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Abstract
The practical implementations of reinforcement learning (RL) often face diverse settings,
such as online, offline, and offline-to-online learning. Instead of developing separate
algorithms for each setting, we propose UNIVR, a unified model-free RL framework
that addresses all these scenarios within a single formulation. UNIVR builds on the
Implicit Value Regularization (IVR) framework (Xu et al., 2023) and generalizes its
dataset behavior constraint to the constraint w.r.t. a reference policy, yielding a unified
value learning objective for general settings. The reference policy is chosen to be the
target policy in the online setting and the behavior policy in the offline setting. Using an
iteratively refined behavior policy solves the over-conservative issue of directly applying
IVR in the online setting, it provides an implicit trust-region style update through
the value function while being off-policy. UNIVR also introduces a unified policy
extraction objective that estimates in-sample policy gradient using only actions from the
reference policy. This not only supports various policy classes, but also theoretically
guarantees less value estimation error and larger performance improvement over the
reference policy. We evaluate UNIVR on a range of standard RL benchmarks across
online, offline, and offline-to-online settings. In online RL, UNIVR achieves higher
sample efficiency than both off-policy methods without trust-region updates and on-
policy methods with trust-region updates. In offline RL, UNIVR retains the benefits
of in-sample learning while outperforming IVR through better policy extraction. In
offline-to-online RL, UNIVR beats both constraint-based methods and unconstrained
approaches by effectively balancing stability and adaptability.
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Figure 1: Summary of results. Aggregate mean performance across six common RL benchmarks and 23
environments with diverse characteristics. UNIVR achieves competitive performance compared to state-of-the-
art baselines across online, offline, and offline-to-online settings.

1 Introduction

Reinforcement learning (RL) has achieved impressive results across a wide range of domains, from
playing complex games like Go (Mnih et al., 2013; Silver et al., 2017) to robotic manipulation
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tasks (Levine et al., 2016). However, the practical deployment of RL demands adaptability to diverse
learning scenarios, such as online, offline, and offline-to-online settings. In the classical online RL
paradigm, agents interact continuously with the environment, gaining experience and improving
policy performance via trial-and-error approaches such as policy-gradient methods (Schulman et al.,
2015; 2017) and actor-critic algorithms (Lillicrap et al., 2016; Fujimoto et al., 2018; Haarnoja et al.,
2018). However, in safety-critical or high-cost domains, such as healthcare (Gottesman et al., 2018)
and industrial control (Zhan et al., 2022; 2025), direct online exploration can be prohibitively risky or
expensive, necessitating offline RL approaches that leverage pre-collected datasets without further
environment interaction. Recent advances in offline RL have introduced conservative algorithms (Ku-
mar et al., 2020; Fujimoto et al., 2019) and regularization-based methods (Wu et al., 2019; Xu et al.,
2023) designed specifically to mitigate extrapolation errors arising from dataset distribution shifts.
Moreover, many practical applications adopt an offline-to-online pipeline, initially leveraging offline
datasets for safe and effective policy initialization, followed by online fine-tuning to explore more
high-quality data to overcome the suboptimality of offline data (Nair et al., 2020; Lee et al., 2021b).

Existing RL algorithms are typically specialized for just one setting. For example, online algorithms
(e.g., PPO (Schulman et al., 2017), SAC (Haarnoja et al., 2018)) struggle with offline data due to
distribution shift. Offline methods (e.g., BCQ (Fujimoto et al., 2019), CQL (Kumar et al., 2020),
IVR (Xu et al., 2023)) tend to be overly conservative or generalize poorly when given online access.
Offline-to-online methods (e.g., Off2On (Lee et al., 2021b), Cal-QL (Nakamoto et al., 2023)) often
require special design choices, making them difficult to generalize to other settings. Designing
different algorithms for each setting separately greatly limits the scalability and widespread adoption
of RL in real-world applications. Therefore, a critical research question emerges:

Can we design a scalable RL framework that unifies online, offline, and offline-to-online settings?

A Unified Reinforcement Learning Framework. A desirable unified framework should fulfill
several crucial properties: (1) Adaptability, seamlessly adapt to different settings, including online,
offline, and offline-to-online, without changing the learning objective; (2) Sample efficiency, exhibit
high sample efficiency, minimizing required interactions with the environment; and (3) Scalability,
scale with growing volumes of data and learn effectively in large and complex environments. We
consider the constraint optimization problem with a reference policy µ:

UNIVR π∗ = argmax
π

E(s,a)∼dπ

[
r(s, a)

]
s.t. Es∼dπ

[
Df (π(·|s)∥µ(·|s))

