
Information-Theoretic Approach to Detect Collusion in Multi-Agent Games

Trevor Bonjour1 Vaneet Aggarwal2 Bharat Bhargava1

1Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
2School of Industrial Engineering, Purdue University, West Lafayette, Indiana, USA

Abstract

Collusion in a competitive multi-agent game oc-
curs when two or more agents co-operate covertly
to the disadvantage of others. Most competitive
multi-agent games do not allow players to share
information and explicitly prohibit collusion. In
this paper, we present a novel way of detecting
collusion using a domain-independent information-
theoretic approach. Specifically, we show that the
use of mutual information between actions of the
agents provides a good indication of collusive be-
havior. Our experiments show that our method can
detect varying levels of collusion in repeated simul-
taneous games like iterated Rock Paper Scissors.
We further extend the detection to partially ob-
servable sequential games like poker and show the
effectiveness of our methodology.

1 INTRODUCTION

Recently, there has been growing interest in developing
mechanisms to train agents to co-operate in multi-agent
games [Tampuu et al., 2017, Jaques et al., 2019, Celli et al.,
2019]. Many multi-agent games, however, do not allow co-
operation between players. Collusion in a competitive multi-
agent game occurs when two or more agents co-operate
covertly, often to the detriment of others. Collusion poses a
major threat [Yampolskiy, 2008, Yan, 2003, Yan and Ran-
dell, 2005] in competitive multi-agent games since the gen-
eral assumption is that the players play to maximize their
utility and it is often impossible to prevent some forms of
collusion [Smed et al., 2006], especially in online settings.
Detecting collusion in real-time is a difficult task as it often
requires discerning and understanding a player’s motiva-
tion. For this reason, collusion detection usually happens
post-hoc. Yan [2010] motivates the need to design automatic
solutions to detect collusion from historical game records.

In this work, we propose a novel information-theoretic ap-
proach to detect collusion amongst players given a sequence
of records over several games. We use the game records to
inform us about the strategies of different players across
multiple games. We hypothesize that when two players col-
lude, the effect they have on each other’s strategies would be
larger than if they were not colluding. This forms the basis
of our collusion detection method. We formally describe our
approach in Section 3. To evaluate our method, we conduct
proof of concept experiments for perfect information simul-
taneous games and imperfect information sequential games.
To test collusion detection for these games, we develop en-
vironments for a three-player iterated Rock Paper Scissors
and three-player Leduc Hold’em poker. We show that our
method can successfully detect varying levels of collusion
in both games. We also report accuracy and swiftness [Smed
et al., 2007] of our detection algorithm for different scenar-
ios. For this paper, we limit the scope of our experiments to
settings with exactly two colluding agents.

Collusion can take many forms. Smed et al. [2006] provide
a classification of different forms of collusion that can take
place among players. For multi-agent games, they define
three types of collusion: spectator collusion, assistant col-
lusion, and association collusion. In spectator collusion, a
spectating player provides important information to their
colluding partner. For example, in the first-person shooter
game Counter-Strike, a dead player can move around in
ghost mode and provide information about the location of
other players. Assistant collusion is one in which the collud-
ing partner doesn’t aim to win but assists another player gain
an advantage. For example, in Monopoly, a player could
buy properties that prevent the non-colluding player from
gaining a complete set of colored properties. A complete set
of colored properties is required to collect rent from other
players. Association collusion is where colluding players
are in a symbiotic relationship such that each partner plays
to benefit the other. For instance, in poker, colluding part-
ners play more aggressively when either of them has a good
hand, and play cautiously otherwise. We focus on detect-

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<tbonjour@purdue.edu>?Subject=UAI 2022 - Information-Theoretic Approach to Detect Collusion in Multi-Agent Games

ing collusion between active players in the game since it is
improbable that data on spectators of the game is collected.

To the best of our knowledge, there is no publicly available
data set for multi-agent games with known collusion among
players. For this reason, we design hand-crafted collusion
strategies for our experiments. We develop strategies for
assistant collusion in iterated Rock Paper Scissors and asso-
ciation collusion in Leduc Hold’em poker. We show that our
proposed method can detect both assistant and association
collusion. Apart from rule-based collusion, we use Deep Re-
inforcement Learning [Arulkumaran et al., 2017] techniques
to automatically construct different collusive strategies for
both environments. Our method can successfully detect co-
operative collusion in all scenarios where the agents use
mixed strategies. We summarize our contributions as fol-
lows:

• We propose a novel information-theoretic approach to
detect collusion (Section 3) in multi-agent games from
historical game records.

• We develop rule-based colluding agents for multi-agent
environments: three-player iterated Rock Paper Scis-
sors (Section 5.1) and three-player Leduc Hold’em
poker (Section 5.2). We generate automatic collusion
between agents using Deep Reinforcement Learning.

• Our experiments show that the collusion detection
method can detect different forms and multiple lev-
els of collusion for fully observable simultaneous and
partially observable sequential games (Section 5).

