume a general data generation process spec-
ified by a three-variable causal graph, without con-
straints on the distribution function or the number of
demonstrations.

• We prove under these realistic assumptions that the
in-context learning predictor can reach the Bayes opti-
mal predictor with a finite number of demonstrations
chosen using the latent concept variable.

• We introduce an efficient, practical demonstration
selection algorithm based on our theoretical results,
which can select demonstrations using a small LLM
and then directly generalize the demonstrations to other
LLMs. The effectiveness of our algorithm is empiri-
cally validated using real-world LLMs and text classi-
fication tasks.

Our goal is to close the gap between theoretical understand-
ings and real-world LLMs. To the best of our knowledge,
our proposed latent variable explanation of in-context learn-
ing is the first Bayesian explanation that yields an effective
algorithm in real-world scenarios.

2. Theoretical Analysis
In in-context learning, the prompt w1:t is composed of sev-
eral demonstrations and a test input. The generated tokens
wt+1:T represent the model’s prediction for the test input.

2.1. Notations and Problem Setting

Suppose the objective of our task is to predict a discrete
target variable Y ∈ Y , given a token sequence X ∈ X ,
where X is the space of all possible token sequences. θ ∈ Θ
is a potentially high dimensional latent variable, where Θ
is the high dimensional space of the variable. Unlike the
traditional topic model, θ is not assumed to be discrete, but
continuously distributed over Θ. To define the data genera-
tion process, we posit the existence of an underlying causal
relation between X , Y , and θ. We examine two potential
directions of this causal relation, namely X � Y � θ and
Y � X � θ, which can be represented mathematically as
the following structural equations:

Y = f(X,θ, ϵ) X = g(Y,θ, ϵ)

Here ϵ ∈ E is an independent noise variable, f : X ×Θ×
E → Y and g : Y × Θ × E → X are two deterministic
functions. Furthermore, we denote the joint data distribution
by X,Y,θ ∼ P , and assume that Y is sampled from a uni-
form distribution over Y . The distinction between these two
directions is crucial, as it allows us to utilize the direction
in which the child variable (Y or X) is independent of the
other variables, given its parents.

We hypothesize that the causal direction depends on the
nature of the task. For instance, in the task of predicting
the sentiment (Y ) of a movie review (X), it is reasonable to
assume that the opinion about the movie is formed before
writing the review, thus making Y the cause of X , along
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with the task concept of “writing a passage to express one’s
opinion about the movie” (θ). Conversely, for the task of
classifying whether a product review (X) is helpful to other
customers (Y ), it is the quality of the review (X) that cause
other customers to upvote it (Y ), along with the task concept
of “rating the helpfulness of this review” (θ). In the rest
of the paper, we will focus on the X � Y � θ direction
and leave a detailed discussion of the other direction in the
Appendix.

Suppose we are interested in a task (e.g. semantic analysis)
denoted by d ∈ T , where T is the space of all possible tasks.
We assume there is an injective function between T and Θ.
i.e. for each task d, there is a concept variable θd, such that
each data (Xd, Y d) sampled from task d is generated by:

Y d = f(Xd, θd, ϵ)

To perform in-context learning with an LLM (generically
denoted by model label M ), we condition on a fixed set of k
demonstration examples (Xd

1 , Y
d
1 ), (X

d
2 , Y

d
2 ), ..., (X

d
k , Y

d
k )

sampled from task d.

Following previous works (Min et al., 2022a;c), as we are
not using any instruction fine-tuned models, we do not in-
clude a task description in the prompt, with the aim of
focusing on the examination of the demonstrations. To natu-
rally project Y into the token space X , we define injective
mappings τd : Y → X , which are typically defined by hu-
man understanding of the task d. e.g. for sentiment analysis,
τd map positive class to the token “positive” and negative
class to the token “negative”. Additionally, a delimiter to-
ken wd is defined, typically an empty space or a new line
token, to separate the demonstrations when concatenated.
We denote the LLM output probability of X , Y , and θ, with
the aforementioned preprocessing applied, by P d

M :

PM (τd(Y )|Xd
1 , τ

d(Y d
1 ),w

d, ..., Xd
k , τ

d(Y d
k ),w

d, X)

=P d
M (Y |Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k , X)

2.2. Problem Analysis and Theoretical Results

Suppose a set of observed data sampled from task d, denoted
as Dd, is available, allowing for the selection of the k most
suitable demonstrations from it. For any incoming test
example X , we have:

P d
M (Y |Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k , X)

=

∫
Θ

P d
M (Y |θ, X)P d

M (θ|Xd
1 , Y

d
1 , ..., X

d
k , Y

d
k , X)dθ (1)

Here, we assume the sampling of the test example is in-
dependent of the sampling of the demonstrations, so Y is
independent of the demonstrations given θ and X . We also
assume that the pre-trained data distribution P d

M is a suitable
approximation of the assumed data distribution P :

Assumption 2.1. Assume that PM (X) = P (X), and
P d
M (Y |θ, X) ∝ P (Y |θ, X) for X � Y � θ.

Note that the assumption that a large language model cap-
tures the true distribution of language is fairly common in
the literature studying LLMs (Xie et al., 2022; Saunshi et al.,
2021; Wei et al., 2021). With this assumption, we establish:

Proposition 2.2. If task d follows the X � Y � θ direction,
then argmaxy∈Y P d

M (Y = y|θd, X) is the Bayes optimal
classifier.

In this case, only when P d
M (θ|Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k , X) com-

pletely concentrate on θd, can the in-context learning clas-
sifier become the Bayes optimal classifier (Devroye et al.,
1996):

Theorem 2.3. If task d follows the X � Y � θ direction,
then the in-context learning classifier

argmax
y∈Y

P d
M (Y = y|Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k , X)

always has a higher or equal probability of misclassifica-
tion to the Bayes optimal classifier argmaxy∈Y P d

M (Y =

y|θd, X). Equality only holds when

∀x ∈ X , P d
M (θd|Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k , X = x) = 1.

A similar argument can be made for the Y � X � θ
direction. 1 Here, Equation (1) would become:

P d
M (X|Y d

1 , X
d
1 , ..., Y

d
k , X

d
k , Y )

=

∫
Θ

P d
M (X|θ, Y )P d

M (θ|Y d
1 , X

d
1 , ..., Y

d
k , X

d
k , Y )dθ

(2)

Note that the left-hand side of Equation (1) and Equation (2)
are similar to the direct and channel method introduced by
Min et al. (2022a). However, our analysis differs from theirs
in that we do not treat (Y � X � θ) as the universally
superior channel direction for modeling in-context learning,
rather arguing that depending on the end task, the causal
direction (X � Y � θ) is sometimes better. This view is
supported by our empirical results in Appendix B.

3. Method
Here we demonstrate how the proposed theory can be prac-
tically applied to select optimal demonstration examples.
Since latent variable θ encodes both the task and format
information, the whole distribution over Θ is too complex to
model. Unlike traditional topic models, we will only focus
on estimating an optimal value θd corresponding to task d.

1The detailed argument of the Y � X � θ direction can be
found in Appendix A.2.
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Figure 1. An overview of our proposed two-phased algorithm. Demonstration selection and latent concept learning share the same LLM
as demonstration selection needs to reuse the learned concept tokens, while at the in-context learning time, any other generative LLMs can
be used. Here we only illustrate the X � Y � θ direction. The Y � X � θ direction can be illustrated similarly by exchanging X and
Y in the above figure.

