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Abstract

Recently, hypergraphs have attracted a lot of attention due to their ability to capture
complex relations among entities. The insurgence of hypergraphs has resulted in
data of increasing size and complexity that exhibit interesting small-scale and local
structure, e.g., small-scale communities and localized node-ranking around a given
set of seed nodes. Popular and principled ways to capture the local structure are the
local hypergraph clustering problem and the related seed set expansion problem.
In this work, we propose the first local diffusion method that achieves edge-size-
independent Cheeger-type guarantee for the problem of local hypergraph clustering
while applying to a rich class of higher-order relations that covers a number of
previously studied special cases. Our method is based on a primal-dual optimization
formulation where the primal problem has a natural network flow interpretation,
and the dual problem has a cut-based interpretation using the `2-norm penalty on
associated cut-costs. We demonstrate the new technique is significantly better than
state-of-the-art methods on both synthetic and real-world data.

1 Introduction

Hypergraphs [1] generalize graphs by allowing a hyperedge to consist of multiple nodes that capture
higher-order relationships in complex systems and datasets [2]. Hypergraphs have been used for
music recommendation on Last.fm data [3], news recommendation [4], sets of product reviews on
Amazon [5], and sets of co-purchased products at Walmart [6]. Beyond the internet, hypergraphs are
used for analyzing higher-order structure in neuronal, air-traffic and food networks [7, 8].

In order to explore and understand higher-order relationships in hypergraphs, recent work has made
use of cut-cost functions that are defined by associating each hyperedge with a specific set function.
These functions assign specific penalties of separating the nodes within individual hyperedges. They
generalize the notion of hypergraph cuts and are crucial for determining small-scale community
structure [8, 9]. The most popular cut-cost functions with increasing capability to model complex
multiway relationships are the unit cut-cost [10–12], cardinality-based cut-cost [13, 14] and general
submodular cut-cost [15, 16]. An illustration of a hyperedge and the associated cut-cost function is
given in Figure 1. In the simplest setting, all cut-cost functions take value either 0 or 1 (e.g., the case
when γ1 = γ2 = 1 in Figure 1b), we obtain a unit cut-cost hypergraph. In a slightly more general
setting, the cut-costs are determined solely by the number of nodes in either side of the hyperedge cut
(e.g., the case when γ1 = 1/2 and γ2 = 1 in Figure 1b), we obtain a cardinality-based hypergraph.
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We refer to hypergraphs associated with arbitrary submodular cut-cost functions (e.g., the case when
γ1 = 1/2 and 0 ≤ γ2 ≤ 1 in Figure 1b) as general submodular hypergraphs.

Hypergraphs that arise from data science applications consist of interesting small-scale local structure
such as local communities [9, 17]. Exploiting this structure is central to the above mentioned applica-
tions on hypergraphs and related applications in machine learning and applied mathematics [18]. We
consider local hypergraph clustering as the task of finding a community-like cluster around a given set
of seed nodes, where nodes in the cluster are densely connected to each other while relatively isolated
to the rest of the graph. One of the most powerful primitives for the local hypergraph clustering
task is the graph diffusion. Diffusion on a graph is the process of spreading a given initial mass
from some seed node(s) to neighbor nodes using the edges of the graph. Graph diffusions have been
successfully employed in the industry, for example, both Pinterest and Twitter use diffusion methods
for their recommendation systems [19–21]. Google uses diffusion methods to perform clustering
query refinements [22]. Let us not forget PageRank [23, 24], Google’s model for their search engine.
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Figure 1: A food network can be mapped into
a hypergraph by taking each network pattern
in (a) as a hyperedge [8]. This network pattern
captures carbon flow from two preys (v1, v2)
to two predators (v3, v4). (b) is a hyperedge
associated with cut-cost we that models their
relations: we is a set function defined over
the node set e s.t. we({vi}) = γ1 for i =
1, 2, 3, 4, we({v1, v2}) = γ2, we({v1, v3}) =
we({v1, v4}) = 1 and we(S) = we(e\S) for
S ⊆ e. we becomes the unit cut-cost when
γ1 = γ2 = 1; we is cardinality-based if
γ1 = 1/2 and γ2 = 1; more generally, we
is submodular if γ1 = 1/2 and 0 ≤ γ2 ≤ 1.
The specific choices depend on the application.

Empirical and theoretical performance of local dif-
fusion methods is often measured on the problem
of local hypergraph clustering [9, 25, 26]. Existing
local diffusion methods only directly apply to hyper-
graphs with the unit cut-cost [17,27]. For the slightly
more general cardinality-based cut-cost, they rely on
graph reduction techniques which result in a rather
pessimistic edge-size-dependent approximation er-
ror [9, 13, 27, 28]. Moreover, none of the existing
methods is capable of processing general submod-
ular cut-costs. In this work, we are interested in
designing a diffusion framework that (i) achieves
stronger theoretical guarantees for the problem of
local hypergraph clustering, (ii) is flexible enough to
work with general submodular hypergraphs, and (iii)
permits computationally efficient algorithms. We
propose the first local diffusion method that simul-
taneously accomplishes these goals.