2 BACKGROUND

2.1 MULTI-AGENT MARKOV GAMES

In this work, we consider a multi-agent extension of Markov
decision processes (MDPs) called Markov games [Littman,
1994]. We consider the scenario where multiple games are
played between n agents, for example, in a tournament
setting. We restrict ourselves to scenarios where we have
two colluding partners playing against other agents. Thus,
we only consider settings where n > 2. The state of the
environment is given by s ∈ S, where S is the set of all
possible states. At each timestep t, an agent i, with current
state sit selects an action ait ∈ A, where A is the set of all
possible actions. For a given agent, Ai denotes the set of all
actions taken by the agent. For a pair of agents i,j we denote
their joint state as sijt which is the state of both agents i and
j taken together. The actions of all n agents are combined
to form a joint action at = [a0t , . . . a

n
t]. Each agent receives

a reward rit(at, st). A history of these values over time is
termed as a trajectory, τ = {st,at, rt}. Solving an MDP
yields a policy π, which is a mapping from states to actions.

2.2 MUTUAL INFORMATION

Mutual information I(X;Y) of two discrete random vari-
ables (X,Y) ∼ p(x, y) is defined as:

I(X;Y) =
∑
x∈X
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(1)

For discrete random variables (X,Y, Z) ∼ p(x, y, z), the
conditional mutual information I(X;Y |Z) between X and
Y given Z is defined as:

I(X;Y |Z) =
∑
z∈Z

p(z)I(X;Y |Z = z) (2)

3 APPROACH

Ideally, if all agents compete, their policies for a given state
of the environment would be independent of each other.
In practical scenarios, however, the policy of one agent
might influence the policy of another agent. For instance, a
competitor could inform their actions based on the actions
of other players. The difference between a competitor and
a colluding player is that the competitor would not change
their actions based on the opponent i.e. for a given state and
a given set of actions by the other players, they would play
the same way. However, a colluding player, on the other
hand, would play differently in the same perceived state
against a non-colluding agent than they would against the
colluding partner. In other words, the case where two agents
collude, their individual influence on each other’s policy
would be larger than that of a non-colluding agent. We use
this intuition as the basis of our collusion detection method.
We define individual influence (γ), as the influence that one
agent’s policy has on the other. We define net influence (Γ)
as the difference in the individual influence of one agent and
the maximum individual influence other agents have on the
said agent.

As seen in Section 2.1, the states and actions are associated
with timestep t. To simplify the notation, we omit using the
subscript t going forward. Suppose we have n agents and
a set of their state-action pairs for a fixed number of game
episodes. From the state-action pairs we can construct the
empirical policy matrix for the agents. π is a S ×A matrix
where each element gives the probability of taking an action
a ∈ A in a given state s ∈ S. πi represents the policy matrix
for agent i and πj represents the policy matrix for agent j.
Each element of πi and πj give p(ai|si) and p(aj |sj). We
define sij as the joint state of agent i and agent j. The joint
policy πij gives a mapping from the joint state to probability
of taking actions ai, aj ∈ A for a given joint state sij . Each
element of πij gives p(ai, aj |sij). To measure the individ-
ual influence of i on j, we need to capture how different
the joint policy πij is from πiπj . In other words, individual

influence captures how different the joint policies of the
two agents are from what it would be if they were indepen-
dent. If the two policies were conditionally independent,
we would have p(ai, aj |sij) = p(ai|sij)p(aj |sij). In the
general setting (which includes partially observable games),
the assumption is that the agents don’t have access to the
internal state of the other agent and hence don’t have ac-
cess to complete joint state sij . Hence, their actions should
be independent of the internal state of the other agent and
p(ai|sij) simplifies to p(ai|si). For sequential games, we
implicitly take the actions of the other players that have
occurred previously, as part of the state, thus we omit explic-
itly including it in the probability equation. Thus, we have
p(ai, aj |sij) = p(ai|si)p(aj |sj). To capture this difference
between the distributions, we use the concept of conditional
mutual information. We have:

γ(i; j) =
∑

sij∈Sij

p(sij)
∑

ai∈Ai

aj∈Aj

p(ai, aj |sij)×

log
p(ai, aj |sij)

p(ai|si)p(aj |sj)
(3)

The net influence, Γ(i; j), of i ∈ n on j ∈ n is defined as:

Γ(i; j) = γ(i; j)− max
k∈n
k ̸=i,j

γ(k; j) (4)

To get the second term on the right-hand side of Equation (4),
we calculate the individual influence on j of all the other
agents in n, that are not i or j and take the maximum value.
For collusion to occur, both agents should have a positive net
influence on each other. We say there is collusion between
agents i and j if:

Γ(i; j) and Γ(j; i) ≥ α (5)

where α is the collusion threshold.

3.1 FULLY OBSERVABLE SIMULTANEOUS
GAMES

In a fully observable environment, the observed state is
common to all agents: sij = si = sj = s. Equation (3) thus
becomes:

γ(i; j) =
∑
s∈S

p(s)
∑

ai∈Ai

aj∈Aj

p(ai, aj |s) log p(ai, aj |s)
p(ai|s)p(aj |s)

(6)

=
∑
s∈S

p(s)
∑

ai∈Ai

p(ai|s)
∑

aj∈Aj

p(aj |ai, s)

× log
p(aj |ai, s)
p(aj |s)

(7)

Effectively, for a fixed state s, the individual influence pro-
vides a measure of the difference between the probability of
agent j selecting an action aj given the state s and ai (agent
i’s action), and the probability of agent j selecting the action
aj given the state s. In other words, it measures how the
actions of i affect the actions of j. For a simultaneous game,
all agents take an action at the same time. Since there is no
sequence in which the individual agents take an action, the
individual influence is symmetric: γ(i; j) = γ(j; i). Note
that Γ(i; j) ̸= Γ(j; i). For net influence Γ(i; j) we have

Γ(i; j) = γ(i; j)− max
k∈n
k ̸=i,j

γ(k; j) (8)

= γ(j; i)− max
k∈n
k ̸=i,j

γ(k; j) (9)

and for net influence Γ(j; i) we have:

Γ(j; i) = γ(j; i)− max
k∈n
k ̸=i,j

γ(k; i) (10)

= γ(i; j)− max
k∈n
k ̸=i,j

γ(k; i) (11)

Note that even though the first term on the right-hand side
in Equation (10) is the same as in Equation (9), the second
terms are different. In the first case, the second term denotes
the maximum individual influence of other agents on agent j,
while in the second case it denotes the maximum individual
influence of other agents on agent i.