Algorithm 1 Latent concept learning

Input: Dataset D = {(xi, yi, di)}i associated with a set
of tasks S, LLM M , number of concept tokens per task
c, learning rate α, and number of training steps N .
Output: LLM M ′ with fine-tuned concept tokens.
Add c|S| new tokens to the vocabulary. i.e. The concept
tokens θ̂d for each task in S. Randomly initialize their
embeddings Enew. Freeze all parameters in M except
Enew;
for step = 1 to N do

Sample a random batch B in D and initialize gradient
g ← 0;
for each data point (x, y, d) in B do
g = g + ∂ℓ(X,Y ;θ̂d)

∂Enew
;

end for
Enew = Enew − αg;

end for

First, we perform latent concept learning, wherein the task
latent θd is learned as a set of new token embeddings using
prompt tuning over the full demonstration candidate set.
With this optimal task latent, we then perform demonstration
selection, where a smaller set of demonstrations is chosen
to maximize the likelihood of postfixing the latent concept
tokens. We only need to use a small LLM to do the above
steps to obtain an optimal set of demonstrations that can be
directly transferred to other LLMs. Figure 1 is an overall
illustration of our proposed method.

3.1. Latent Concept Learning

We want to first find the optimal value of the latent con-
cept variable θd corresponding to a task d ∈ T . As
argmaxy∈Y P d

M (Y = y|θd, X) is the Bayes optimal clas-
sifier according to Proposition 2.2, θd should be able to
minimize −EX,Y,d[logP

d
M (Y |θd, X)] for the X � Y � θ

direction. In practice, we try to align θd to the token embed-

ding space by adding new tokens to the vocabulary. After
this alignment, we hope to be able to use the learned new
tokens of θd as regular tokens.

More specifically, building upon the methodology proposed
by Lester et al. (2021), for each specific task d, c new con-
cept tokens (denoted as θ̂d) are added to the original vo-
cabulary of LLM M to represent the corresponding task
concept θd. Subsequently, the embedding of these new to-
kens Enew(θ̂

d) is fine-tuned while freezing the remaining
parameters of LLM M . The variable c is treated as a hy-
perparameter. In practice, in order to condition on θd, the
corresponding c concept tokens are appended to the input
X (or Y ) as shown in the example provided below, where
c = 2:

<sentiment token 1><sentiment token 2>
Can’t wait to see the second movie!

By giving the above input tokens, we ask the LLM to
predict the correct label Positive for us. Note that
<sentiment token 1> here is just a label assigned to
the newly added concept token. It can be anything as long
as it does not overlap with the original vocabulary of LLM.

The fine-tuning objective would then be minimizing
L(θ̂d) = EX,Y [ℓ(X,Y ; θ̂d)], where

ℓ(X,Y ; θ̂d) =

{
− logP d

M (Y |θ̂d, X) if X � Y � θ

− logP d
M (X|θ̂d, Y ) if Y � X � θ.

Theoretically, if we can minimize the above loss function,
a Bayes optimal classifier can be obtained, and the concept
tokens would be a reasonable delegate of the real latent
concept variable:

Proposition 3.1. When L(θ̂d) is minimized,
P d
M (Y |θ̂d, X) = P (Y |θd, X) for X � Y � θ. If

the LLM M is invertible, then θ̂d = θd.2

2More discussion can be found in Appendix A.3.
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We denote the LLM M with fine-tuned concept tokens by
M ′. Since we add the concept tokens into the regular token
vocabulary, the raw LLM output probability PM ′(θ̂d|w1:t)
(w1:t denote a given prompt) would be in the token sequence
space X instead of the concept space Θ. Since learning all
possible θd ∈ Θ is infeasible, we propose to approximate
the concept space Θ by sampling a diverse subset of tasks
S ⊆ T . Then the estimated conditional probability of θd

would be:

P̂ d
M ′(θ̂d|w1:t) =

P d
M ′(θ̂d|w1:t)∑

t∈S P t
M ′(θ̂t|w1:t)

To obtain the concept tokens for all tasks in S , we fine-tune
all tasks together with the loss

∑
d∈S L(θd). We summarize

the proposed algorithm in Algorithm 1.

Note that the embedding matrix of a generative LLM is
shared on both the input and output sides. So while we
only see the concept tokens on the input side at the training
time, they can be viewed as regular word tokens that can be
generated on the output side.

3.2. Demonstration Selection

According to Theorem 2.3, for a task d, to make
the in-context learning classifier closer to the
Bayes optimal classifier, we need to select demon-
strations (Xd

1 , Y
d
1 ), ..., (X

d
k , Y

d
k ) that maximize

P d
M (θd|Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k , X) for all X ∈ X . Then our

goal then becomes selecting demonstrations that can best
infer the task concept for all test inputs on average:

argmax
Xd

1 ,Y
d
1 ,...,Xd

k ,Y
d
k

EX [P d
M (θd|Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k , X)]

As test examples are sampled independent of the demonstra-
tions, and PM (X) = P (X) according to Assumption 2.1,
we have

EX [P d
M (θd|Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k , X)]

=P d
M (θd|Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k )

If we assume each demonstration is also sampled indepen-
dently, we have:

P d
M (θd|Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k ) =

∏k
i=1 P

d
M (θd|Xd

i , Y
d
i )

P d
M (θd)k−1

Assuming that θ has a uniform prior, then our goal be-
comes finding the top k demonstrations that maximize
P̂ d
M ′(θ̂d|Xd

i , Y
d
i ). Note that the independence between

demonstrations is a simplified assumption to reduce the
combinatory search space of (Xd

1 , Y
d
1 ), ..., (X

d
k , Y

d
k ). In

practice, selected demonstrations are likely correlated as
some demonstrations may work well together but not nec-
essarily work well by themselves. However, it would be

Algorithm 2 Demonstration selection

Input: dataset Dd for a task d. LLM with fine-tuned
concept tokens M ′. The number of demonstrations k.
Output: A set of ordered demonstrations.
for each (Xd, Y d) in Dd do

Compute P̂ d
M (θ̂d|Xd, Y d);

end for
Select top k examples with the largest P̂ d

M (θ̂d|Xd, Y d),
denoted as (Xd

1 , Y
d
1 ), ..., (X

d
k , Y

d
k );

for each permutation π do
Compute P̂ d

M (θ̂d|π((Xd
1 , Y

d
1 ), ..., (X

d
k , Y

d
k )));

end for
Select the permutation π with the largest
P̂ d
M (θ̂d|π((Xd

1 , Y
d
1 ), ..., (X

d
k , Y

d
k ))).

too expensive to search the O(|Dd|k) combinations over
the candidate set Dd. In practice, this simplification works
reasonably well. We leave this combinatory search problem
to future research.

Also, as we are using an LLM to approximate the data
distribution, the order of the demonstrations likely matters.
We then choose the order according to the posterior of the
concept tokens:

argmax
π∈Π

P̂ d
M (θd|π((Xd

1 , Y
d
1 ), ..., (X

d
k , Y

d
k ))) (3)

Where π((Xd
1 , Y

d
1 ), ..., (X

d
k , Y

d
k )) is a permutation of

(Xd
1 , Y

d
1 ), ..., (X

d
k , Y

d
k ). Π is the set of all possible permuta-

tions of the k demonstrations. We summarize the proposed
algorithm in Algorithm 2.

4. Experiments
Datasets. We conduct experiments on eight datasets from
five different types of NLP classification tasks: sentiment
analysis, linguistic analysis, topic classification, emotion
classification, and hate speech detection. For sentiment anal-
ysis, we choose the Stanford Sentiment Treebank (SST2)
dataset (Socher et al., 2013) from the GLUE benchmark
(Wang et al., 2018) and the financial phrase bank (FPB)
dataset (Malo et al., 2014). SST2 is constructed based on
movie reviews labeled “positive” or “negative”, and FPB is
based on financial news labeled “positive”, “negative”, or
“neutral”. For linguistic analysis, we choose the Corpus of
Linguistic Acceptability (COLA) dataset (Warstadt et al.,
2018) from the GLUE benchmark, based on sentences col-
lected from linguistic books, labeled with “acceptable” or
“unacceptable”. For topic classification, we choose the DB-
pedia ontology classification dataset (Zhang et al., 2015),
based on DBpedia 2014 (Lehmann et al., 2015), labeled
with 14 different ontology classes. For emotion classifica-
tion, we choose the dataset from Chatterjee et al. (2019) and
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Figure 2. Accuracy of 4-shot in-context learning using demonstrations selected by our method and other baselines, averaged over eight
datasets. Our demonstrations are selected using GPT2-large, and the same set of demonstrations is then applied to all other LLMs.