In what follows we describe our main contributions
and previous work. In Section 2 we provide prelim-
inaries and notations. In Section 3 we introduce our
diffusion model from a combinatorial flow perspec-
tive. In Section 4 we discuss the local hypergraph
clustering problem and Cheeger-type quadratic ap-
proximation error. In Section 6 we perform experiments using both synthetic and real datasets.

1.1 Our main contributions

In this work we propose a generic local diffusion model that applies to hypergraphs characterized
by a rich class of cut-cost functions that covers many previously studied special cases, e.g., unit,
cardinality-based and submodular cut-costs. We provide the first edge-size-independent Cheeger-type
approximation error for the problem of local hypergraph clustering using any of these cut-costs.
In particular, assume that there exists a cluster C with conductance Φ(C), and assume that we are
given a set of seed nodes that reasonably overlaps with C, then the proposed diffusion model can
be used to find a cluster Ĉ with conductance at most O(

√
Φ(C)) (in the appendix we show that

an `p-norm version of the proposed model can achieve O(Φ(C)) asymptotically). Our hypergraph
diffusion model is formulated as a convex optimization problem. It has a natural combinatorial
flow interpretation that generalizes the notion of network flows over hyperedges. We show that the
optimization problem can be solved efficiently by an alternating minimization method. In addition,
we prove that the number of nonzero nodes in the optimal solution is independent of the size of the
hypergraph, and it only depends on the size of the initial mass. This key property ensures that our
algorithm scales well in practice for large datasets. We evaluate our method using both synthetic and
real-world data. We show that our method improves accuracy significantly for hypergraphs with unit,
cardinarlity-based and general submodular cut-costs for local clustering.
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1.2 Previous work

Recently, clustering methods on hypergraphs received renewed interest. Different methods require
different assumptions about the hyperedge cut-cost, which can be roughly categorized into unit
cut-cost, cardinality-based (and submodular) cut-cost and general submodular cut-cost. Moreover,
existing methods can be either global, where the output is not localized around a given set of seed
nodes, or local, where the output is a tiny cluster around a set of seed nodes. Local algorithms are
the only scalable ones for large hypergraphs, which is our main focus. Many works propose global
methods and thus they are not scalable to large hypergraphs [7,8,15–17,29–38]. Local diffusion-based
methods are more relevant to our work [9, 13,27]. In particular, iterative hypergraph min-cut methods
for the local hypergraph clustering problem can be adopted [13]. However, these methods require in
theory and in practice a large seed set, i.e., they are not expansive and thus cannot work with one
seed node. The expansive combinatorial diffusion [25] is generalized for hypergraphs [27], which can
detect a target cluster using only one seed node. However, combinatorial methods have a large bias
towards low conductance clusters as opposed to finding the target cluster [39]. The most relevant paper
to our work is [9]. However, the proposed methods in [9] depend on a reduction from hypergraphs to
directed graphs. This results in an approximation error for clustering that is proportional to the size of
hyperedges and induces performance degeneration when the hyperedges are large. In fact, none of
the above approaches (including global and local ones) has an edge-size-independent approximation
error bound for even simple cardinality-based hypergraphs. Moreover, existing local approaches do
not work for general submodular hypergraphs.

2 Preliminaries and Notations

Submodular function. Given a set S, we denote 2S the power set of S and |S| the cardinality of S. A
submodular function F : 2S → R is a set function such that F (A)+F (B) ≥ F (A∪B)+F (A∩B)
for any A,B ⊆ S.

Submodular hypergaph. A hypergraph H = (V,E) is defined by a set of nodes V and a set of
hyperedgesE ⊆ 2V , i.e., each hyperedge e ∈ E is a subset of V . A hypergraph is termed submodular
if every e ∈ E is associated with a submodular function we : 2e → R≥0 [15]. The weight we(S)
indicates the cut-cost of splitting the hyperedge e into two subsets, S and e \ S. This general form
allows us to describe the potentially complex higher-order relation among multiple nodes (Figure 1).
A proper hyperedge weight we should satisfy that we(∅) = we(e) = 0. To ease notation we extend
the domain of we to 2V by setting we(S) := we(S ∩ e) for any S ⊆ V . We assume without
loss of generality that we is normalized by ϑe := maxS⊆e we(S), so that we(S) ∈ [0, 1] for any
S ⊆ V . For the sake of simplicity in presentation, we assume that ϑe = 1 for all e.1 A submodular
hypergraph is written as H = (V,E,W) whereW := {we, ϑe}e∈E . Note that when we(S) = 1 for
any S ∈ 2e\{∅, e}, the definition reduces to unit cut-cost hypergraphs. When we(S) only depends
on |S|, it reduces to cardinality-based cut-cost hypergraphs.