3.2 PARTIALLY OBSERVABLE SEQUENTIAL
GAMES

For partially observable games, each agent’s observed state
is different: si ̸= sj . Thus, to calculate the individual in-
fluence, we use Equation (3) directly. In sequential games,
unlike simultaneous games, there is an order in which the
agents take an action. Suppose we have two agents i and j,
where i’s turn happens before j’s turn. Now when i makes
a move, this information is available to j before j makes a
move. Along with capturing the effect of one agent’s action
on the other, the individual influence in the partially observ-
able sequential case also captures the effect of having access
to the joint state as compared to only having access to the
individual state. Note that since this is a sequential game, the
individual influence will not be symmetric: γ(i; j) ̸= γ(j; i).
This is because when calculating the individual influence we
need to take into account the sequence in which the actions
were taken. When calculating γ(i; j), we need to consider
only the cases where action aj is executed after action ai in
a game. Similarly, for γ(j; i) we need to consider only the
cases where action ai is executed after action aj in a game.

4 COLLUSION DETECTION
ALGORITHM

We state the collusion detection problem as: Given a se-
quence of m game records for n agents, determine if two
players collude and return the colluding pair of players.
Each game record consists of a sequence of tuples (state,
actions, reward) from the sequence of actions performed
by the agents during a game. We give the main steps of the
procedure in Algorithm 1 in Appendix B.

The first step for our algorithm is to construct a policy matrix
πi for each agent i ∈ n from these records. To construct
πi, we need to estimate p(ai|si). We use a hash table to
implement the Monte Carlo method (MC) for estimating the
distributions accurately.For p(ai|si), we have:

p(ai|si) ≡ N(ai, si)

N(si)
(12)

where (ai, si) is the number of times the action-state pair
(ai, si) occur in the data and N(si) is the total number of
times the agent visits state si.

The next step is to construct the joint policy matrix for every
pair of agents i, j ∈ n. We use MC sampling to calculate
p(ai, aj |sij). We have:

p(ai, aj |sij) ≡ N(ai, aj , si, sj)

N(si, sj)
(13)

where N(ai, aj , si, sj) is the number of times
(ai, aj , si, sj) occur in the data. Note that for sequential
games, the ordering of ai and aj matters. When calculating
N(ai, aj , si, sj) and N(si, sj), we only consider cases
where agent j takes an action after agent i.

Once the policy matrices are constructed we calculate and
store the pair-wise individual influence γ(i; j) for i, j ∈ n
for every pair of agents using Equation (3). The next step
is then to calculate the net influence Γ(i; j) for i, j ∈ n
for every pair of agents using Equation (4). If for exactly
one pair of agents the net influence on each other exceeds
the collusion threshold α (Equation (5)), we say there is
collusion and return the colluding agents, otherwise, we
return that collusion could not be detected. Please note that
the collusion threshold α is a hyper-parameter that needs to
be set using the training and validation data.

5 EXPERIMENTS

5.1 ROCK PAPER SCISSORS

For the fully observable simultaneous game, we consider a
three-player version of iterated Rock Paper Scissors (RPS)
where we have all the three players pick an action from
either Rock(R), Paper(P) or Scissors(S) at each timestep.

Table 1: Payoff Matrix for Three-Player Rock Paper
Scissors.

Player 3 plays Rock(R)
Player 2

R P S

R (0, 0, 0) (0, 1, 0) (1, 0, 1)

Player 1 P (1, 0, 0) (1, 1, 0) (1, 1, 1)

S (0, 1, 1) (1, 1, 1) (0, 0, 1)

Player 3 plays Paper(P)
Player 2

R P S

R (0, 0, 1) (0, 1, 1) (1, 1, 1)

Player 1 P (1, 0, 1) (0, 0, 0) (0, 1, 0)

S (1, 1, 1) (1, 0, 0) (1, 1, 0)

Player 3 plays Scissors(S)
Player 2

R P S

R (1, 1, 0) (1, 1, 1) (1, 0, 0)

Player 1 P (1, 1, 1) (0, 0, 1) (0, 1, 1)

S (0, 1, 0) (1, 0, 1) (0, 0, 0)

As in the common version of the game, we have R beats S,
S beats P , and P beats R. The payoffs for the three-player
version we consider are decided according to the following
rules:

1. If all three actions are the same, each player gets a 0.

2. If all three actions are distinct, each player gets a 1.

3. If there are 2 distinct actions, in the set of actions
selected, the winning action is decided according to
the general rule stated above. All winners get one point
each.

The payoff matrix for the three-player Rock, Paper, Scissors
is given in Table 1.