]
≤ ϵ, (1)

where Df (p∥q) = Ex∼q[f(
p(x)
q(x) )] is the f -divergence (Boyd et al., 2004). By converting the con-

straint problem into an unconstrained, regularized one, we get a learning objective that imposes a
policy-level value regularization by adding the f -divergence regularization term to the reward (Geist
et al., 2019). This learning objective generalizes the Implicit Value Regularization (IVR) frame-
work (Xu et al., 2023) from the dataset behavior constraint to the constraint w.r.t. the reference policy
µ, yielding Unified IVR (UNIVR), a unified framework for general settings: For offline RL, µ is set
to be the behavior policy πD of the dataset. For online RL, we set µ to be the target policy π̄ which is
periodically or softly updated towards the current policy π. For offline-to-online RL, µ is set to be
πD in the offline pre-training stage while changing to π̄ in the online stage. This framework is fully
off-policy: offline RL can be considered as a one-step version of online RL (Brandfonbrener et al.,
2021), and offline-to-online RL uses offline data to provide a good initialization for online RL.

One issue with Eq. (1) is the reliance on the probability distributions of π and µ, which limits the
scalability of using advanced generative models such as diffusion and flow matching models (Song
et al., 2020; Lipman et al., 2022) as the policy. However, we show later that by using techniques from
duality (Xu et al., 2023; Sikchi et al., 2023), we can get the closed-form solution of the optimal policy
π∗, and the value function of π∗ can be learned "in-sample" (using samples from the reference policy).
By doing so, UNIVR provides an implicit trust-region style update through the value function, and
this implicit update results in an off-policy learning scheme that previous trust-region based methods
could not achieve (Schulman et al., 2015; 2017). The implicit trust-region update not only increases
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sample-efficiency, but also solves the over-conservative issue when directly applying IVR in the
online setting. Furthermore, it enables smooth dataset constraint relaxation in offline-to-online RL,
preventing early performance drops (Li et al., 2023). The in-sample learning scheme in UNIVR
also isolates the process of value learning and policy extraction, offering better learning stability.
We further introduce a unified policy extraction objective that estimates in-sample policy gradient
using only actions from the reference policy. This design scales successfully to more powerful policy
classes beyond Gaussian distributions, and theoretically guarantees less value estimation error and
larger performance improvement over the reference policy.

We evaluate UNIVR on 6 widely used RL benchmarks and 23 environments across online, offline,
and offline-to-online settings, achieving superior or competitive performance against state-of-the-
art domain-specific baselines. In online RL, UNIVR achieves higher sample efficiency than both
off-policy methods without trust-region updates and on-policy methods with trust-region updates.
In offline RL, UNIVR retains the benefits of in-sample learning while outperforming IVR through
better policy extraction. In offline-to-online RL, UNIVR beats both constraint-based methods and
unconstrained approaches by effectively balancing stability and adaptability.

2 Preliminaries

Reinforcement Learning We consider the RL problem presented as a Markov Decision Process
(MDP) (Sutton et al., 1998), which is specified by a tupleM = ⟨S,A,P, d0, r, γ⟩. Here S and A
are state and action space, P(s′|s, a) and d0 denote transition dynamics and initial state distribution,
r(s, a) and γ represent reward function and discount factor, respectively. The goal of RL is to
find a policy π(a|s) which maximizes expected return J(π) = Eπ[

∑∞
t=0 γ

t · r(st, at)]. Offline RL
considers the setting where interaction with the environment is prohibited, and one needs to learn the
optimal π from a static replay buffer D = {si, ai, ri, s′i}Ni=1. We also refer to D as the online replay
buffer that is updated by filling in new transitions in the online or offline-to-online setting. Let V π and
Qπ be the state and state-action value function of π, where V π(s) = Eπ [

∑∞
t=0 γ

tr(st, at)|s0 = s]
and Qπ(s, a) = Eπ [

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a]. The visitation distribution dπ is defined
as dπ(s, a) = (1 − γ)

∑∞
t=0 γ

t Pr (st = s, at = a | s0 ∼ d0,∀t, at ∼ π (st) , st+1 ∼ P (st, at)),
which measures how likely π is to encounter (s, a) when interacting with the environment, av-
eraging over time via γ-discounting. Let V ∗, Q∗ and d∗ denote the value functions and visita-
tion distribution corresponding to the regularized optimal policy π∗. We denote the empirical
visitation distribution of D as dD and the empirical behavior policy of D as πD, which repre-
sents the conditional distribution p(a|s) observed in the dataset. Let T π be the Bellman operator
with policy π such that (T πQ)(s, a) := r(s, a) + γEs′|s,aEa′∼π [Q(s′, a′)] and (T πV )(s) :=

Ea∼π

[
r(s, a) + γEs′|s,a [V (s′)]

]
.

3 UNIVR: Unified RL via Implicit Value Regularization

We give a detailed introduction of UNIVR in this section. We begin by recalling how the dual form of
Eq. (1) provides implicit value regularization, which is a unified, in-sample value learning objective.
We then show a naïve extension of IVR to the online setting suffers from suboptimality, and address
it with an iteratively improved behavior policy, resulting in an implicit trust-region style update.
Finally, we propose a unified policy extraction method that is scalable and versatile to use across
different policy classes. We theoretically prove that it enjoys lower value estimation error and larger
performance improvement over the reference policy than previous policy extraction methods.