Vector/Function on V or E. For a set of nodes S ⊆ V , we denote 1S the indicator vector of S, i.e.,
[1S ]v = 1 if v ∈ S and 0 otherwise. For a vector x ∈ R|V |, we write x(S) :=

∑
v∈S xv , where xv in

the entry in x that corresponds to v ∈ V . We define the support of x as supp(x) := {v ∈ V |xv 6= 0}.
The support of a vector in R|E| is defined analogously. We refer to a function over nodes x : V → R
and its explicit representation as a |V |-dimensional vector interchangeably.

Volume, cut, conductance. Given a submodular hypergraph H = (V,E,W), the degree of a node v
is defined as dv := |{e ∈ E : v ∈ e}|. We reserve d for the vector of node degrees and D = diag(d).
We refer to vol(S) := d(S) as the volume of S ⊆ V . A cut is treated as a proper subset C ⊂ V ,
or a partition (C, C̄) where C̄ := V \ C. The cut-set of C is defined as ∂C := {e ∈ E|e ∩ C 6=
∅, e∩ C̄ 6= ∅}; the cut-size of C is defined as vol(∂C) :=

∑
e∈∂C ϑewe(C) =

∑
e∈E ϑewe(C). The

conductance of a cut C in H is Φ(C) := vol(∂C)
min{vol(C),vol(V \C)} .

Flow. A flow routing over a hyperedge e is a function re : e→ R where re(v) specifies the amount
of mass that flows from {v} to e \ {v} over e. To ease notation we extend the domain of re to
V by identifying re(v) = 0 for v 6∈ e, so re is treated as a function re : V → R or equivalently
a |V |-dimensional vector. The net (out)flow at a node v is given by

∑
e∈E re(v). Given a routing

1This is without loss of generality. In the appendix we show that our method works with arbitrary ϑe > 0.
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function re and a set of nodes S ⊆ V , a directional routing on e with direction S → e \ S is
represented by re(S), which specifies the net amount of mass that flows from S to e \ S. A routing
re is called proper if it obeys flow conservation, i.e., rTe 1e = 0. Our flow definition generalizes the
notion of network flows to hypergraphs. We provide concrete illustrations in Figure 2.
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(c) Flows on hypergraph

Figure 2: Illustration of proper flow routings. The numbers next to each node correspond to entries
in the flow routing re over a (hyper)edge e. We assign the same color to a (hyper)edge and its
associated flow values. Our flow definition is a natural generalization of graph edge flow where
re(v) = ±f if and only if v ∈ e, i.e., v is incident to e, where f and the sign determine the
amplitude and direction of the flow over e. In Figure 2a, the net (out)flow at node v3 is given by∑
e∈E re(v3) = 1 − 2 − 3 = −4. In Figure 2b, the directional flow from {v1} to {v2, v3, v4, v5}

over this hyperedge equals −1; similarly, the directional flow from {v1, v2, v4} to {v3, v5} equals
3 + 2− 1 = 4. In Figure 2c, the net (out)flow at node v3 is given by

∑
e∈E re(v3) = 3− 2 = 1.

3 Diffusion as an Optimization Problem

In this section we provide details of the proposed local diffusion method. We consider diffusion
process as the task of spreading mass from a small set of seed nodes to a larger set of nodes. More
precisely, given a hypergraph H = (V,E,W), we assign each node a sink capacity specified by a
sink function T , i.e., node v is allowed to hold at most T (v) amount of mass. In this work we focus
on the setting where T (v) = dv, so that a high-degree node that is part of many hyperedges can
hold more mass than a low-degree node that is part of few hyperedges. Moreover, we assign each
node some initial mass specified by a source function ∆, i.e., node v holds ∆(v) amount of mass
at the start of the diffusion. In order to encourage the spread of mass in the hypergraph, the initial
mass on the seed nodes is larger than their capacity. This forces the seed nodes to diffuse mass to
neighbor nodes to remove their excess mass. In Section 4 we will discuss the choice of ∆ to obtain
good theoretical guarantees for the problem of local hypergraph clustering. Details about the local
hypergraph clustering problem are provided in Section 4.

Given a set of proper flow routings re for e ∈ E, recall that
∑
e∈E re(v) specifies the amount of

net (out)flow at node v. Therefore, the vector m = ∆−
∑
e∈E re gives the amount of net mass at

each node after routing. The excess mass at a node v is ex(v) := max{mv − dv, 0}. In order to force
the diffusion of initial mass we could simply require that ex(v) = 0 for all v ∈ V , or equivalently,
∆−

∑
e∈E re ≤ d. But to provide additional flexibility in the diffusion dynamics, we introduce a

hyper-parameter σ ≥ 0 and we impose a softer constraint ∆−
∑
e∈E re ≤ d+σDz, where z ∈ R|V |

is an optimization variable that controls how much excess mass is allowed on each node. In the
context of numerical optimization, we show in Section 5 that σ allows a reformulation which makes
the optimization problem amenable to efficient alternating minimization schemes.