Saravia et al. (2018), both of which are collected from Twit-
ter. Chatterjee et al. (2019) (EmoC) predict emotion given a
three-turn contextual dialogue, while Saravia et al. (2018)
predict emotion given a Twitter message with clear emotion.
For hate speech detection, we choose the online hate speech
detection dataset (ETHOS) (Mollas et al., 2020), collected
from online social media platforms. Here we detect two
types of hate speech: sexual orientation (ETHOS-SO) and
religion (ETHOS-R). While in Section 2, we assume that
all tasks share the same label space Y , here we relax such
assumption and allow a different number of labels for dif-
ferent tasks. We use minimal formatting to process each
example. A detailed description of the datasets and our data
processing procedure can be found in Appendix B.

Experiment settings. To determine the causal direction for
each task, we select the direction that can give higher ac-
curacy when using random demonstrations3. We adopt the
Y → X ← θ direction for sentiment analysis, topic classifi-
cation, and emotion classification tasks, which is consistent
with the intuition that people usually have some sentiment,
topic, or emotion in mind before writing a piece of text. We
adopt the X → Y ← θ direction for the linguistic analysis
and hate speech detection type of tasks. While this is less
intuitive, we can understand this as linguistic error and hate
speech detection are more of a post hoc task in contrast to
the previous tasks.

Without specification, we use k = 4 number of demonstra-
tions and c = 10 number of concept tokens per dataset for
our experiments, as the context length of GPT2 is 1024,
and a larger number of demonstrations may not be able
to completely fit into it. We use GPT2-large to learn the
concept tokens and then compute the probability of each
candidate demonstration example. We select our demonstra-
tions from a randomly selected 100 example subset of the
train set as the candidate set Dd. We use the same set of
demonstrations selected by GPT2-large for all other LLMs.
We test the performance of the selected demonstrations us-
ing at most 1000 examples randomly sampled from the test
set. Each experiment is repeated for five runs with different

3Detailed results see Figure 8 in Appendix B.

random seeds (the randomness comes from the sampling of
the candidate set and the sampling of the test set). We adopt
a large portion of the code from Min et al. (2022b), which
is based on Huggingface (Wolf et al., 2019).

Baselines. We consider the following baselines:

• Uniform: We uniformly select k demonstrations from
D for each test example.

• Similar: According to Liu et al. (2022), demonstra-
tions that are semantically similar to the test example
would hare more performant. Following their method,
we use a pre-trained sentence Transformer (Reimers
& Gurevych, 2019) to calculate the cosine similarity
between the demonstrations and test examples. We
choose the top k similar demonstrations from D for
each test example.

Main results.4 Figure 2 shows our main results averaged
over all eight datasets, using the first-generation GPT2s
and GPT3s, without any instruction fine-tuning (Ouyang
et al., 2022) or Reinforcement Learning from Human Feed-
back (RLHF) (Stiennon et al., 2020). Our method sig-
nificantly outperforms baselines on eight different LLMs,
with 12.5% relative improvement to the uniform selection
baseline on average, which shows the effectiveness of our
method. The demonstrations selected by our method are
exclusively based on GPT2-large, while the same set of
demonstrations can be generalized to all other GPTs.

Results with non-GPT models. In Figure 3, we test the
demonstrations selected by our method using GPT2-large
on more LLMs (GPT3 (Brown et al., 2020), GPT3-instruct
(Ouyang et al., 2022; Stiennon et al., 2020), GPT-J (Wang &
Komatsuzaki, 2021), OPT (Zhang et al., 2022), and LLaMA
(Touvron et al., 2023)) with similar sizes (6-7B), and show
that the selected demonstrations improve in-context learning
performance of all of them. The fact that GPT3-curie ob-
tains the largest performance improvement is likely because
similar pre-training data distributions help the generalization

4The complete results with standard deviations in this section
can be found in Appendix B.

6



Large Language Models Are Implicitly Topic Models

Figure 3. Proposed method v.s. randomly selected demonstrations.
In-context learning accuracy averaged over all eight datasets.

Figure 4. Proposed method v.s. using randomly selected tokens.
In-context learning accuracy averaged over all eight datasets.

of the selected demonstrations. Different-size GPT2 models
share the same pre-training corpus (Radford et al., 2019),
while GPT3s are pre-trained on a dataset expanded from the
GPT2 pre-training corpus (Brown et al., 2020). Thus the
pre-training distribution of GPT3-curie and GPT2-large can
be assumed to be similar.

Learned tokens v.s. Random tokens. To confirm the
critical role of the latent concept variable in the proposed
demonstration selection algorithm, we compare the perfor-
mance of using the learned concept tokens versus using
randomly selected tokens from the original vocabulary in
Figure 4. The demonstrations selected by random tokens
only obtain the same performance as randomly selected
demonstrations, showing that the performance gain of our
method comes from the learned concept tokens containing
the task and format information, not other elements of our
algorithm.

k ablation study. While we use k = 4 demonstrations
for all experiments, we also test the effectiveness of our
method using different k. As shown in Figure 5, our method
significantly outperforms the random selection baseline with
k = 2, 4, 8, and 16. To fit in large ks, we use GPT3-ada
with a longer context length (2048). Note that for real-world
tasks, it is in general not true that more demonstrations
guarantee higher performance (Chen et al., 2023). We can

Figure 5. k ablation study. In-context learning accuracy of our
method versus random selection baseline averaged over all eight
datasets with GPT3-ada.

Figure 6. c ablation study. In-context learning accuracy of our
method versus random selection baseline averaged over all eight
datasets with GPT3-ada.

see that the uniform baseline performance increases from
k = 2 to k = 8, then drops a little at k = 16. Our method
improves the uniform baseline by around 5% absolute for
all ks, while k = 4 improves the most (6.6%). Our method
appears to have a diminishing effect when k becomes larger,
which is likely because the effect of more demonstrations
overwhelms the effect of demonstration choices.

c ablation study. While we use c = 10 number of concept
tokens for all experiments, we also investigate the effect
of different c on our method. When c is small (c = 5),
the concept tokens cannot effectively capture the task and
format information, thus cannot improve the performance.
When c increases from 10 to 20, we observe a drop in
the performance. It is likely because the selectivity of the
concept tokens decreases when c increases. The longer the
concept token sequence is, the more likely it will contain
meaningless tokens that do not contribute to demonstration
selection.

Effect of demonstrations’ order. We find that the demon-
strations selected by our method are insensitive to their order
in most cases.5 An exception is the EmoC dataset, where
our method has a high variance. On the contrary, Lu et al.
(2022) found that the order of the demonstration matters,
and a good ordering cannot be transferred between different
LLMs. We suspect that the ordering only matters when
the demonstration selection method is not robust. Since Lu
et al. (2022) randomly selects one set of demonstrations for
the whole test set, the variance in performance is high with
different demonstrations, thus ordering matters. And since
such ordering is not transferable while our selected demon-
strations are highly transferable, we suspect the core task
information is stored in the content of the demonstrations,
while the ordering mainly captures model-specific artifacts.