3.1 Towards Unified Value Learning

Implicit Value Regularization. Note that the Lagrangian relaxation of Eq. (1) is equal to

π∗
IVR = argmax

π
Eπ

[ ∞∑
t=0

γt
(
r(st, at)− α · g

(π(at|st)
µ(at|st)

))]
, (2)
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where g(x) = f(x)/x is differentiable and satisfies g(1) = 0. Eq. (2) can be thought of as solving a
behavior-regularized MDP problem with a modified reward function (Vieillard et al., 2020; Xu et al.,
2023). In this behavior-regularized MDP, the Bellman operator is changed to T π

f such that

(T π
f )Q(s, a) := r(s, a) + γEs′|s,a [V (s′)]

V (s) = Ea∼π

[
Q(s, a)− α · g

(π(a|s)
µ(a|s)

)]
.

Compared with the original Bellman operator T π, T π
f is actually applying a value regularization to

the Q-function. This transfers the greedy-max policy π∗ to a softened max (depending on f ) over the
reference policy µ, which enables a scalable in-sample learning scheme1.

Lemma 1 (Results in IVR). Using duality, the optimal value function Q∗ and V ∗ can be solved by

min
V

Es∼D,a∼µ

[
V (s) + α · fIVR

(
[Q(s, a)− V (s)] /α

)]
(3)

min
Q

E(s,a,s′)∼D
[(
r(s, a) + γV (s′)−Q(s, a)

)2]
, (4)

where fIVR = exp(x) if Df is the KL divergence and max(x2/4+x+1, 0) if Df is the χ2 divergence.
Note that Eq. (3) only uses samples from the reference policy distribution, without needing the
knowledge of π(a|s) and µ(a|s). This makes the usage of advanced generative models possible in
the online setting, and avoids the need to use additional models to fit a dataset behavior distribution
in the offline setting. We can recover IVR by setting µ to be πD, where offline actions serve as πD.
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Figure 2: Using an iteratively refined behavior policy
improves IVR in the online setting.

Does IVR work in the online setting? We first
examine whether IVR can be naturally extended to
the online setting. In online IVR, the offline dataset
will be the replay buffer collected so far. Unlike the
offline setting, the replay buffer is collected by the
learned policy that is periodically updated, which
means it may contain a large portion of suboptimal
or random data previously collected. Learning from
a highly suboptimal dataset is known to be hard
in offline RL due to the tendency to anchor the
learned policy to the dataset behavior policy caused
by regularization (Xu et al., 2025). In online IVR,
the optimality of the regularized policy also highly
depends on the replay buffer, and we need to break
the regularization barrier to get the optimal value function and policy.

One way to do so is by filtering the offline dataset iteratively according to the learned optimal policy
at each iteration, and gradually optimizing towards the optimal policy using the filtered dataset, as
done in Xu et al. (2025). However, this dataset filtering process is costly in the online setting. We
thus propose a more lightweight option, where instead of iteratively refining the dataset, we maintain
an iteratively refined reference policy π̄, which is updated towards the current policy π and improves
beyond πD. This yields the learning objective in the online or offline-to-online setting.

min
V

Es∼D,a∼π̄

[
V (s) + α · fIVR

(
[Q(s, a)− V (s)] /α

)]
with π̄ ← λπ + (1− λ)π̄, (5)

where λ denotes the soft updating frequency, and if λ = 1, this amounts to assign π̄ with the
previous policy πk−1, at iteration k. Using π̄ as the reference policy gives a trust-region style update
with an improved µ, solving the over-constrained problem of directly applying IVR in the online
setting. Figure 2 illustrates this, UNIVR achieves higher Q values and better sample efficiency than

1Here in-sample means samples from the reference policy µ.
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IVR across different policy extraction methods. Since the trust-region update is implicitly imposed
through the value learning, the algorithm remains off-policy. This improves sample-efficiency over
previous trust-region methods, which are all on-policy (Schulman et al., 2015; 2017), and exhibits
less value overestimation and more stability compared to existing off-policy methods (Fujimoto et al.,
2018; Haarnoja et al., 2018; Abdolmaleki et al., 2018b). Furthermore, it enables smooth dataset
constraint relaxation in offline-to-online RL, preventing the finetuned policy from early performance
dropping (Nair et al., 2020; Nakamoto et al., 2023; Li et al., 2023).

3.2 Towards Unified Policy Extraction

After introducing the unified value learning objective and demonstrating how UNIVR addresses
issues with IVR in the online setting, we now focus on providing a unified policy extraction scheme
to effectively extract the best policy from the value functions learned with UNIVR.