Note that so far we have not yet talked about how specific higher-order relations among nodes within
a hyperedge would affect the flow routings over it. Apparently, simply requiring that the re’s obey
flow conservation (i.e., rTe 1e = 0) similar to the standard graph setting is not enough for hypergraphs.
An important difference between hyperedge flows and graph edge flows is that additional constraints
on re are in need. To this end, we consider re = φeρe for some φe ∈ R+ and ρe ∈ Be, where

Be := {ρe ∈ R|V | | ρe(S) ≤ we(S),∀S ⊆ V, and ρe(V ) = we(V )}
is the base polytope [40] for the submodular cut-cost we associated with hyperedge e. It is straight-
forward to see that re(v) = 0 for every v 6∈ e and rTe 1e = 0, so re defines a proper flow routing over
e. Moreover, for any e ⊆ V , recall that re(S) represents the net amount of mass that moves from
S to e \ S over hyperedge e. Therefore, the constraints ρe(S) ≤ we(S) for S ⊆ e mean that the
directional flows re(S) are upper bounded by a submodular function φewe(S). Intuitively, one may
think of φe and ρe as the scale and the shape of re, respectively.
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The goal of our diffusion problem is to find low cost routings re ∈ φeBe for e ∈ E such that the
capacity constraint ∆−

∑
e∈E re ≤ d+ σDz is satisfied. We consider the (weighted) `2-norm of

φ and z as the cost of diffusion. In the appendix we show that one readily extends the `2-norm to
`p-norm for any p ≥ 2. Formally, we arrive at the following convex optimization formulation (input:
the source function ∆, the hypergraph H = (V,E,W), and a hyper-parameter σ):

min
φ∈R|E|

+ ,z∈R|V |
+

1

2

∑
e∈E

φ2e +
σ

2

∑
v∈V

dvz
2
v , s.t. ∆−

∑
e∈E

re ≤ d+ σDz, re ∈ φeBe,∀e ∈ E. (1)

We name problem (1) Hyper-Flow Diffusion (HFD) for its combinatorial flow interpretation we
discussed above. The dual problem of (1) is:

max
x∈R|V |

+

(∆− d)Tx− 1

2

∑
e∈E

fe(x)2 − σ

2

∑
v∈V

dvx
2
v, (2)

where fe in (2) is the support function of the base polytope Be given by fe(x) := maxρe∈Be ρ
T
e x.

fe is also known as the Lovász extension of the submodular function we.

We provide a combinatorial interpretation for (2) and leave algebraic derivations to the appendix.
For the dual problem, one can view the solution x as assigning heights to nodes, and the goal is to
separate/cut the nodes with source mass from the rest of the hypergraph. Observe that the linear term
in the dual objective function encourages raising x higher on the seed nodes and setting it lower on
others. The cost fe(x) captures the discrepancy in node heights over a hyperedge e and encourages
smooth height transition over adjacent nodes. The dual solution embeds nodes into the nonnegative
real line, and this embedding is what we actually use for local clustering and node ranking.

4 Local Hypergraph Clustering

In this section we discuss the performance of the primal-dual pair (1)-(2), respectively, in the context
of local hypergraph clustering. We consider a generic hypergraph H = (V,E,W) with submodular
hyperedge weightsW = {we, ϑe}e∈E . Given a set of seed nodes S ⊂ V , the goal of local hypergraph
clustering is to identify a target cluster C ⊂ V that contains or overlaps well with S. This generalizes
the definition of local clustering over graphs [41]. To the best of our knowledge, we are the first one
to consider this problem for general submodular hypergraphs. We consider a subset of nodes having
low conductance as a good cluster, i.e., these nodes are well-connected internally and well-separated
from the rest of the hypergraph. Following prior work on local hypergraph clustering, we assume the
existence of an unknown target cluster C with conductance Φ(C). We prove that applying sweep-
cut to an optimal solution x̂ of (2) returns a cluster Ĉ whose conductance is at most quadratically
worse than Φ(C). Note that this result resembles Cheeger-type approximation guarantees of spectral
clustering in the graph setting [42], and it is the first result that is independent of hyperedge size for
general hypergraphs. We keep the discussion at high level and defer details to the appendix, where
we prove a more general, and stronger, i.e., constant approximation error result when the primal
problem (1) is penalized by the `p-norm for any p ≥ 2.

In order to start a diffusion process we need to provide the source mass ∆. Similar to the p-norm flow
diffusion in the graph setting [26], we let

∆(v) =

{
δdv if v ∈ S,
0 otherwise, (3)

where S is a set of seed nodes and δ ≥ 1. Below, we make the assumptions that the seed set S and
the target cluster C have some overlap, there is a constant factor of vol(C) amount of mass trapped
in C initially, and the hyper-parameter σ is not too large. Note that Assumption 2 is without loss of
generality: if the right value of δ is not known apriori, we can always employ binary search to find a
good choice. Assumption 3 is very weak as it allows σ to reside in an interval containing 0.
Assumption 1. vol(S ∩ C) ≥ αvol(C) and vol(S ∩ C) ≥ βvol(S) for some α, β ∈ (0, 1].
Assumption 2. The source mass ∆ as specified in (3) satisfies δ = 3/α, so ∆(C) ≥ 3vol(C).
Assumption 3. σ satisfies 0 ≤ σ ≤ βΦ(C)/3.