Qualitative illustration. In Figure 7, we provide a t-SNE
(van der Maaten & Hinton, 2008) projection of the learned
concept token embeddings. The tokens corresponding to
semantically similar tasks are close together. Note that this
result only aim to provide a straightforward illustration of
concept tokens. The effect of concept tokens should be
understood by the previous quantitative results.6

5Detailed results see Figure 11 in Appendix B.
6The list of similar tokens for these concept tokens can be

found in Table 12 in Appendix B.
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Figure 7. t-SNE plot of the learned concept tokens for each task.
Concept tokens that can be explained by similar tokens are sum-
marized in the graph.

5. Related Work
Heuristic solutions, such as selecting demonstrations based
on the similarity between the demonstrations and test in-
put (Liu et al., 2022; Su et al., 2022; Rubin et al., 2021)
have been proposed. (Lu et al., 2022) propose to reorder
the demonstration based on the entropy of the predicted
labels. In this paper, we use the similarity-based selection
method as a baseline while do not include the label entropy-
based reordering method as we show that the ordering of
the demonstrations does not matter for our method.

Previous research on the phenomenon of in-context learning
in Transformers has identified a number of pre-training data
distributions that can lead to the emergence of this capability,
including a Hidden Markov Model distribution (Xie et al.,
2022) and a skewed Zipfian distribution with high burstiness
(Chan et al., 2022). Other studies have sought to understand
the underlying mechanisms of in-context learning by mak-
ing connections with gradient descent (von Oswald et al.,
2022; Dai et al., 2022; Akyürek et al., 2022), formalizing
it as an algorithm learning problem (Li et al., 2023), or
proposing a latent variable theory similar as ours (Jiang,
2023; Hahn & Goyal, 2023; Xie et al., 2022). While pro-
viding valuable insights on how in-context learning works,
these works are limited to synthetic datasets and toy Trans-
formers, while it remains unclear if these results generalize
to LLMs pre-trained on real-world text data and whether
these results can help in-context learning performance. In
contrast, we propose a Bayesian explanation of in-context
learning that can be verified with real-world LLMs on var-
ious NLP datasets. Dai et al. (2022) provide a practical
algorithm based on the understanding that the Transformer
has a dual form of gradient descent. However, their empir-
ical results are smaller in scale, with six datasets and only

one model (350M), and has less significant improvements
(5.4% relative to baseline).

There are also works trying to understand in-context learn-
ing from an empirical perspective (Bansal et al., 2022; Min
et al., 2022a). Min et al. (2022c) found demonstrations’
ground truth labels do not matter for in-context learning,
which we find is not entirely accurate in Appendix B. On
the other hand, chain-of-thoughts prompting (Wei et al.,
2022; Zhou et al., 2022; Wang et al., 2022) find that provid-
ing step-by-step explanations improves in-context learning
performance.

6. Conclusion
In this work, we endeavor to comprehend large language
models (LLMs) through a Bayesian lens and posit them as
implicit topic models that infer a latent conceptual variable
from prompts. Motivated by this understanding, we propose
a two-step algorithm that first extracts latent conceptual to-
kens from a small LLM and then selects demonstrations that
have the greatest probability of predicting the corresponding
conceptual tokens. The selected demonstrations can then
be directly generalized to other LLMs. The efficacy of our
algorithm across various text classification datasets and GPT
models validates our explanation of in-context learning.
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A. Proofs
A.1. Direct direction

Assumption A.1. (Assumption 2.1) Assume that PM (X) = P (X), and P d
M (Y |θ, X) ∝ P (Y |θ, X) for X � Y � θ.

Proposition A.2. (Proposition 2.2) If task d follows the X � Y � θ direction, argmaxy∈Y P d
M (Y = y|θd, X) is the

Bayes optimal classifier.

Proof. Since the data generation of the task d can be written as Y = f(X, θd, ϵ), we have

P d(Y |X) = P (Y |θd, X).

And by Assumption A.1, we have

argmax
y∈Y

P d
M (Y = y|θd, X) = argmax

y∈Y
P (Y = y|θd, X).

Thus argmaxy∈Y P d
M (Y = y|θd, X) is the Bayes optimal classifier.

Theorem A.3. (Theorem 2.3) If task d follows the X � Y � θ direction, then the in-context learning classifier

argmax
y∈Y

P d
M (Y = y|Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k , X)

always has a higher or equal probability of misclassification to the Bayes optimal classifier argmaxy∈Y P d
M (Y = y|θd, X).

Equality only takes when

∀x ∈ X , P d
M (θd|Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k , X = x) = 1.

Proof. Recall that in Equation (1), we have

P d
M (Y |Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k , X) =

∫
Θ

P d
M (Y |θ, X)P d

M (θ|Xd
1 , Y

d
1 , ..., X

d
k , Y

d
k , X)dθ.

By Proposition A.2, argmaxy∈Y P d
M (Y = y|θd, X) is the Bayes optimal classifier. Let Cθ(X) = argmaxy∈Y P d

M (Y =
y|θ, X), then the risk is defined as the probability of misclassification

R(Cθ) = P (Cθ(X) ̸= Y ) = EXY [1Cθ(X )̸=Y ].

Denote the in-context learning classifier argmaxy∈Y P d
M (Y = y|Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k , X) by Ck(X). We then have

R(Ck) = EXY [1Ck(X )̸=Y ] = EX [
∑
y∈Y

(1− P d
M (Y = y|θd, X))1Ck(X)=y].

Such risk is minimized if and only if Ck(X) = Cθd(X), which only holds when P d
M (θd|Xd

1 , Y
d
1 , ..., X

d
k , Y

d
k , X = x) = 1

for all x ∈ X .

A.2. Channel direction

Assumption A.4. Assume that PM (X) = P (X), and P d
M (X|θ, Y ) ∝ P (X|θ, Y ) for the Y � X � θ direction.

Proposition A.5. If task d follows the Y � X � θ causal direction, argmaxy∈Y P d
M (X|θd, Y = y) is the Bayes optimal

classifier when the label assignment is balanced.

Proof. Since the data generation of the task d can be written as X = g(Y, θd, ϵ), we have

P d(X|Y ) = P (X|θd, Y )
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When the label is balanced, i.e. P d(Y ) = 1
|Y| , we have

P d(Y |X) =
P d(X|Y )P d(Y )

P (X)
∝ P d(X|Y )

And by Assumption A.4, we have

argmax
y∈Y

P d
M (X|θd, Y = y) = argmax

y∈Y
P (X|θd, Y = y).

Thus argmaxy∈Y P d
M (X|θd, Y = y) = argmaxy∈Y P d(Y = y|X) is the Bayes optimal classifier.

Theorem A.6. If task d follows the Y � X � θ direction, then the in-context learning classifier

argmax
y∈Y

P d
M (X|Y d

1 , X
d
1 , ..., Y

d
k , X

d
k , Y = y)

always has a higher or equal probability of misclassification to the Bayes optimal classifier argmaxy∈Y P d
M (X|θd, Y = y).

Equality only takes when

∀y ∈ Y, P d
M (θd|Y d

1 , X
d
1 , ..., Y

d
k , X

d
k , Y = y) = 1.

Proof. This theorem can be proved similarly as Theorem A.3. Recall that in Equation (2), we have

P d
M (X|Y d

1 , X
d
1 , ..., Y

d
k , X

d
k , Y ) =

∫
Θ

P d
M (X|θ, Y )P d

M (θ|Y d
1 , X

d
1 , ..., Y

d
k , X

d
k , Y )dθ.

By Proposition A.5, argmaxy∈Y P d
M (X|θd, Y = y) is the Bayes optimal classifier. Let Cθ(X) =

argmaxy∈Y P d
M (X|θ, Y = y), then the risk is defined as the probability of misclassification

R(Cθ) = P (Cθ(X) ̸= Y ) = EXY [1Cθ(X )̸=Y ].