Note that in IVR (Eq. (2)), we have a closed-form solution for the ratio of the optimal regularized
policy π∗

IVR to the reference policy µ (Xu et al., 2023), which can be expressed as

w∗
IVR(s, a) =

π∗
IVR(a|s)
µ(a|s)

= max
(
0, (f ′)−1

(
(Q∗(s, a)− V ∗(s)) /α

))
. (6)

Previous works try to extract this policy by using either Forward KL or Reverse KL divergence.

(1) DKL (π
∗
IVR∥π)→ weighted BC

π∗ = argmax
π

Es∼D,a∼µ

[
w∗

IVR(s, a) · log π(a|s)
]
.

Using Forward KL divergence tends to be mode-covering, resulting in a weighted behavior cloning
style loss where action is sampled from the reference policy. Although it queries the Q function with
only in-sample actions (since Q is trained using actions from µ), it prefers to cover all modes of the
target distribution, including those with low probability mass (Park et al., 2024; Xu et al., 2025).

(2) DKL (π∥π∗
IVR)→MaxQ+BC

π∗ = argmax
π

Es∼D,a∼π

[
logw∗

IVR(s, a) + log µ(a|s)− log π(a|s)
]
.

Using Reverse KL divergence gives a MaxQ+BC style loss (Tomar et al., 2020; Fujimoto & Gu, 2021;
Mao et al., 2024b). Reverse KL divergence is mode-seeking, however, actions are sampled from the
policy π, which are potentially out-of-distribution and causes over-estimation errors to the Q function.
Futhermore, this loss needs an explicit µ(a|s), which might not be available in the offline setting, and
Ea∼π[log π(a|s)] can be hard to estimate when π is parameterized with generative models such as
diffusion or flow matching models (Kong et al., 2023).

In summary, weighted BC has lower overestimation error and scales well across different settings
and policy classes, while remaining mode-covering. In contrast, MaxQ+BC is mode-seeking but
suffers from inaccurate gradient estimation and limited scalability. Can we design a policy extraction
method that shares the best of both worlds?

Policy extraction via In-sample Policy Gradient. Our key intuition is that we still try to maintain
the weighted BC style loss due to its stability and scalability, but we want to incorporate the first-order
gradient information from policy gradient into the zero-order gradient induced by the weighted BC
loss. To achieve that, we introduce In-sample Policy Gradient (InPG) where we ignore the original
IVR weights w∗

IVR(s, a) and instead think of those weights as learnable variables. In-sample PG
projects the MaxQ gradient into the weighted BC gradient by learning the new optimal weights
w∗

InPG(s, a) such that

w∗
InPG(s, a) = argmin

w≥0
Es∼D

[(
GPG − GBC(w)

)2]
where GPG = ∇θ Ea∼πθ

[Q(s, a)] and GBC(w) = Ea∼µ [w(s, a)∇θ log πθ(a|s)] .
(7)
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GBC(w) is the gradient vector of using weighted BC, we can modify the direction of this vector by
changing the weight value on different (s, a), and we want to find a non-negative w metric to make
the resulting vector stay as close as possible to the MaxQ gradient vector. Eq.(7) is a constrained
quadratic programming (QP) problem (Nocedal & Wright, 2006), w∗

InPG(s, a) can be solved using
off-the-shelf QP solvers (Stellato et al., 2020) or by gradient descent using a neural network and
clipping the output (we use this way in the paper). After getting w∗

InPG(s, a), the policy is extracted by

π∗
InPG = argmax

π
Es∼D,a∼µ

[
w∗

InPG(s, a) · log π(a|s)
]
. (8)

Using w∗
InPG(s, a) as the BC weight enables better utilization of the Q function since using w∗

IVR(s, a)
cannot guarantee the policy is maximizing the Q function. It also makes the new weighted BC loss
more mode-seeking, enabling policy extraction under a support constraint since the BC actions are
always within the support of the reference policy.

Theoretically, we find InPG could potentially enable a larger performance improvement than π∗
IVR

by increasing J(π). In fact, InPG is optimizing towards the constraint learning objective from Eq.(1)
while π∗

IVR is the solution of Eq. (2), the relaxed Lagrangian of Eq. (1).
Theorem 1. Define wmin = minx w(x), wmax = maxx w(x) and Z = Ex∼µ[w(x)] ∈ [wmin, wmax],
the f -divergence between π∗

InPG and µ is bounded by

f(
wmin

Z
) ≤ Df (π

∗
InPG∥µ) ≤ f(

wmax

Z
).

Theorem 2. There exists a range of wmin and wmax that satisfies J(π∗
InPG) ≥ J(π∗

IVR).