Let x̂ be an optimal solution for the dual problem (2). For h > 0 define the sweep sets Sh := {v ∈
V |x̂v ≥ h}. We state the approximation property in Theorem 1.
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Theorem 1. Under Assumptions 1, 2, 3, there exists h > 0 such that Φ(Sh) ≤ O(
√

Φ(C)/αβ).

Some previous works on local hypergraph clustering provide an approximation guarantee by focusing
on a specific setting when the seed set S contains precisely one seed node, e.g., [9,17]. However, they
rely on different assumptions about the seed node which may not hold in general. For example, [17]
assumes that the seed node is not a neighbor of any node not belonging to the target cluster. Even in
the classical graph setting, establishing a local clustering guarantee based on diffusing mass from
a single node requires assuming that a good seed node has been selected from a proper subset of
the target cluster [42]. On the other hand, our theoretical framework is more natural in the sense
that Theorem 1 applies to any set of seed node(s) as long as it has nonempty intersection with the
target. We view the α in the denominator of the bound as the price we pay for being certain that the
approximation guarantee holds for an arbitrary seed set. The empirical experiments in Section 6 show
that our method has superior performance in practice even when only one seed node is used.

One of the challenges we face in establishing the result in Theorem 1 is making sure that our diffusion
model enjoys not only good clustering guarantees but also practical algorithmic advantages. This is
achieved by introducing the hyper-parameter σ to our diffusion problem. We will demonstrate how σ
helps with algorithmic development in Section 5, but from a clustering perspective, the additional
flexibility given by σ > 0 complicates the underlying diffusion dynamics, making it more difficult to
analyze. Another challenge is connecting the Lovász extension fe(x) in (2) with the conductance
of a cluster. We resolve all these problems by combining a generalized Rayleigh quotient result for
submodular hypergraphs [15], primal-dual convex conjugate relations between (1) and (2), and a
classical property of the Choquet integral/Lovász extension.

Let (φ̂, r̂, ẑ) be an optimal solution for the primal problem (1). We state the following lemma on the
locality (i.e., sparsity) of the optimal solutions, which justifies why HFD is a local diffusion method.

Lemma 2. |supp(φ̂)| ≤ vol(supp(x̂)) ≤ ‖∆‖1; moreover, vol(supp(ẑ)) = vol(supp(x̂)) if σ > 0.

5 Optimization algorithm for HFD

We use a simple Alternating Minimization (AM) [43] method that efficiently solves the primal
diffusion problem (1). For e ∈ E, we define a diagonal matrix Ae ∈ R|V |×|V | such that [Ae]v,v = 1
if v ∈ e and 0 otherwise. Denote C := {(φ, r) : re ∈ φeBe, ∀e ∈ E}. The following Lemma 3
allows us to cast problem (1) to an equivalent separable formulation amenable to the AM method.

Lemma 3. The following problem is equivalent to (1) for any σ > 0, in the sense that (φ̂, r̂, ẑ) is
optimal in (1) for some ẑ ∈ R|V | if and only if (φ̂, r̂, ŝ) is optimal in (4) for some ŝ ∈

⊗
e∈E R|V |.

min
φ,r,s

1

2

∑
e∈E

(
φ2e +

1

σ
‖se − re‖22

)
, s.t. (φ, r) ∈ C, ∆−

∑
e∈E

se ≤ d, se,v = 0,∀v 6∈ e. (4)

Algorithm 1 Alternating Minimization for (4)
Initialization:

φ(0) := 0, r(0) := 0, s(0)e := D−1Ae [∆− d]+ , ∀e ∈ E.

For k = 0, 1, 2, . . . do:

(φ(k+1), r(k+1)) := argmin
(φ,r)∈C

∑
e∈E

(φ2
e + 1

σ
‖s(k)e − re‖22)

s(k+1) := argmin
s

∑
e∈E

‖se − r(k+1)
e ‖22

s.t. ∆−
∑
e∈E

se ≤ d, se,v = 0,∀v 6∈ e.

The AM method for problem (4) is given in
Algorithm 1. The first sub-problem corre-
sponds to computing projections to a group
of cones, where all the projections can be
computed in parallel. The computation of
each projection depends on the choice of
base polytope Be. If the hyperedge weight
we is unit cut-cost, Be holds special struc-
tures and projection can be computed with
O(|e| log |e|) [36]. For general Be, a conic
Fujishige-Wolfe minimum norm algorithm
can be adopted to obtain the projection [36].
The second sub-problem in Algorithm 1 can
be easily computed in closed-form. We pro-
vide more information about Algorithm 1 and
its convergence properties in the appendix.