Denote the in-context learning classifier argmaxy∈Y P d
M (X|Y d

1 , X
d
1 , ..., Y

d
k , X

d
k , Y = y) by Ck(X). We then have

R(Ck) = EXY [1Ck(X )̸=Y ] = EX [
∑
y∈Y

(1− P d
M (X|θd, Y = y))1Ck(X)=y].

Such risk is minimized if and only if Ck(X) = Cθd(X), which only holds when P d
M (θd|Y d

1 , X
d
1 , ..., Y

d
k , X

d
k , Y = y) = 1

for all y ∈ Y .

A.3. Method

Proposition A.7. (Proposition 3.1) When L(θ̂d) is minimized, P d
M (Y |θ̂d, X) = P (Y |θd, X) for X � Y � θ, and

P d
M (X|θ̂d, Y ) = P (X|θd, Y ) for Y � X � θ. If the LLM M is invertible, then θ̂d = θd.

Proof. The proof of this proposition is straightforward.

Since

L(θ̂d) = H(P (Y |θd, X)) +KL(P (Y |θd, X)||P d
M (Y |θ̂d, X))

when L(θ̂d) is minimized, we have P d
M (Y |θ̂d, X) = P (Y |θd, X) for X � Y � θ, and P d

M (X|θ̂d, Y ) = P (X|θd, Y ) for
Y � X � θ.

If M is invertible, since the embedding matrix is invertible with or without new concept tokens, P d
M (Y |θ̂, X) =

P d
M (Y |θ̂′, X) implies that θ̂ = θ̂′. Thus θ is identifiable, which means θ̂d = θd.
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Table 1. Prompt template and label mapping for the datasets we use. Since almost all sentences from ETHOS contain offensive content,
we mask out the key offensive words in the examples below.

Dataset Prompt Label Mapping

SST-2 sentence: well worth revisiting as many times
positive negative/positive

FPB
The company anticipates its turnover for the whole 2010 to
surpass that of the previous year when it was EUR 67.1 million .
positive

negative/neutral/positive

COLA It is this hat that I know the boy who is wearing.
unacceptable acceptable/unacceptable

DBPedia
The Nucet River is a tributary of the Chiojdeanca
River in Romania.
NaturalPlace

Album/Animal/Artist/
Athlete/Building/Company/
EducationalInstitution/Film/
MeanOfTransportation/
NaturalPlace/OfficeHolder/
Plant/Village/WrittenWork

EmoC
fast i mean fastingis a way of skipping meals i mena
you move on too fast
others

angry/happy/others/sad

EmoS i feel this place was tragic
sadness

anger/fear/joy/love/
sadness/surprise

ETHOS-SO [Masked] should be removed from the face of the earth
true false/true

ETHOS-R
I hate being a [Masked], wish I was a [Masked]
and no [Masked] on earth existed
false

false/true

B. Experiments
Dateset. In Table 1, we show how we process the text classification datasets into prompts. For each dataset, we take at
most 16384 examples from the training set for training, and uniformly sample at most 1000 examples from the test set
to test the in-context learning performance. In Table 2, we show the train size and test size we used for each dataset. We
also list the set of diverse tasks trained with each dataset, which are denoted by their name in Huggingface datasets.7 The
license for SST2, ETHOS-SO and ETHOS-R is GNU General Public License v3. FPB is under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License. Note that these two datasets are hate speech detection
datasets for different kinds of hate speech and contain many offensive texts. COLA is excerpted from the published works
available on the website, and the copyright (where applicable) remains with the original authors or publishers. DBpedia is
under a Creative Commons Attribution-ShareAlike License and the GNU Free Documentation License. EmoC and EmoS
should be used for educational and research purposes only.

Experiment details. We run our experiments on A100, V100, and A6000 GPUs. We adopt a large portion of the code from
the MetaICL repository (Min et al., 2022b)8. The training takes around 20 to 40 hours on a single GPU. We use a learning
rate of 1e-4 and a batch size of 16, and train for 10k steps in total.

Main results. In Table 3, we list the detailed results of our method and baselines with different LLMs on different datasets
in Figure 2.

Causal direction results. The detailed results with anti-causal direction (the opposite direction to what we described in
Section 4 are in Table 6) are shown in Table 6, corresponding to Figure 8 in the main text.

Other LLMs results. The detailed results with other LLMs are shown in Table 5, corresponding to Figure 3 in the main
text.

Random token results. The detailed results with random tokens are shown in Table 4, corresponding to Figure 4 in the
main text.

k-ablation study results. The detailed results of k ablation study are shown in Table 9, corresponding to Figure 5 in the

7https://huggingface.co/docs/datasets/index
8https://github.com/facebookresearch/MetaICL
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datset d train size test size task set S

SST2 (glue-sst2) 16384 1000 glue-cola/glue-mnli/glue-qqp/
glue-mrpc/glue-qnli/glue-rte/glue-sst2/glue-wnli

FPB (financial phrasebank) 1811 453

glue-sst2/glue-mnli/math qa/sciq/
social i qa/wino grande/glue-qqp/
ag news/financial phrasebank/
poem sentiment/anli/quarel/quartz/
medical questions pairs/paws/dbpedia 14

COLA (cola-sst2) 8551 1000 glue-cola/glue-mnli/glue-qqp/glue-mrpc/
glue-qnli/glue-rte/glue-sst2/glue-wnli

DBpedia (dbpedia 14) 16384 1000

glue-sst2/glue-mnli/math qa/sciq/
social i qa/wino grande/glue-qqp/
ag news/financial phrasebank/
poem sentiment/anli/quarel/quartz/
medical questions pairs/paws/dbpedia 14

EmoC (emo) 16384 1000

glue-sst2/amazon polarity/
financial phrasebank/poem sentiment/
yelp polarity/glue-cola/blimp/ag news/
dbpedia 14/ethos/emo/emotion

EmoS (emotion) 16000 1000

glue-sst2/amazon polarity/
financial phrasebank/poem sentiment/
yelp polarity/glue-cola/blimp/ag news/
dbpedia 14/ethos/emo/emotion

ETHOS-SO (ethos-sexual orientation) 346 87

glue-sst2/amazon polarity/
financial phrasebank/poem sentiment/
yelp polarity/glue-cola/blimp/ag news/
dbpedia 14/ethos/emo/emotion

ETHOS-R (ethos-religion) 346 87

glue-sst2/amazon polarity/
financial phrasebank/poem sentiment/
yelp polarity/glue-cola/blimp/ag news/
dbpedia 14/ethos/emo/emotion

Table 2. Dataset details

main text. In this experiment, we do not reorder the selected demonstrations according to Equation (3), as we need to use
GPT2-large for the reordering, and it cannot fit in all the demonstrations. Instead, we order the selected demonstrations from
the largest P̂ d

M (θd|Xd, Y d) to the smallest.

c-ablation study results. The detailed results of c ablation study are shown in Table 10, corresponding to Figure 6 in the
main text.

Effect of using ground truth labels. According to (Min et al., 2022c), the ground truth label is not necessary for
demonstrations to have a good in-context learning performance, which we found is not entirely true for all the tasks. We
compare our method with the randomly selected demonstration baseline under three scenarios: (a) Original: demonstrations
with the correct labels; (b) Random words: using a random label projection map τd instead of a meaningful one. i.e., map
each label to a fixed random word. In this case, the mapping from the input tokens X to the labels Y is still preserved;
(c) Random labels: assign a random label to each demonstration, with the original label projection map τd. As shown
in Figure 9, by using a random label projection map or randomly assigning the labels, the performance of the randomly
selected demonstration baseline drops considerably. And randomize the label assignment gives a larger performance drop

Figure 8. Accuracy of randomly selected demonstrations averaged over seven different LLMs except for GPT3-davinci, using the adopted
causal direction and the anti-causal direction.
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Figure 9. In-context learning accuracy of our method versus random selection baseline, with (a) ground truth labels (original), (b) random
label mapping (random words), or random label assignments (random label), averaged over all eight datasets. Numbers are obtained with
GPT2-large.