We give the proof of these two theorems in Appendix A. These two theorems reveal that using
in-sample policy gradient is actually finding the best policy (i.e., maximizes the Q function) within a
fixed constraint (depends on wmin and wmax) rather than treating that constraint as a penalty, which is
more aligned with the original optimization problem Eq. (1). This gives more freedom and allows for
better policy extraction. The following theorem further demonstrates the necessity of applying the
in-sample projection to the policy gradient, since directly using policy gradient has no improvement
guarantee over the reference policy (also known to suffer from overestimation error in offline RL).
Theorem 3. Define π∗

PG = argmaxπ Es∼D,a∼π[Q(s, a)], there is no guarantee that J(π∗
PG) ≥ J(µ).
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Figure 3: InPG discovers better actions from D
(grey points) than weighted BC.

We use the maze2d-umaze dataset in D4RL (Fu et al.,
2020) as an example to demonstrate the effect of using
InPG. The Maze2D domain is a navigation task in which
a 2D agent must reach a fixed goal location as quickly as
possible; the action corresponds to the velocity along the
(x, y) axes. We visualize actions sampled from policies
learned with IVR (w∗

IVR(s, a)) and UNIVR (w∗
InPG(s, a))

in Figure 3. As shown, IVR tends to produce actions that
are centered around the offline action distribution due to
its mode-covering nature. In contrast, UNIVR generates
better actions that are near the boundaries of the action space by effectively using the value function.
Intuitively, weighted behavior cloning can also exhibit mode-seeking behavior if appropriate weights
are assigned to different actions. Notably, in-sample policy gradient does not require sensitive
hyperparameter tuning like MaxQ+BC (Tarasov et al., 2024a; Park et al., 2025); it only requires
setting a lower and upper weight threshold and we use the same value across all experiments.

Scalable to advanced generative models. In-sample policy gradient can easily scale to the usage of
generative models like diffusion and flow matching models. Maximizing the log-likelihood objective
in InPG is equivalent to minimizing the matching loss of different generative models (Song et al.,
2021). For the use of diffusion models, we have the following matching loss LDiffusion(θ) based on
Ho et al. (2020).

Es∼D,a∼µ,ϵ∼N (0,I),t∼Unif([1,T ])

[
∥ϵ− ϵθ

(√
ᾱta+

√
1− ᾱtϵ, s, t

)
∥2
]
. (9)
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Figure 4: Results in online RL. Learning curves are plotted across 5 seeds with a smoothing window of 5000. Shading
represents one standard deviation.

In summary, InPG provides a unified policy extraction method based on the weighted BC objective,
which uses zero-order gradient while being mode-seeking to maximize Q values. InPG avoids value
overestimation errors and scales to implicit behavior cloning through generative modeling, bringing
better generalization. The full UNIVR algorithm combines the unified policy extraction module with
the unified value learning module. The pseudocode of UNIVR is provided in Algorithm 1.

4 Experiments

Algorithm 1 Unified Implicit Value Regularization
Require: D, α.

1: Initialize Q, V , π, π̄
2: ▷ Unified value and policy learning
3: procedure UNIVR (π, µ,D)
4: Sample transitions (s, a, r, s′) ∼ D
5: Update V by Eq.(3) with a ∼ µ, Q and D
6: Update Q by Eq.(4) with V and D
7: Update π by Eq.(7,8) with a ∼ µ, Q and D
8: ▷ Offline training (offline and offline-to-online)
9: for t = 1, 2, · · · ,M do

10: UNIVR (π, πD,D)
11: ▷ Online finetuning (online and offline-to-online)
12: for t = 1, 2, · · · , N do
13: Explore using π and append (s, a, r, s′) to D
14: UNIVR (π, π̄,D)
15: Update π̄ by Eq.(5)

Online RL. We first test UNIVR in the on-
line setting. We choose 8 environments from
OpenAI Gym, DeepMind Control Suite, and Py-
Bullet, representing a large and diverse set of
domains based on Box2D, MuJoCo and Bullet
physics engines. To demonstrate the effective-
ness of our method, we compare UNIVR with
several state-of-the-art model-free online RL al-
gorithms including TD3, SAC, PPO and MPO.
All baselines use a Gaussian policy, so we also
use a Gaussian policy with UNIVR for a fair
comparison. The solid curve represents the av-
erage return, and the transparent shaded region
represents the standard deviation. Each exper-
iment was conducted over 5e5 training steps.
According to the learning curves in Figure 2,
UNIVR achieves state-of-the-art performance
and sample efficiency compared to the other four baseline algorithms, especially in DMControl.

Offline RL. In the offline setting, we evaluate UNIVR on the D4RL benchmark (Fu et al., 2020)
and compare it with several state-of-the-art algorithms. For the evaluation tasks, we select MuJoCo
locomotion tasks and AntMaze navigation tasks which require both locomotion and navigation. While
MuJoCo tasks are popular in offline RL, AntMaze tasks are more challenging due to their stronger
need for selecting optimal parts of different trajectories to perform stitching. For baseline algorithms,
we selected state-of-the-art methods not only from traditional methods that use a Gaussian policy
but also methods that use diffusion models. Gaussian-policy-based baselines include 10%BC, BCQ,
TD3+BC, CQL, IQL and IVR. Diffusion-policy-based baselines include Diffusion-QL and IDQL.