We remark that the reformulation (4) for σ > 0 is crucial from an algorithmic point of view. If σ = 0,
then the primal problem (1) has complicated coupling constraints that are hard to deal with. In this
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case, one has to resort to the dual problem (2). However, problem (2) has a nonsmooth objective
function, which prohibits applicability of optimization methods for smooth objective functions. Even
though subgradient method may be applied, we have observed empirically that its convergence rate is
extremely slow for our problem, and early stopping results in a bad quality output.

Lastly, as noted in Lemma 2, the number of nonzeros in the optimal solution is upper bounded by
‖∆‖1. In Figure 3 we plot the number of nodes having positive excess (which equals the number of
nonzeros in the dual solution x̂) at every iteration of Algorithm 1. Figure 3 indicates that Algorithm 1 is
strongly local, meaning that it works only on a small fraction of nodes (and their incident hyperedges)
as opposed to producing dense iterates. This key empirical observation has enabled our algorithm
to scale to large datasets by simply keeping track of all active nodes and hyperedges. Proving that
the worst-case running time of AM depends only on the number of nonzero nodes at optimality as
opposed to size of the whole hypergraph is an open problem, which we leave for future work.
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Figure 3: The blue solid line plots the number of nonzeros in the dual solution x over 200 iterations of
Algorithm 1, when it is applied to solve HFD on the Amazon-reviews hypergraph for local clustering.
See Section 6.2 for details about the dataset. The error bars show standard deviation over 10 trials. In
each trial we pick a different seed node and set the same amount of initial mass. The black dashed
line shows the average number of nonzeros at optimality. The algorithm touches only a small fraction
of nodes out the total 2,268,264 nodes in the Amazon-reviews dataset.

6 Empirical Results

In this section we evaluate the performance of HFD for local clustering. First, we carry out experiments
on synthetic hypergraphs with varying target cluster conductances and varying hyperedge sizes. For
the unit cut-cost setting, we show that HFD is more robust and has better performance when the target
cluster is noisy; for a cardinality-based cut-cost setting, we show that the edge-size-independent
approximation guarantee is important for obtaining good recovery results. Second, we carry out
experiments using real-world data. We show that HFD significantly outperforms existing state-of-
the-art diffusion methods for both unit and cardinality-based cut-costs. Moreover, we provide a
compelling example where specialized submodular cut-cost is necessary for obtaining good results.
Code that reproduces all results is available at https://github.com/s-h-yang/HFD.

6.1 Synthetic experiments using hypergraph stochastic block model (HSBM)

The generative model. We generalize the standard k-uniform hypergraph stochastic block model
(kHSBM) [44] to allow different types of inter-cluster hyperedges appear with possibly different
probabilities according to the cardinality of hyperedge cut. Let V = {1, 2, . . . , n} be a set of nodes
and let k ≥ 2 be the required constant hyperedge size. We consider kHSBM with parameters k, n,
p, qj , j = 1, 2, . . . , bk/2c. The model samples a k-uniform hypergraph according to the following
rules: (i) The community label σi ∈ {0, 1} is chosen uniformly at random for i ∈ V ;2 (ii) Each size
k subset e = {v1, v2, . . . , vk} of V appears independently as a hyperedge with probability

P(e ∈ E) =

{
p if σv1 = σv2 = · · · = σvk ,

qj if min{k −
∑k
i=1 σvi ,

∑k
i=1 σvi} = j.

If k = 3 or all qj’s are the same, then we obtain the standard two-block kHSBM. We use this setting
to evaluate HFD for unit cut-cost. If qj’s are different, then we obtain a cardinality-based kHSBM.

2We consider two blocks for simplicity. In general the model applies to any number of blocks.
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In particular, when q1 ≥ q2 ≥ · · · ≥ qbk/2c, it models the scenario where hyperedges containing
similar numbers of nodes from each block are rare, while small noises (e.g., hyperedges that have
one or two nodes in one block and all the rest in the other block) are more frequent. We use q1 � qj ,
j ≥ 2, to evaluate HFD for cardinality-based cut-cost. There are other random hypergraph models,
for example the Poisson degree-corrected HSBM [45] that deals with degree heterogeneity and edge
size heterogeneity. In our experiments we focus on kHSBM because it allows stronger control over
hyperedge sizes. We provide details on data generation in the appendix.