Figure 10. Accuracy of in-context learning using our method versus the theoretical maximum accuracy obtained using the learned concept
tokens as prefixes. Numbers are obtained with GPT2-large.

than only using a random label projection map, which shows that the mapping between X and Y in the demonstrations
matters. This indicates that in-context learning infers the mapping between X and Y from the demonstrations instead of
merely invoking some learned function stored in the LLM parameters based on the appearance of X and Y . We also show
that the demonstrations selected by our method represent the X − Y mapping better, as under the Random words condition,
our method performs better than the random selection baseline, while our method does not improve the random selection
baseline under the Random labels condition. The detailed results with random words and random labels are shown in
Table 7

Optimal performance As stated in Theorem 2.3, the optimal performance of an in-context learning classifier is the Bayes
optimal classifier argmaxy∈Y P d

M (Y = y|θd, X), which is approximated by using the learned concept tokens as prefixes.
Note that this approximated Bayes optimal classifier cannot be transferred across different LLMs, as the learned concept
tokens embeddings are aligned with a specific LLM. The advantage of in-context learning with our method is that the
demonstrations can be transferred to any LLMs without training. Here we only compare the accuracy of in-context learning
with our method and the approximated Bayes optimal classifier using GPT2-large, as it is the LLM that concept tokens are
fine-tuned with. As shown in Figure 10, our method comes close to the optimal accuracy on many datasets, while there
are some datasets that our method is lagging. This indicates that there are two ways to improve our method: the first is to
improve the performance of the optimal classifier, by introducing a better latent concept learning algorithm. The other way
is to reduce the performance gap between our method and the optimal classifier, by improving the demonstration selection
algorithm. The detailed results using the learned concept tokens as prefixes are shown in Table 8.

Reordering results. The detailed results with and without reordering are shown in Table 11, corresponding to Figure 11.

Similar tokens. We show the top ten similar tokens to some learned concept tokens in Table 12, as summarized in Figure 7
in the main text.
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Figure 11. In-context learning accuracy of our method versus random selection baseline, with and without reordering. The red error bars
represent the standard deviation across five runs. Numbers are obtained with GPT2-large.

C. Limitations and Future Work
While the assumption that a large language model captures the true distribution of language is fairly common in the literature
studying LLMs (Xie et al., 2022; Saunshi et al., 2021), this assumption is not entirely accurate in practice. According to
(LeBrun et al., 2022), LLMs systematically underestimate rare text sequences, which constitute a significant portion of the
long-tail distribution of language. Although this assumption is adequate to achieve favorable empirical results, it is expected
that more accurate language models will, in theory, lead to improved outcomes.

The selection of the accompanying diverse tasks S is currently left to the user’s discretion. A better approach to constructing
such a task set is needed to gain a deeper understanding of latent concept variables and to improve the latent concept learning
algorithm.

Our algorithm currently only applies to classification tasks. More complex latent variables could be designed to improve the
in-context learning performance of more complex tasks like math word questions and logical reasoning problems.

D. Broader Impact
The utilization of language models (LLMs) for specific tasks is often hindered by the high cost associated with training or
fine-tuning them. However, the in-context learning paradigm offers a cost-effective and convenient alternative for utilizing
the power of pre-trained LLMs. Our work has demonstrated a significant improvement in the performance of in-context
learning through a relatively low-cost and simple approach, thus making the use of LLMs more accessible for individuals
with limited resources.

However, it is important to consider the broader implications of the increasing use of LLMs. As LLMs are not infallible and
may make mistakes, it is crucial to explicitly warn users of the potential for misleading output and to regulate the distribution
of LLMs in order to prevent any negative societal impact. Additionally, it is possible that LLMs could be intentionally
misused, thus it is important to consider the ethical implications of their use and to take appropriate measures to mitigate
any potential negative effects. We posit that these regulations and measures should be put in place at the time of distributing
LLMs to ensure the safe and responsible use of these models. Furthermore, as we publicly release our code, we will also
provide clear warnings and guidelines to users to ensure that the potential risks associated with the use of our method are
fully understood and addressed.
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Table 3. Accuracy of selected demonstration. Our demonstrations are selected using GPT2-large, and the same set of demonstrations is
applied to all different LLMs. All LLMs are pre-trained only with the language modeling objective, while the pre-training data size of
GPT2s is much smaller than GPT3s.

LLM Method SST2 FPB COLA DBpedia EmoC EmoS ETHOS-SO ETHOS-R Avg

GPT2 Uniform 69.7 ± 1.8 52.9 ± 2.3 61.9 ± 1.4 48.0 ± 0.7 35.3 ± 1.7 26.4 ± 1.0 64.1 ± 4.8 71.0 ± 1.8 53.7
(124M) Similar 69.5 ± 0.6 55.9 ± 1.7 63.2 ± 1.2 44.7 ± 3.1 36.4 ± 2.0 26.6 ± 1.3 77.7 ± 2.7 80.0 ± 3.7 56.8

Ours 76.8 ± 2.9 64.5 ± 3.2 69.1 ± 0.2 53.5 ± 2.95 37.2 ± 11.1 30.6 ± 4.8 80.9 ± 1.9 76.8 ± 2.6 61.2
GPT2-m Uniform 70.8 ± 1.3 52.0 ± 1.7 57.8 ± 1.3 49.3 ± 2.0 34.2 ± 1.8 34.2 ± 1.8 76.3 ± 4.9 74.7 ± 2.2 56.2
(355M) Similar 75.0 ± 1.9 57.7 ± 2.0 57.5 ± 2.2 47.9 ± 6.0 37.2 ± 3.6 35.2 ± 1.8 86.9 ± 2.9 84.6 ± 4.3 60.3

Ours 81.2 ± 1.3 59.3 ± 4.3 69.0 ± 0.2 52.9 ± 2.3 40.4 ± 21.5 37.2 ± 2.4 83.7 ± 1.1 76.8 ± 1.1 62.6
GPT2-l Uniform 77.1 ± 1.2 51.3 ± 2.4 62.7 ± 0.8 54.4 ± 0.9 38.7 ± 2.1 34.5 ± 1.2 67.6 ± 4.3 72.9 ± 2.8 57.4
(774M) Similar 80.7 ± 1.6 54.8 ± 3.8 50.9 ± 1.4 51.1 ± 5.2 39.9 ± 2.6 35.1 ± 2.1 80.9 ± 2.8 84.4 ± 2.6 59.7

Ours 86.2 ± 1.4 60.4 ± 2.5 69.1 ± 0.2 56.5 ± 3.2 48.4 ± 17.0 38.6 ± 2.8 82.5 ± 1.5 76.6 ± 1.2 64.8
GPT2-xl Uniform 74.7 ± 0.9 53.2 ± 1.9 55.8 ± 1.6 53.0 ± 1.9 38.2 ± 1.5 38.2 ± 1.5 67.8 ± 6.4 72.6 ± 4.1 56.7
(1.5B) Similar 80.6 ± 1.3 53.0 ± 2.5 55.0 ± 2.5 51.6 ± 5.9 39.9 ± 2.0 32.9 ± 2.1 82.8 ± 2.2 83.9 ± 4.5 60

Ours 83.1 ± 3.6 62.0 ± 2.5 68.9 ± 0.2 58.6 ± 3.3 43.6 ± 16.4 43.6 ± 16.4 83.0 ± 1.3 77.9 ± 1.3 65.1
GPT3-a Uniform 76.9 ± 0.7 56.6 ± 1.1 53.1 ± 1.8 62.1 ± 1.4 38.6 ± 1.4 27.7 ± 1.3 65.5 ± 5.7 74.0 ± 3.0 56.8
(350M) Similar 78.7 ± 1.0 52.2 ± 2.7 53.1 ± 1.8 54.6 ± 1.7 42.4 ± 3.5 37.2 ± 1.1 84.1 ± 2.2 87.8 ± 3.5 61.3