Manual Collusion: We implement a simple assis-
tant collusion tactic for the three-player iterated RPS. As
described in Section 1, this form of collusion involves
a primary colluding agent and a secondary colluding
assistant that selects an action that benefits the primary
agent. Figure 1 gives a graph representation of assistant
collusion for the fully observable simultaneous game. The
solid arrows depict the information directly accessible to
each agent. st denotes the state of the environment at time t
and ait, a

j
t and akt denote the action taken by agents i, j and

k at time t respectively. The dashed arrow depicts the covert
flow of information between the colluding agents i and j,
with i being the primary agent and j being the colluding
assistant.

For RPS, we can see from Table 1, whenever player 1
chooses R and player 2 chooses S, regardless of what ac-
tion player 3 selects, player 1 always gets a point. In this
scenario, player 1 is the primary colluding agent and player

Figure 1: Assistant Collusion for Fully Observable
Simultaneous Game.

2 is the colluding assistant. We assume that there is some
form of ex-ante coordination or signaling that takes place
between the colluding partners to carry out the collusion.
We have the following three players for the manual case:

1. Player A : Primary colluding agent.

2. Player B : Assistant colluding agent.

3. Player C : Non-colluding agent.

Player A and Player C choose an action at random. Player
B chooses an action that guarantees A a point with some
collusion probability, and a random action otherwise. In a
practical setting, the colluding partners may not collude on
every move to avoid suspicion. The collusion probability
(CP) governs the probability of active collusion, e.g. if
CP = 0.4, the assistant plays a move that benefits the
primary agent for 40% of the games and plays a random
move for the other 60% games. In the case of RPS, we
note that the higher the CP , the higher the win rate for the
primary colluding agent.

Automatic Collusion: To test our method on other collusion
strategies, we train the players to learn to collude automati-
cally. For this, we make use of Deep Reinforcement Learn-
ing. Specifically, we treat the two colluding players as a
single agent, with a joint state and action space. We provide
the state space specification in Appendix A.We utilize the
Double Deep Q-Network (DDQN)[Van Hasselt et al., 2016]
for training. The agent receives a reward of +1 if one of the
colluding players wins and a -1 if the non-colluding player
wins. We have the following three players for automatic
collusion:

1. Player D : Auto-colluding agent.

2. Player E : Auto-colluding agent.

3. Player F : Non-colluding agent. This agent selects an
action uniformly at random from valid actions.

For all the experiments collusion threshold is set at 0.05.

Experiment 1: For the first experiment we attempt
to answer the question: How does collusion strength
affect the swiftness or sample complexity of our detection
algorithm? We use data generated from games played

between Players A, B, and C (manual collusion). We run
multiple simulations for a different number of games
(sample size) and varying levels of collusion probability
values. We plot the calculated net influence for different
settings in Figure 2. Each graph in the figure is generated
for the different CP values. The y-axis gives the net
influence values and the x-axis gives the number of games
used to calculate the net influence values. The dashed
horizontal line in each graph depicts the collusion threshold
α which is set at 0.05. Note that, as the CP values go
higher, our algorithm can detect collusion using data from
fewer games. However, we also note that we are not able
to detect collusion for the case where CP = 0.1, and
α = 0.05 irrespective of the sample size. Please note our
method can detect collusion if α is set to a lower value. We
provide additional results for a 4 player version of the game
in Appendix C

We plot the net influence values calculated from data gen-
erated from 1000 games for varying levels of collusion
probabilities in Figure 3. The y-axis gives the net influence
values for all pairs of players and the x-axis gives the CP
values. We note that we can detect collusion in cases where
the collusion probability is over 0.2. From Figure 3, we
observe that as the level of collusion between players A and
B strengthens, the net influence they have on each other also
increases. This indicates that the value of the net influence
could possibly indicate the level of collusion.

Experiment 2: For the second experiment, we determine
the collusion detection accuracy (CDA) of our method for
varying levels and different forms of collusion. We generate
data for a different number of games for both manual and
automatic collusion cases. For the manual case with data
generated for games played between players A, B, and C, we
vary the CP values as we did for the first experiment. For
the automatic case, we generate data from games between
players D, E, and F. To get a robust measure of the CDA, we
run 1000 iterations per number of games. The CDA gives
the percentage of iterations that the algorithm can detect the
collusion correctly. We report the results in Table 2. The first
column gives the number of game records used to detect
collusion. The second and the third column gives the CDA
for two of the manual cases (CP = 0.3 and CP = 0.4) and
the fourth column gives the CDA values for the automatic
case. For CP = 1, we only require data from 60 games
to get a CDA of 100%. For CP = 0.2, we get a CDA
of 24.3% for 1000 games. We generated data from 10000
games to see how that affects the CDA. We get a CDA of
82.3 for the manual case where CP = 0.2. This shows
that given enough samples, we can detect collusion even
for cases where the strength of collusion is low. However,
we only get a CDA of ≈ 8% on average for the case where
CP = 0.1, again implying that there exists a minimum
collusion strength below which our algorithm is unable to
detect collusion with high probability.

Figure 2: Net Influence Calculated for a Different Number of Games for Varying Values of Collusion Probability (CP) for
Rock Paper Scissors.

Figure 3: Net influence for Varying Collusion Probabilities
(CP) over 1000 Games of Rock Paper Scissors.