We implement UNIVR with both Gaussian policy and Diffusion policy as in Eq.(9). The results
in Table 1 show that UNIVR with Gaussian policy already matches or outperforms most baseline
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Table 1: Results in offline RL. Scores are averaged over the final 10 evaluations across 5 seeds with standard deviation
reported, we highlight the best score in integer-level.

Dataset 10%BC TD3+BC CQL IQL IVR Diffusion-QL IDQL
UNIVR

(Gaussian)
UNIVR

(Diffusion)
halfcheetah-m 42.5 48.3 44.0 ±0.8 47.4 ±0.2 48.3±0.2 51.1 ±0.5 51.0 49.4±0.2 58.0 ±0.6
hopper-m 56.9 59.3 58.5 ±2.1 66.3 ±5.7 75.5±3.4 90.5 ±4.6 65.4 102.1 ±0.1 102.5 ±0.2
walker2d-m 75.0 83.7 72.5 ±0.8 72.5 ±8.7 84.2±4.6 87.0 ±0.9 82.5 89.3±0.3 92.3 ±0.1
halfcheetah-m-r 40.6 44.6 45.5 ±0.5 44.2 ±1.2 44.8±0.7 47.8 ±0.3 45.9 45.3±0.3 48.4 ±0.9
hopper-m-r 75.9 60.9 95.0 ±6.4 95.2 ±8.6 99.7±3.3 101.3 ±0.6 92.1 101.1 ±2.7 101.3 ±2.1
walker2d-m-r 62.5 81.8 77.2±5.5 76.1 ±7.3 81.2±3.8 95.5 ±1.5 85.1 86.6±1.1 90.8±1.6
halfcheetah-m-e 92.9 90.7 90.7±4.3 86.7±5.3 94.0±0.4 96.8 ±0.3 95.9 94.2±0.6 97.3 ±0.6
hopper-m-e 110.9 98.0 105.4±6.8 101.5 ±7.3 111.8 ±2.2 111.1 ±1.3 108.6 111.0 ±0.6 111.2 ±0.3
walker2d-m-e 109.0 110.1 109.6±0.7 110.6±1.0 110.0±0.8 110.1 ±0.3 112.7 110.8±0.2 114.1±0.5
antmaze-u 62.8 78.6 84.8±2.3 85.5 ±1.9 92.2±1.4 93.4 ±3.4 94.0 94.1±1.6 98.1 ±1.8
antmaze-u-d 50.2 71.4 43.4±5.4 66.7 ±4.0 74.0±2.3 66.2 ±8.6 80.2 80.4±2.3 82.0 ±1.4
antmaze-m-p 5.4 10.6 65.2±4.8 72.2 ±5.3 80.2±3.7 76.6 ±10.8 84.5 86.0±2.6 88.5 ±3.1
antmaze-m-d 9.8 3.0 54.0±11.7 71.0 ±3.2 79.1±4.2 78.6 ±10.3 84.8 82.7±3.4 89.7 ±2.8
antmaze-l-p 0.0 0.2 38.4±12.3 39.6 ±4.5 53.2±4.8 46.4 ±8.3 63.5 59.9±2.9 68.6 ±3.6
antmaze-l-d 6.0 0.0 31.6±9.5 47.5 ±4.4 52.3±5.2 56.6 ±7.6 67.9 60.2±3.8 69.0 ±4.5
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Figure 5: Results in offline-to-online RL. Learning Curves is plotted after 250k offline pretraining (5 seeds).

algorithms, especially on MuJoCo medium, medium-replay datasets, and AntMaze datasets. The use
of diffusion models in UNIVR further enhances its performance on tasks with multi-modal datasets,
demonstrating the scalability of UNIVR. Additionally, the consistently better performance of UNIVR
over IVR demonstrates the benefit of policy extraction using in-sample policy gradient.

Offline-to-online RL. In the offline-to-online setting, we conduct extensive experiments on
AntMaze and Adroit tasks with D4RL datasets to demonstrate the stable, optimal policy learn-
ing and adaptability of UNIVR. We compare UNIVR with the following baselines: (i) AWAC: an
offline-to-online method that learns the finetuning policy using AWR-style policy loss. (ii) IQL: a
SOTA offline RL approach based on weighted BC that can directly transfer to online finetuning. (iii)
Cal-QL: a SOTA offline-to-online approach specially designed based on CQL offline training. (iv)
RLPD: a method that uses offline data to accelerate online training, it ignores the offline pretraining
stage and learns from scratch. Note that we remove the high update-to-data trick in RLPD (i.e.,
adding layer normalization and ensembles to the Q-function) for a fair comparasion.