Task and methods. We consider the local hypergraph clustering problem. We assume that we are
given a single labelled node and the goal is to recover all nodes having the same label. Using a single
seed node the most common (and sought-after) practice for local graph clustering tasks. We test
the performance of HFD with two other methods: (i) Localized Quadratic Hypergraph Diffusions
(LH) [9], which can be seen as a hypergraph analogue of Approximate Personalized PageRank
(APPR); (ii) ACL [42], which is used to compute APPR vectors on a standard graph obtained from
reducing a hypergraph through star expansion [46].3

Cut-costs and parameters. We consider both unit cut-cost, i.e., we(S) = 1 if S ∩ e 6= ∅ and
e \ S 6= ∅, and cardinality cut-cost we(S) = min{|S ∩ e|, |e \ S|}/b|e|/2c. HFD that uses unit and
cardinality cut-costs are denoted by U-HFD and C-HFD, respectively. LH also works with both
unit and cardinality cut-costs and we specify them by U-LH and C-LH, respectively. For HFD, we
initialize the seed mass so that ‖∆‖1 is a constant factor times the volume of the target cluster. We
set σ = 0.01. We highly tune LH by performing binary search over its parameters κ and δ and pick
the output cluster having the lowest conductance. For ACL we use the same parameter choices as
in [9]. Details on parameter setting are provided in the appendix.

Results. For each hypergraph, we randomly pick a block as the target cluster. We run the methods 50
times. Each time we choose a different node from the target cluster as the single seed node.

Unit cut-cost results. Figure 4 shows local clustering results when we fix k = 3 but vary the con-
ductance of the target cluster (i.e., constant p but varying q1). Observe that the performances of all
methods become worse as the target cluster becomes more noisy, but U-HFD has significantly better
performance than both U-LH and ACL when the conductance of the target cluster is between 0.2 and
0.4. The reason that U-HFD performs better is in part because it requires much weaker conditions
for the theoretical conductance guarantee to hold. On the contrary, LH assumes an upper bound on
the conductance of the target cluster [9]. This upper bound is dataset-dependent and could become
very small in many cases, leading to poor practical performances. We provide more details in this
perspective in the appendix. ACL with star expansion is a heuristic method that has no performance
guarantee.
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Figure 4: Output conductance and F1 against ground-truth conductance

Cardinality cut-cost results. Figure 5 shows the median (markers) and 25-75 percentiles (lower-upper
bars) of conductance ratios (i.e., the ratio between output conductance and ground-truth conductance,
lower is better) and F1 scores for different methods for k ∈ {3, 4, 5, 6}. The target cluster for each k

3There are other heuristic methods which first reduce a hypergraph to a graph by clique expansion [7] and
then apply diffusion methods for standard graphs. We did not compare with this approach because clique
expansion often results in a dense graph and consequently makes the computation slow. Moreover, it has been
shown in [9] that clique expansion did not offer significant performance improvement over star expansion.
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has conductance around 0.3.4 For k = 3, unit and cardinality cut-costs are equivalent, therefore all
methods have similar performances. As k increases, cardinality cut-cost provides better performance
than unit cut-cost in both conductance and F1. However, since the theoretical approximation guarantee
of C-LH depends on hyperedge size [9], there is a noticeable performance degradation for C-LH
when we increase k = 3 to k = 4. On the other hand, the performance of C-HFD appears to be
independent from k, which aligns with our conductance bound in Theorem 1.
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Figure 5: Conductance ratio and F1 on k-uniform hypergraphs

6.2 Experiments using real-world data

We conduct extensive experiments using real-world data. First, we show that HFD has superior local
clustering performances than existing methods for both unit and cardinality-based cut-costs. Then,
we show that general submodular cut-cost (recall that HFD is the only method that applies to this
setting) can be necessary for capturing complex high-order relations in the data, improving F1 scores
by up to 20% for local clustering and providing the only meaningful result for node ranking. Because
of limited space, in the appendix we show additional local clustering experiments on two additional
datasets, where our method improves F1 scores by 8% on average for 13 different target clusters.

Datasets. We provide basic information about the datasets used in our experiments. Complete
descriptions are provided in the appendix. Amazon-reviews (|V | = 2,268,264, |E| = 4,285,363) [13,47].
In this hypergraph each node represents a product. A set of products are connected by a hyperedge
if they are reviewed by the same person. We use product category labels as ground truth cluster
identities. We consider all clusters of less than 10,000 nodes. Trivago-clicks (|V | = 172,738, |E| =
233,202) [45]. The nodes in this hypergraph are accommodations/hotels. A set of nodes are connected
by a hyperedge if a user performed “click-out” action during the same browsing session. We use
geographical locations as ground truth cluster identities. There are 160 such clusters, and we filter
them using cluster size and conductance. Florida Bay food network (|V | = 128, |E| = 141,233) [8].
Nodes in this hypergraph correspond to different species or organisms that live in the Bay, and
hyperedges correspond to transformed motifs (Figure 1) of the original dataset. Each species is
labelled according its role in the food chain: producers, low-level consumers, high-level consumers.

Methods and parameters. We compare HFD with LH and ACL.5 There is a heuristic nonlinear
variant of LH which is shown to outperform linear LH in some cases [9]. Therefore we also compare
with the same nonlinear variant considered in [9]. We denote the linear and nonlinear versions by
LH-2.0 and LH-1.4, respectively. We set σ = 0.0001 for HFD and we set the parameters for LH-2.0,
LH-1.4 and ACL as suggested by the authors [9]. More details on parameter choices appear in the
appendix. We prefix methods that use unit and cardinality-based cut-costs by U- and C-, respectively.