5.2 LEDUC HOLD’EM POKER

To test our method for partially observable sequential games,
we consider a three-player version of Leduc Hold’em poker
[Southey et al., 2012]. Leduc Hold’em poker is a simpler
variant of poker played with a deck of six cards with three
ranks and two suites. For our implementation, we use the
ace, king, and queen. At the beginning of the hand, each
player antes one chip and is dealt with a private (or hole)
card. Following this, there is a round of betting known as the
pre-flop betting round. After the first betting round, another
card is dealt face-up as a community (or board) card. There
is a two-bet maximum per round. The raise size is set at two
chips for the pre-flop and four chips for the post-flop betting
round. If a player’s hole card is the same rank as the board
card, they win the pot; otherwise, the player whose private

Table 2: Collusion Detection Accuracy for Rock Paper
Scissors across Different Number of Games.

Number
of Games

Manual CDA (%)
(CP = 0.3)

Manual CDA (%)
(CP = 0.4)

Automatic
CDA (%)

100 37.1 58.4 81.5
200 48.3 79.2 93.2
300 71.0 96.2 98.1
400 82.8 99.3 98.9
500 89.6 99.7 99.4
600 94.6 99.9 99.2
700 97.8 100 99.2
800 98.8 100 99.7
900 99.4 100 99.9

1000 100 100 99.9

card has the higher ranked card wins the pot. The players
are rotated at the end of each hand. Each game goes on
for nine rotations, with each player getting to be the dealer
thrice. The player positions are shuffled at random before
the beginning of each game.

Manual Collusion: We develop two colluding agents that
follow an association collusion strategy. Recall that an asso-
ciation collusion strategy is one in which both the colluding
partners are in a symbiotic relationship and play to each
other’s advantage. Figure 4 shows a graph representation
of association collusion in a partially observable sequential
game. st denotes the state of the environment at time t and
sit, s

j
t , and skt denote the observed states for each agent i, j,

and k respectively. ait, a
j
t and akt denote the actions taken

by agents i, j, k at time t respectively. Note that t depicts
one instance of the game, e.g. one round in poker. There is
a sequential order (i → j → k) in which the players are

Figure 4: Association Collusion for partially observable
sequential game.

allowed to make their moves. As stated in Section 3.2, each
player has access to the information about the actions of
the preceding players. The dashed line depicts information
being shared covertly. In Figure 4, we see that agents i and
j are the colluding partners. We see that i has access to the
observed state of agent j which has a direct effect on their
action choice. The same can be observed for j. We assume
that the colluding partners exchange hidden information
covertly or use some form of ex-ante coordination or sig-
naling. For the three-player Leduc Hold’em environment,
we develop rule-based agents that have access to the private
card of the colluding partner. In the first round, if either of
the colluding partners has an ace, both agents raise. In the
second round, if either of the colluding partners has a pair
or an ace, both agents raise. In all other circumstances, the
agents call, if possible. A player only folds if they don’t
have enough chips to call.

Automatic Collusion: For automatic collusion, we develop
two collusion strategies - high payoff (HP) and low payoff
(LP). For HP, as the name suggests, we train the agents to
maximize the payoff they receive at the end of a game of
poker. On the other hand, for LP, we train the agents to
keep the payoff as close to zero as possible. We use the
same method we did for RPS to generate collusion. For
training, we treat both colluding partners as a single agent
with a joint state and action space. We provide the state
space specification in Appendix A. For HP, agents receive
a reward of zero during the game and a reward of the sum
of the loss or profit each individual player makes at the
end of a hand. For LP, the agents receive a reward of zero
during the game and a penalty for straying from a net-zero
payoff. We train the agents using DDQN for 10000 games
played against an agent that chooses their actions at random.
The LP collusion strategy emulates players that may be
colluding, but the colluding strategy itself may not yield a
high payoff. Such collusion would be almost impossible to
detect if we were to only look at the payoffs.

To test our method for the case where the non-colluding
opponent has a non-trivial policy, we train a learning-based

Table 3: Net influence Values for Different Levels of
Collusion for Leduc Hold’em.

Players
(P1, P2, P3)

Avg. Payoff
(P1, P2)

Γ(P1;P2)
Γ(P2;P1)

Γ(P3;P2)
Γ(P2;P3)

Γ(P1;P3)
Γ(P3;P1)

A1, A2, A3 0.0472
0.0032
-0.0033

0.0025
-0.0032

0.0033
-0.0025

B1, A1, A2 1.3874
-0.0424
0.0026

0.0425
0.0424

-0.0026
-0.0425

B1, B2, A1 2.3701
-0.0761
-0.0740

0.0032
0.0761

0.0740
-0.0032

B1, B2, B3 0.0324
0.0001
0.0011

0.0011
-0.0001

-0.0011
-0.0011

C1, C2, A1 3.9513
0.1133
0.1168

0.0008
-0.1133

-0.1168
-0.0008

C1, C2, B1 1.3302
0.1213
0.1204

0.0012
-0.1213

-0.1204
-0.0012

D1, D2, A1 2.3963
0.4913
0.3829

0.0487
-0.4913

-0.3829
-0.0487

D1, D2, B1 0.0374
0.6808
0.6797

0.0912
-0.6808

-0.6797
-0.0912

E1, E2, A1 8.4340
0.2108
0.3916

0.0605
-0.2108

-0.3916
-0.0605

E1, E2, B1 6.5372
0.5504
0.5856

0.0314
-0.5504

-0.5856
-0.0314

D1, D2, F1 1.2136
0.6527
0.6150

-0.0089
-0.6527

-0.6150
0.0089

E1, E2, F1 4.4832
0.4317
0.4606

-0.0006
-0.4317

-0.4606
0.0006

non-colluding agent using DDQN. We design the state-space
to include the historical actions of other players. This en-
sures the policy depends on the observed actions of the other
players.