Figure 5 shows that existing constraint-based approaches (IQL, AWAC) in most cases only marginally
improve the offline pretrained policy, due to the over-conservatism introduced by the constraint w.r.t.
the offline dataset. This is especially pronounced when the offline dataset or pretrained policy is
highly-suboptimal such as in Adroit and Antmaze tasks. In contrast, UNIVR enjoys stable initial
finetuning and superior final performance owing to the iteratively refined policy regularization. Cal-
QL is limited to CQL, making it hard to yield reasonable performance when the tasks are too difficult
for CQL to obtain good results. While RLPD achieves appealing results in some tasks, the sample
efficiency is greatly limited in tasks with diverse or good offline data.
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A Limitations and Future Work

In this paper, we propose UNIVR, a scalable framework that unifies different reinforcement learning
settings, including online RL, offline RL, and offline-to-online RL. UNIVR builds on the Implicit
Value Regularization framework but generalizes the offline data constraint to a reference policy
constraint, resulting in unified value learning and policy extraction objectives based on in-sample
learning. UNIVR is simple, effective, and scalable, and achieves superior performance across diverse
RL settings. UNIVR only considers the model-free setting and future directions include incorporating
UNIVR with model-based RL methods, and extending it to the LLM+RL setting. We believe that
UNIVR represents a concrete step toward building scalable algorithms for unified reinforcement
learning.

B Prior work

Online RL. Model-free online RL algorithms can be categorized into on-policy and off-policy
methods. While on-policy methods only use experience from the current policy to perform up-
dates (Kakade, 2001; Mnih et al., 2016), off-policy methods, in general, can utilize experience from
any arbitrary policy (Watkins & Dayan, 1992; Haarnoja et al., 2018; Fujimoto et al., 2018). To
stabilize training, previous methods (Schulman et al., 2015; 2017) add an explicit trust-region policy
constraint that limits the derivation from the previous policy. However, this results in on-policy
learning, while UNIVR uses an implicit value regularization that is off-policy. Some works also use
a weighted BC style loss (Abdolmaleki et al., 2018b;a; Oh et al., 2018; Tomar et al., 2020) in the
policy extraction step. However, they don’t impose regularization in the value learning. Their value
learning and policy learning are coupled, causing the overestimation issue in the offline setting. Note
that UNIVR decouples the value and policy learning owing to the implicit value regularization.

Offline RL. To tackle the distributional shift problem, most model-free offline RL methods augment
existing off-policy methods with a dataset behavior regularization term. One class of methods imposes
behavior regularization explicitly as a divergence penalty (Wu et al., 2019; Kumar et al., 2019;
Fujimoto & Gu, 2021) or intervene in the value learning to encourage staying near the behavioral
distribution and being pessimistic about unknown state-action pairs (Nachum et al., 2019; Kumar et al.,
2020; Kostrikov et al., 2021a; Xu et al., 2022; Wu et al., 2021; An et al., 2021). The other class of
methods implicitly impose the behavior regularization through weighted behavior cloning (Kostrikov
et al., 2021b; Xu et al., 2023), which filters useful actions to perform behavior cloning based on how
advantageous they are. Compared with the first class, UNIVR is inherently more stable due to its
imitation-style policy update. Compared with the second class, UNIVR is better at utilizing the value
function to avoid suboptimal policy extraction.

Offline-to-online RL. Offline-to-online RL aims to overcome the suboptimality of pure offline
learning by collecting more high-quality data with online fine-tuning (Lee et al., 2022; Zhang et al.,
2023; Li et al., 2023). To prevent performance drop caused by distribution shift from the offline to
online stage, previous methods impose regularization to stay close to the offline data or the offline
pretrained policy during online fine-tuning Nair et al. (2020); Kostrikov et al. (2021b); Lee et al.
(2022); Nakamoto et al. (2023); Zhao et al. (2022). However, these methods are over-conservative
since the offline data could be highly suboptimal. UNIVR solves this issue by enforcing an iteratively
refined behavior policy initialized from an offline-pretrained policy, allowing us to gradually release
the dataset constraint to continue improving throughout training. There are also some works that try
to avoid the performance drop issue by ignoring the offline stage and learning from scratch using
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offline data (Song et al., 2022; Ball et al., 2023). However, these methods are less sample efficient
since they lack the usage of pretrained value functions to perform effective exploration.

Other prior works related to unified RL. There are several other works that try to provide
unification for general RL settings. Uni-O4 (Lei et al., 2023) provides unification of offline RL
and offline-to-online RL based on on-policy policy gradient, but suffers from sample inefficiency
compared to UNIVR, which is off-policy. Policy Agnostic RL (Mark et al., 2024) provides unification
for policy extraction methods, whereas UNIVR also achieves a principled unification of value learning
for general RL settings. Note that although some DICE-based methods (Lee et al., 2021a; Sikchi
et al., 2023; Mao et al., 2024a) have a similar optimization objective with UNIVR, they can’t be
unified in both the online and offline settings. Specifically, if we apply DICE-based methods to the
online setting, sampling from the stationary distribution dµ(s, a) of the reference policy is needed.
This is intractable in the online setting, making DICE-based methods only work for the offline setting.