Ours 85.4 ± 1.7 61.9 ± 10.5 58.2 ± 7.0 64.0 ± 4.4 43.0 ± 7.2 37.9 ± 2.3 84.4 ± 1.4 78.9 ± 0.9 64.2
GPT3-b Uniform 80.8 ± 0.6 55.2 ± 3.3 46.8 ± 2.0 66.5 ± 1.4 42.0 ± 0.7 27.0 ± 1.2 71.0 ± 4.6 72.6 ± 3.1 57.7
(1.3B) Similar 83.9 ± 1.3 56.2 ± 2.3 45.1 ± 1.8 59.8 ± 1.8 42.9 ± 3.5 38.1 ± 1.7 86.7 ± 3.0 86.4 ± 3.0 62.4

Ours 87.3 ± 2.0 64.3 ± 5.9 67.2 ± 0.9 70.2 ± 3.2 43.6 ± 13.0 38.9 ± 5.0 84.6 ± 0.9 78.9 ± 1.2 66.9
GPT3-c Uniform 84.2 ± 1.4 52.6 ± 1.8 59.1 ± 1.5 70.6 ± 0.8 44.3 ± 2.5 32.3 ± 1.9 77.5 ± 4.7 77.5 ± 0.6 62.3
(6.7B) Similar 85.7 ± 1.4 62.2 ± 0.9 58.0 ± 1.7 62.2 ± 2.0 47.4 ± 4.3 39.8 ± 1.7 89.2 ± 1.4 89.7 ± 1.9 66.8

Ours 88.8 ± 0.7 64.1 ± 5.7 69.0 ± 0.3 73.6 ± 2.9 50.3 ± 11.9 43.1 ± 4.6 86.2 ± 0.0 78.2 ± 0.0 69.2
GPT3-d Uniform 86.5 ± 0.9 59.2 ± 2.4 45.5 ± 2.8 73.6 ± 1.9 39.4 ± 0.7 40.6 ± 1.7 77.2 ± 2.6 76.8 ± 3.5 62.4
(175B) Similar 88.5 ± 0.8 55.4 ± 3.3 45.4 ± 1.5 67.2 ± 1.8 37.6 ± 1.6 39.8 ± 1.4 86.9 ± 2.4 89.0 ± 3.8 63.7

Ours 87.8 ± 3.4 62.7 ± 3.3 58.5 ± 8.2 75.5 ± 2.4 41.3 ± 3.6 42.7 ± 3.9 85.1 ± 0.0 79.3 ± 0.0 66.6
Avg Uniform 77.6 54.1 55.3 59.7 38.8 32.6 70.9 74.0 57.9

Similar 80.3 55.9 53.5 54.9 40.5 35.6 84.4 85.7 61.4
Ours 84.6 62.4 66.1 63.1 43.5 39.1 83.8 77.9 65.0

Table 4. Accuracy of selected demonstration. Our demonstrations are selected using GPT2-large, and the same set of demonstrations is
applied to all different LLMs. All LLMs are pre-trained only with the language modeling objective, while the pre-training data size of
GPT2s is much smaller than GPT3s.

LLM Method SST2 FPB COLA DBpedia EmoC EmoS ETHOS-SO ETHOS-R Avg

GPT2 Uniform 69.7 ± 1.8 52.9 ± 2.3 61.9 ± 1.4 48.0 ± 0.7 35.3 ± 1.7 26.4 ± 1.0 64.1 ± 4.8 71.0 ± 1.8 53.7
(124M) Random 69.8 ± 3.3 51.1 ± 1.7 69.0 ± 0.1 49.0 ± 4.5 33.7 ± 15.5 24.2 ± 7.6 66.4 ± 17.5 66.2 ± 16.2 53.7

Ours 76.8 ± 2.9 64.5 ± 3.2 69.1 ± 0.2 53.5 ± 2.95 37.2 ± 11.1 30.6 ± 4.8 80.9 ± 1.9 76.8 ± 2.6 61.2
GPT2-l Uniform 77.1 ± 1.2 51.3 ± 2.4 62.7 ± 0.8 54.4 ± 0.9 38.7 ± 2.1 34.5 ± 1.2 67.6 ± 4.3 72.9 ± 2.8 57.4
(774M) Random 81.9 ± 4.5 46.5 ± 4.7 64.9 ± 7.8 50.3 ± 4.3 42.5 ± 16.7 36.1 ± 6.5 67.6 ± 20.4 67.8 ± 15.0 57.2

Ours 86.2 ± 1.4 60.4 ± 2.5 69.1 ± 0.2 56.5 ± 3.2 48.4 ± 17.0 38.6 ± 2.8 82.5 ± 1.5 76.6 ± 1.2 64.8

Table 5. We test our method on other similar sizes (6-7B) LLMs.
LLM Method SST2 FPB COLA DBpedia EmoC EmoS ETHOS-SO ETHOS-R Avg

GPT2-l Random 77.1 ± 1.2 51.3 ± 2.4 62.7 ± 0.8 54.4 ± 0.9 38.7 ± 2.1 34.5 ± 1.2 67.6 ± 4.3 72.9 ± 2.8 57.4
Ours 86.2 ± 1.4 60.4 ± 2.5 69.1 ± 0.2 56.5 ± 3.2 48.4 ± 17.0 38.6 ± 2.8 82.5 ± 1.5 76.6 ± 1.2 64.8

GPT3-c Random 84.2 ± 1.4 52.6 ± 1.8 59.1 ± 1.5 70.6 ± 0.8 44.3 ± 2.5 32.3 ± 1.9 77.5 ± 4.7 77.5 ± 0.6 62.3
Ours 88.8 ± 0.7 64.1 ± 5.7 69.0 ± 0.3 73.6 ± 2.9 50.3 ± 11.9 43.1 ± 4.6 86.2 ± 0.0 78.2 ± 0.0 69.2

GPT-J Random 78.5 ± 1.0 53.1 ± 1.7 58.3 ± 2.2 55.6 ± 1.2 38.5 ± 2.0 33.3 ± 1.5 76.6 ± 3.7 76.6 ± 1.4 58.8
Ours 87.8 ± 1.9 56.7 ± 4.3 69.1 ± 0.2 60.0 ± 3.6 32.5 ± 16.1 33.2 ± 2.8 85.3 ± 0.5 77.0 ± 0.0 62.7

OPT Random 72.4 ± 0.8 32.8 ± 0.3 34.8 ± 0.6 29.4 ± 1.4 67.1 ± 1.8 36.9 ± 0.6 86.2 ± 0.0 78.2 ± 0.0 54.7
Ours 74.2 ± 3.0 34.1 ± 6.1 35.7 ± 3.1 28.8 ± 2.1 76.7 ± 4.1 39.0 ± 3.4 86.2 ± 0.0 78.2 ± 0.0 56.6

LLaMA Random 57.7 ± 1.5 23.7 ± 1.3 30.8 ± 0.2 15.8 ± 0.8 4.4 ± 0.7 35.2 ± 0.7 66.2 ± 5.8 57.2 ± 5.1 36.4
Ours 60.5 ± 4.7 19.1 ± 1.9 30.8 ± 0.2 16.9 ± 1.3 4.3 ± 0.7 35.3 ± 0.6 77.2 ± 13.6 56.3 ± 10.8 37.6

Table 6. We test random selection baseline with anti-causal direction.
LLM SST2 FPB COLA DBpedia EmoC EmoS ETHOS-SO ETHOS-R
GPT2 57.4 ± 1.9 56.6 ± 2.1 55.9 ± 1.7 11.3 ± 1.0 24.6 ± 2.4 22.1 ± 1.1 64.1 ± 4.8 58.6 ± 5.5