We have the following players for Leduc Hold’em:

1. Players A1, A2 and A3 : Non-colluding random
agents. This agent selects an action uniformly at ran-
dom from valid actions.

2. Player B1, B2 and B3 : Non-colluding rule-based
agents. This agent raises if they have an ace or a king
in the first round and raises only if they have a pair in
the second round. For all other cases, the agent selects
a random action.

3. Players C1 and C2 : Associate colluding agents.

4. Players D1 and D2 : LP auto-colluding agents.

5. Players E1 and E2 : HP auto-colluding agents.

6. Player F1 : Learning based non-colluding agent.

For all the experiments collusion threshold is set at 0.05.

Experiment 1: For the first experiment we generate data
for 1000 games of Leduc Hold’em poker for different player
combinations. The different player combinations we use are
given in the first column of Table 3. The first four rows show
the results for the case where there is no collusion between
players. The last eight rows show results for settings where
two of the players are colluding. We report the average
payoff per game for two of the players in the second column.

Please note that the orderings of the players as given in
the table has no bearing on the results. As stated earlier,
we shuffle the player positions before each game and each
game consists of 9 rotations. We report the pair-wise net
influence of players in Table 3. Recall from Equation (5),
when the net influence that two players have on each other
exceeds the collusion threshold, we say that the two players
are colluding. The values (≥ 0.05) for which our method
detects collusion are given in bold. We note that our method
can successfully detect collusion in all colluding scenarios
even in cases where the payoff may be negligible.

Experiment 2: We run the second experiment to determine
the CDA and the swiftness of our method. Swiftness indi-
cates the number of game records needed to detect collusion
with high probability. Recall, CDA gives the percentage of
iterations that the algorithm was able to detect the collusion
correctly. To check the swiftness, we generate data for a
different number of games and run the detection algorithm.
To get a robust measure, we run 1000 iterations per number
of games. We generate data for association, LP-auto, and
HP-auto collusion for two cases: against a random agent
(Player A1) and against the rule-based agent (Player B1).

We report the results in Table 4 and Table 5. Since each game
of Leduc Hold’em poker consists of multiple rotations, we
also report the number of hands in the data used for testing.
Note that for the second case (against Player B1), we change
the number of rotations per game to three since the CDA
was over 95% for 40 games with nine rotations per game
for all cases.

From Table 4, we see that we require data from 200 games
(or 1800 hands) to get an accuracy of over 95% for associ-
ation collusion, but only require data from 120 games (or
1080 hands) to achieve the same detection accuracy for both
forms of automatically generated collusion. We believe this
is because the strength of collusion is stronger in the au-
tomatic cases as compared to the hand-crafted rule-based
case. We saw in Section 5.1 that the values of net influence
could be an indication of the strength of collusion. We see
from Table 3 that the manual association collusion setting
(Players C1, C2, A1) has the lowest net influence values.
We believe this could be why it requires more samples to
get a high CDA when compared to the other two cases.

6 RELATED WORK

Over the years, collusion detection has been studied exten-
sively across multiple domains. Majority of the literature
focuses on collusion detection in auctions and cartel iden-
tification in bidding [Hendricks and Porter, 1989, Porter
and Zona, 1993, Schurter, 2017, Wachs and Kertész, 2019].
Hendricks and Porter [1989], Porter and Zona [1993] and
Schurter [2017] identify collusive bids in auctions. Wachs
and Kertész [2019] presents a network-based framework to

Table 4: Collusion Detection Accuracy (CDA) for Leduc
Hold’em for Different Number of Games when Played
Against Random Non-Colluding Agent (Player A1).

Number
of Games

Number
of Hands

Manual
CDA (%)

LP-Auto
CDA (%)

HP-Auto
CDA (%)

20 180 0.0 56.8 58.4
40 360 0.10 67.8 78.3
60 540 1.53 82.8 89.6
80 720 6.81 90.2 96.7

100 900 19.0 97.8 97.3
120 1080 41.1 98.8 97.9
140 1260 62.8 99.3 98.3
160 1440 78.3 99.9 98.6
180 1620 88.8 100 99.5
200 1800 93.6 100 99.6

Table 5: Collusion Detection Accuracy (CDA) for Leduc
Hold’em for Different Number of Games when Played
Against Rule-Based Non-Colluding Agent (Player B1).

Number
of Games

Number
of Hands

Manual
CDA (%)

LP-Auto
CDA (%)

HP-Auto
CDA (%)

20 60 54.2 95.2 94.6
40 120 76.4 98.6 96.3
60 180 82.5 99.6 98.7
80 240 89.1 100 99.6

100 300 93.4 100 100
120 360 97.0 100 100
140 420 97.4 100 100
160 480 98.4 100 100
180 540 98.9 100 100
200 600 99.3 100 100

detect potential cartels in bidding markets. Hespanhol and
Aswani [2020] formulate the problem of tacit collusion in
algorithmic pricing as an inverse variational inequality and
design a hypothesis test to detect collusion.