Experiments for unit and cardinality cut-costs. For each target cluster in Amazon-reviews and
Trivago-clicks, we run the methods multiple times, each time we use a different node as the singe
seed node.6 We report the median F1 scores of the output clusters in Table 1 and Table 2. For

4See the appendix for similar results when we fix the target cluster conductances around 0.2 and 0.25,
respectively. These cover a reasonably wide range of scenarios in terms of the target conductance and illustrate
the performance of algorithms for different levels of noise.

5We also tried a flow-improve method for hypergraphs [13], but the method was very slow in our experiments,
so we only used it for small datasets. See appendix for results. The flow-improve method did not improve the
performance of existing methods, therefore, we omitted it from comparisons on larger datasets.

6We show additional results using seed sets of more than one node in the appendix.
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Amazon-reviews, we only compare the unit cut-cost because it is both shown in [9] and verified by
our experiments that unit cut-cost is more suitable for this dataset. Observe that U-HFD obtains the
highest F1 scores for nearly all clusters. In particular, U-HFD significantly outperforms other methods
for clusters 12, 18, 24, where we see an increase in F1 score by up to 52%. For Trivago-clicks,
C-HFD has the best performance for all but one clusters. Among the rest of all other methods, U-HFD
has the second highest F1 scores for nearly all clusters. Moreover, observe that for each method (i.e.,
HFD, LH-2.0, LH-1.4), cardinality cut-cost leads to higher F1 than its unit cut-cost counterpart.

Table 1: F1 results for Amazon-reviews network
Method 1 2 3 12 15 17 18 24 25

U-HFD 0.45 0.09 0.65 0.92 0.04 0.10 0.80 0.81 0.09
U-LH-2.0 0.23 0.07 0.23 0.29 0.05 0.06 0.21 0.28 0.05
U-LH-1.4 0.23 0.09 0.35 0.40 0.00 0.07 0.31 0.35 0.06
ACL 0.23 0.07 0.22 0.25 0.04 0.05 0.17 0.20 0.04

Table 2: F1 results for Trivago-clicks network

Method KOR ISL PRI UA-43 VNM HKG MLT GTM UKR EST

U-HFD 0.75 0.99 0.89 0.85 0.28 0.82 0.98 0.94 0.60 0.94
C-HFD 0.76 0.99 0.95 0.94 0.32 0.80 0.98 0.97 0.68 0.94
U-LH-2.0 0.70 0.86 0.79 0.70 0.24 0.92 0.88 0.82 0.50 0.90
C-LH-2.0 0.73 0.90 0.84 0.78 0.27 0.94 0.96 0.88 0.51 0.83
U-LH-1.4 0.69 0.84 0.80 0.75 0.28 0.87 0.92 0.83 0.47 0.90
C-LH-1.4 0.71 0.88 0.84 0.78 0.27 0.88 0.93 0.85 0.50 0.85
ACL 0.65 0.84 0.75 0.68 0.23 0.90 0.83 0.69 0.50 0.88

Experiments for general submodular cut-cost. In order to understand the importance of specialized
general submodular hypergraphs we study the node-ranking problem for the Florida Bay food network
using hypergraph modelling shown in Figure 1. We compare HFD using unit (U-HFD, γ1 = γ2 = 1),
cardinality-based (C-HFD, γ1 = 1/2 and γ2 = 1) and submodular (S-HFD, γ1 = 1/2 and γ2 = 0)
cut-costs. Our goal is to search the most similar species of a queried species based on the food-network
structure. Table 3 shows that S-HFD provides the only meaningful node ranking results. Intuitively,
when γ2 = 0, separating the preys v1, v2 from the predators v3, v4 incurs 0 cost. This encourages
S-HFD to diffuse mass among preys or predators only and not to cross from a predator to a prey or
vice versa. As a result, similar species receive similar amount of mass and thus are ranked similarly. In
the local clustering setting, Table 3 compares HFD using different cut-costs. By exploiting specialized
higher-order relations, S-HFD further improves F1 scores by up to 20% over U-HFD and C-HFD.
This is not surprising, given the poor node-ranking results of other cut-costs. In the appendix we show
another application of submodular cut-cost for node-ranking in an international oil trade network.

Table 3: Node-ranking and local clustering in Florida Bay food network using different cut-costs

Top-2 node-ranking results Clustering F1

Method Query: Raptors Query: Gray Snapper Prod. Low High

U-HFD Epiphytic Gastropods, Detriti. Gastropods Meiofauna, Epiphytic Gastropods 0.69 0.47 0.64
C-HFD Epiphytic Gastropods, Detriti. Gastropods Meiofauna, Epiphytic Gastropods 0.67 0.47 0.64
S-HFD Gruiformes, Small Shorebirds Snook, Mackerel 0.69 0.62 0.84
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