GPT2-m 56.7 ± 1.6 48.7 ± 2.1 55.3 ± 1.8 13.9 ± 1.2 22.4 ± 1.9 24.9 ± 2.3 44.8 ± 1.9 45.5 ± 3.5
GPT2-l 58.7 ± 0.7 33.7 ± 1.3 50.8 ± 1.6 13.6 ± 1.3 28.2 ± 3.6 26.2 ± 2.7 48.7 ± 3.7 53.6 ± 5.3

GPT2-xl 54.2 ± 0.5 46.8 ± 1.2 50.6 ± 1.1 12.6 ± 1.5 31.4 ± 2.8 25.9 ± 3.2 65.5 ± 4.9 61.8 ± 1.5
GPT3-a 55.8 ± 0.9 58.9 ± 2.1 51.6 ± 1.4 14.3 ± 0.8 54.2 ± 3.1 27.7 ± 1.3 49.2 ± 3.3 54.9 ± 6.4
GPT3-b 64.4 ± 1.6 58.9 ± 2.6 53.4 ± 1.1 14.6 ± 1.1 52.0 ± 2.5 27.0 ± 1.3 48.3 ± 2.7 51.0 ± 4.0
GPT3-c 78.2 ± 1.6 52.3 ± 2.3 53.7 ± 0.7 23.0 ± 2.5 49.1 ± 2.6 32.2 ± 1.9 57.9 ± 2.7 64.1 ± 5.0

Avg 60.8 50.8 53 14.8 37.4 26.6 54.1 55.6
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Table 7. We test our method with random words and random labels using GPT2-large.
Method SST2 FPB COLA DBpedia EmoC EmoS ETHOS-SO ETHOS-R Avg

R words Random 54.1 ± 4.2 43.4 ± 1.9 62.2 ± 4.9 11.2 ± 0.9 32.4 ± 5.2 19.1 ± 1.8 80.7 ± 4.8 77.0 ± 3.6 47.5
Ours 50.3 ± 1.3 44.9 ± 4.2 69.2 ± 0.2 13.9±1.2 37.8 ± 12.1 23.5 ± 7.4 86.0 ± 0.5 77.9 ± 0.5 50.5

R labels Random 51.5 ± 0.9 32.5 ± 1.2 49.3 ± 3.0 6.7 ± 1.0 25.1 ± 0.6 17.2 ± 0.9 48.0 ± 2.5 56.8 ± 3.1 35.9
Ours 49.6 ± 0.9 36.2 ± 2.5 49.3 ± 1.6 6.6± 0.2 24.7 ± 0.6 16.6 ± 1.0 51.0 ± 4.9 48.7 ± 3.5 35.3

Table 8. Accuracy using concept tokens as prefixes.
SST2 FPB COLA DBpedia EmoC EmoS ETHOS-SO ETHOS-R

90.3 ± 0.0 86.1 ± 0.0 75.0 ± 0.1 92.6 ± 0.6 57.3 ± 1.8 53.8 ± 0.7 86.2 ± 0.0 78.2 ± 0.0

Table 9. k ablation study using GPT2-large, without reordering.
Method SST2 FPB COLA DBpedia EmoC EmoS ETHOS-SO ETHOS-R Avg

k = 2 Random 74.4 ± 1.0 48.5 ± 1.1 48.9 ± 1.6 52.9 ± 2.0 42.8 ± 0.6 37.1 ± 1.2 66.9 ± 4.7 66.4 ± 6.8 54.7
Ours 78.1 ± 4.5 50.1 ± 2.9 54.3 ± 8.8 57.3 ± 5.1 41.1 ± 9.8 36.1 ± 2.6 84.6 ± 1.6 76.8 ± 4.5 59.8

k = 4 Random 76.9 ± 0.7 56.6 ± 1.1 53.1 ± 1.8 62.1 ± 1.4 38.6 ± 1.4 27.7 ± 1.3 65.5 ± 5.7 74.0 ± 3.0 56.8
Ours 86.2 ± 1.4 59.7 ± 2.8 69.1 ± 0.2 56.5 ± 3.2 38.2 ± 21.8 37.7 ± 2.5 83.0 ± 1.3 76.6 ± 1.2 63.4

k = 8 Random 79.9 ± 0.2 57.1 ± 1.6 51.3 ± 1.0 66.5 ± 1.2 37.6 ± 1.5 36.2 ± 0.6 68.5 ± 3.5 72.9 ± 3.3 58.8
Ours 87.0 ± 2.4 59.9 ± 3.3 55.3 ± 9.7 67.0 ± 0.9 39.9 ± 5.3 38.8 ± 2.6 77.0 ± 11.1 78.9 ± 0.9 63

k = 16 Random 79.9 ± 1.1 54.9 ± 2.7 54.5 ± 2.8 69.1 ± 1.1 33.7 ± 2.2 33.5 ± 1.4 64.8 ± 4.0 69.0 ± 3.2 57.4
Ours 84.6 ± 1.9 60.4 ± 6.4 62.0 ± 7.0 71.0 ± 1.9 37.2 ± 6.1 37.1 ± 2.2 72.4 ± 7.6 74.7 ± 4.7 62.4

Table 10. c ablation study using GPT2-large
SST2 FPB COLA DBpedia EmoC EmoS ETHOS-SO ETHOS-R Avg

c = 5 78.9 ± 2.4 59.8 ± 10.8 34.3 ± 5.0 62.9 ± 2.4 44.9 ± 9.5 38.1 ± 2.4 71.7 ± 5.9 62.1 ± 19.7 56.6
c = 10 85.4 ± 1.7 61.9 ± 10.5 58.2 ± 7.0 64.0 ± 4.4 43.0 ± 7.2 37.9 ± 2.3 84.4 ± 1.4 78.9 ± 0.9 64.2
c = 15 80.1 ± 1.4 64.3 ± 7.7 63.1 ± 9.4 58.7 ± 3.2 36.4 ± 11.5 38.6 ± 1.9 80.9 ± 3.9 76.3 ± 5.9 62.3
c = 20 78.5 ± 4.1 51.8 ± 8.0 66.5 ± 2.3 58.0 ± 3.4 36.3 ± 4.3 41.8 ± 5.8 80.7 ± 4.5 73.8 ± 5.4 60.92

Table 11. Reorder versus not reorder using our method, with GPT2-large.
SST2 FPB COLA DBpedia EmoC EmoS ETHOS-SO ETHOS-R Avg

reorder 86.2 ± 1.4 60.4 ± 2.5 69.1 ± 0.2 56.5 ± 3.2 48.4 ± 17.0 38.6 ± 2.8 82.5 ± 1.5 76.6 ± 1.2 64.8
not reorder 86.2 ± 1.4 59.7 ± 2.8 69.1 ± 0.2 56.5 ± 3.2 38.2 ± 21.8 37.7 ± 2.5 83.0 ± 1.3 76.6 ± 1.2 63.4

Table 12. We list the top 10 similar words (tokens) to some of the learned concept tokens.
concept token similar words

FPB-2 milo coordinate notify rendering benefiting routing EntityItem routed Messages Plot
FPB-3 unlocked updating deleting dropping damage updates drops Gained taken dropped
FPB-4 FX Safari Fixes advertisers Links Coins Operator marketers Guidelines
FPB-5 674 592 693 696 498 593 793 504 691 683

COLA-1 exha trunc curv fragmented elong iterator initialized bounds Iter filament
COLA-2 Sp spa contributed cerv borrower paper tiger Erica USH Schwartz
COLA-7 democr Barack WH ophobic neum Democrats Rachel WH Democrats
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