Stock market trading is another domain where collusion
detection has been studied extensively [Palshikar and Apte,
2008, Madurawe et al., 2021, Islam et al., 2009, Cao et al.,
2016]. Most of these methods utilize clustering techniques
to detect collusion. Islam et al. [2009] propose a Markov
clustering algorithm, Palshikar and Apte [2008] use multiple
graph clustering algorithms and Madurawe et al. [2021]
combine anomaly detection with graph clustering to detect
collusion sets in trading data. Cao et al. [2016] find collusive
cliques using directed graphs and dynamic programming.

There has been some work done in detecting collusion in
other online settings such as crowd-sourcing tasks [Khud-
aBukhsh et al., 2014, Chen et al., 2020] and online rating sys-
tems [Allahbakhsh et al., 2013]. KhudaBukhsh et al. [2014]
present methods for detecting non-adversarial collusion by
analyzing the similarity of workers’ answers while [Chen
et al., 2020] propose a collusion detection method based on

the statistical test of the consistency of workers’ answers
across different crowd-sourcing tasks. In Allahbakhsh et al.
[2013], the authors propose a collusion detection algorithm
for online ratings based on clustering techniques.

Collusion detection in multi-agent games has been previ-
ously studied in [Mazrooei et al., 2013, Laasonen and Smed,
2015, Yampolskiy, 2008, Hamilton, 2011, VanderKnyff
et al., 2009]. However, most of these approaches focus on
providing a solution for a specific type of game. Hamilton
[2011] construct interaction graphs between players and
apply graph analysis techniques to detect unusual patterns
or structures to detect collusion in round-robin iterated pris-
oner’s dilemma tournament. Unlike our multi-agent setup
with n > 2 agents, they focus on multiple games played
between two players. In Mazrooei et al. [2013], authors
propose an automatic collusion detection method applicable
to only sequential games. They make use a of collusion
table that captures the effect of each player’s actions on
the utility of all players using automatically learned value
functions. They do not consider the case where information
is shared between the colluding partners. VanderKnyff et al.
[2009] and Laasonen and Smed [2015] propose collusion
detection specifically for first-person shooter (FPS) games.
VanderKnyff et al. [2009] use principal component analy-
sis to detect the colluding players and Laasonen and Smed
[2015] use graph clustering algorithms to detect soft-play in
shooter games.

7 CONCLUSION

In this paper, we propose a novel method to detect collusion
in multi-agent games and provide proof of concept experi-
ments to show its effectiveness. Our experiments show that
our method can successfully detect collusion with high prob-
ability in perfect information simultaneous games and im-
perfect information sequential games. As the collusion gets
stronger, our method requires a lower number of samples
to successfully detect collusion. We also see some evidence
that the value of the net influence may indicate the strength
of collusion. The relationship between net influence and the
strength of collusion needs further investigation. A theoreti-
cal study of the collusion threshold is warranted and left as
future work. Our method focuses on detecting collusion in
multi-agent games where exactly two players collude. The
approach could extend to the case of more than two collud-
ing players by using the co-information lattice Bell [2003]
to calculate the net influence, instead of mutual information.
Detailed evaluations will be the subject of future work. In
addition, we anticipate that our method can be extended to
other types of multi-agent games, including fully observable
sequential games such as Monopoly.

Acknowledgements

This research is supported, in part, by the Defense Ad-
vanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL) under the contract num-
ber W911NF2020003. The views and conclusions contained
herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorse-
ments, either expressed or implied, of DARPA, AFRL, or
the U.S. Government. We thank our team members on this
project for all the discussions to develop this paper. Some
of the ideas in this paper are based on our learning from the
SAIL-ON meetings.

References

Mohammad Allahbakhsh, Aleksandar Ignjatovic, Boualem
Benatallah, Seyed-Mehdi-Reza Beheshti, Elisa Bertino,
and Norman Foo. Collusion detection in online rating
systems. In Asia-Pacific Web Conference, pages 196–207.
Springer, 2013.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage,
and Anil Anthony Bharath. Deep reinforcement learning:
A brief survey. IEEE Signal Processing Magazine, 34(6):
26–38, 2017.

Anthony J Bell. The co-information lattice. In Proceed-
ings of the Fifth International Workshop on Independent
Component Analysis and Blind Signal Separation: ICA,
volume 2003. Citeseer, 2003.

Yi Cao, Yuhua Li, Sonya Coleman, Ammar Belatreche, and
Thomas Martin McGinnity. Detecting Wash Trade in
Financial Market Using Digraphs and Dynamic Program-
ming. IEEE Transactions on Neural Networks and Learn-
ing Systems, 27(11):2351–2363, November 2016. ISSN
2162-2388. doi: 10.1109/TNNLS.2015.2480959. Con-
ference Name: IEEE Transactions on Neural Networks
and Learning Systems.

Andrea Celli, Marco Ciccone, Raffaele Bongo, and Nicola
Gatti. Coordination in adversarial sequential team games
via multi-agent deep reinforcement learning. arXiv
preprint arXiv:1912.07712, 2019.

Pengpeng Chen, Hailong Sun, Yili Fang, and Xudong Liu.
CONAN: A framework for detecting and handling collu-
sion in crowdsourcing. Information Sciences, 515:44–63,
2020. Publisher: Elsevier.

Peter Allen Hamilton. A Graph-Theoretic Approach to
Collusion Detection in Multi-Agent Systems. University
of Maryland, Baltimore County, 2011.

Kenneth Hendricks and Robert H. Porter. Collusion in
auctions. Annales d’Economie et de Statistique, pages
217–230, 1989. Publisher: JSTOR.

Pedro Hespanhol and Anil Aswani. Hypothesis Testing
Approach to Detecting Collusion in Competitive En-
vironments. In Proceedings of the 13th EAI Interna-
tional Conference on Performance Evaluation Method-
ologies and Tools, VALUETOOLS ’20, pages 35–40,
New York, NY, USA, May 2020. Association for Com-
puting Machinery. ISBN 978-1-4503-7646-4. doi: 10.
1145/3388831.3388847. URL https://doi.org/
10.1145/3388831.3388847.

Md Nazrul Islam, SM Rafizul Haque, Kaji Masudul Alam,
and Md Tarikuzzaman. An approach to improve collu-
sion set detection using MCL algorithm. In 2009 12th
International Conference on Computers and Information
Technology, pages 237–242. IEEE, 2009.

Natasha Jaques, Angeliki Lazaridou, Edward Hughes,
Caglar Gulcehre, Pedro Ortega, DJ Strouse, Joel Z Leibo,
and Nando De Freitas. Social influence as intrinsic mo-
tivation for multi-agent deep reinforcement learning. In
International Conference on Machine Learning, pages
3040–3049. PMLR, 2019.

Ashiqur R. KhudaBukhsh, Jaime G. Carbonell, and Peter J.
Jansen. Detecting non-adversarial collusion in crowd-
sourcing. In Second AAAI Conference on Human Com-
putation and Crowdsourcing, 2014.

Jussi Laasonen and Jouni Smed. Soft play detection in
shooter games using hit matrix analysis. In 2015 7th
International Conference on Intelligent Technologies for
Interactive Entertainment (INTETAIN), pages 200–206.
IEEE, 2015.

Michael L Littman. Markov games as a framework for
multi-agent reinforcement learning. In Machine learning
proceedings 1994, pages 157–163. Elsevier, 1994.

Ranika N. Madurawe, BKD Irosh Jayaweera, Thamindu D.
Jayawickrama, Indika Perera, and Rasika Withanawasam.
Collusion Set Detection within the Stock Market us-
ing Graph Clustering & Anomaly Detection. In 2021
Moratuwa Engineering Research Conference (MERCon),
pages 450–455. IEEE, 2021.

Parisa Mazrooei, Christopher Archibald, and Michael Bowl-
ing. Automating collusion detection in sequential games.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 27, 2013. Issue: 1.

Girish Keshav Palshikar and Manoj M. Apte. Collusion
set detection using graph clustering. Data mining and
knowledge Discovery, 16(2):135–164, 2008. Publisher:
Springer.

Robert H. Porter and J. Douglas Zona. Detection of bid
rigging in procurement auctions. Journal of political
economy, 101(3):518–538, 1993. Publisher: The Univer-
sity of Chicago Press.

Karl Schurter. Identification and inference in first-price
auctions with collusion. Penn State Economics Working
Paper, 2017.

Jouni Smed, Timo Knuutila, and Harri Hakonen. Can we
prevent collusion in multiplayer online games. In Pro-
ceedings of the Ninth Scandinavian Conference on Artifi-
cial Intelligence, volume 9, 2006.

Jouni Smed, Timo Knuutila, and Harri Hakonen. Towards
Swift and Accurate Collusion Detection. In GAMEON,
pages 103–107, 2007.

Finnegan Southey, Michael P Bowling, Bryce Larson,
Carmelo Piccione, Neil Burch, Darse Billings, and Chris
Rayner. Bayes’ bluff: Opponent modelling in poker.
arXiv preprint arXiv:1207.1411, 2012.

Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Ku-
zovkin, Kristjan Korjus, Juhan Aru, Jaan Aru, and Raul
Vicente. Multiagent cooperation and competition with
deep reinforcement learning. PloS one, 12(4):e0172395,
2017.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep
reinforcement learning with double q-learning. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 30, 2016.

Christopher M VanderKnyff, Darrell J Bethea, MMK Reiter,
and Mary C Whitton. Statistical methods for user and
team identification in multiplayer games. tech. rep., 2009.

Johannes Wachs and János Kertész. A network approach
to cartel detection in public auction markets. Scientific
reports, 9(1):1–10, 2019.

Roman V. Yampolskiy. Detecting and controlling cheating
in online poker. In 2008 5th IEEE Consumer Commu-
nications and Networking Conference, pages 848–853.
IEEE, 2008.

Jeff Yan. Security design in online games. In 19th An-
nual Computer Security Applications Conference, 2003.
Proceedings., pages 286–295. IEEE, 2003.

Jeff Yan. Collusion Detection in Online Bridge. In
Twenty-Fourth AAAI Conference on Artificial Intelligence,
July 2010. URL https://www.aaai.org/ocs/
index.php/AAAI/AAAI10/paper/view/1942.

Jeff Yan and Brian Randell. A systematic classification of
cheating in online games. In Proceedings of 4th ACM
SIGCOMM workshop on Network and system support for
games, pages 1–9, 2005.

https://doi.org/10.1145/3388831.3388847
https://doi.org/10.1145/3388831.3388847
https://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1942
https://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1942

	Introduction
	Background
	Multi-Agent Markov Games
	Mutual Information

	Approach
	Fully Observable Simultaneous Games
	Partially Observable Sequential Games

	Collusion Detection Algorithm
	Experiments
	Rock Paper Scissors
	Leduc Hold'em Poker

	Related Work
	Conclusion