C Proof

Theorem 1. Define wmin = minx w(x), wmax = maxx w(x) and Z = Ex∼µ[w(x)] ∈ [wmin, wmax],
the f -divergence between π∗

InPG and µ is bounded by

f(
wmin

Z
) ≤ Df (π

∗
InPG∥µ) ≤ f(

wmax

Z
).

Proof. Remember that π∗
InPG has the following expression:

π∗
InPG(a|s) =

µ(a|s)w∗(s, a)∑
a′ µ(a′|s)w∗(s, a′)

.

The f -divergence between π and µ is defined as:

Df (π
∗
InPG||µ) =

∑
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(
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Given that ω(x) is bounded as:

wmin ≤ w(x) ≤ wmax, ∀x,

we obtain the following bounds:

f
(wmin

Z

)
≤ Ex∼µ

[
f

(
w(x)

Z

)]
≤ f

(wmax

Z

)
.

Thus, the f -divergence between π∗
InPG and µ is bounded.

Theorem 2. There exists wmin and wmax that satisfies J(π∗
InPG) ≥ J(π∗

IVR).

Proof. Remember that IVR considers a new MDP where the reward is augmented with a behavior
regularization term (r(s, a) = r(s, a)− αg(π(a|s)/µ(a|s))), so the J(π) we consider here is equal
to the value V π. And an ideal algorithm wants to make sure that V π(s) ≥ V µ(s), s ∼ D, i.e., safe
policy improvement over the behavior policy over the replay buffer.

According to IVR,

V (s) = Ea∼π

[
Q(s, a)− α · g

(π(a|s)
µ(a|s)

)]
.
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Since π∗
InPG is the optimal solution of Eq. (7), i.e., the optimal behavior cloning weight that maximizes

the Q function, we have

J(π∗
InPG) = Es∼D,a∼π∗

InPG

[
Q(s, a)− α g

(
π∗

InPG(a|s)
µ(a|s)

)]
≥ Es∼D,a∼π∗

IVR
[Q(s, a)]− αEs∼D,a∼π∗

InPG

[
g

(
π∗

InPG(a|s)
µ(a|s)

)]
= Es∼D,a∼π∗

IVR(a|s)

[
Q(s, a)− α g

(
π∗

IVR(a|s)
µ(a|s)

)]
+ αEs∼D,a∼π∗

IVR

[
g

(
π∗

IVR(a|s)
µ(a|s)

)]
− αEs∼D,a∼π∗

InPG

[
g

(
π∗

InPG(a|s)
µ(a|s)

)]
= J(π∗

IVR) + αEs∼D,a∼π∗
IVR

[
g

(
π∗

IVR(a|s)
µ(a|s)

)]
− αEs∼D,a∼π∗

InPG

[
g

(
π∗

InPG(a|s)
µ(a|s)

)]
.

To make J(π∗
InPG) ≥ J(π∗

IVR), one safe condition to satisfy is,

Es∼D [Df (π
∗
InPG(·|s)∥µ(·|s))] = Es∼D,a∼π∗

InPG

[
g

(
π∗

InPG(a|s)
µ(a|s)

)]
≤ Es∼D,a∼π∗

IVR

[
g

(
π∗

IVR(a|s)
µ(a|s)

)]
= Es∼D [Df (π

∗
IVR(·|s)∥µ(·|s))] .

Note that in Theorem 1 we have f(wmin/Z) ≤ Df (π
∗
InPG∥µ) ≤ f(wmax/Z). Let f(wmax/Z) ≤

Es [Df (π
∗
IVR(·|s)∥µ(·|s))] will satisfy this condition. In conclusion, the range of wmin and wmax to

satisfy J(π∗
InPG, µ) ≥ J(π∗

IVR, µ) is

wmax

Z
≤ f−1 (Es∼D [Df (π

∗
IVR(·|s)∥µ(·|s))]) .

Note that some weaker conditions could also satisfy J(π∗
InPG) ≥ J(π∗

IVR). For example, we could
choose w∗

InPG to be close to w∗
IVR such that Df (π

∗
InPG(·|s)∥µ(·|s)) ≈ Df (π

∗
IVR(·|s)∥µ(·|s)). Also, in

the worst case, setting w∗
InPG(s, a) = w∗

IVR(s, a) we have J(π∗
InPG) = J(π∗

IVR).

Theorem 3. Define π∗
PG = argmaxπ Es∼D,a∼π[Q(s, a)], there is no guarantee that J(π∗

PG) ≥
J(µ).

Proof. Since π∗
PG is the policy that maximizes Es∼D,a∼π[Q(s, a)], we have

J(π∗
PG) = Es∼D,a∼π∗

PG

[
Q(s, a)− α g

(
π∗

PG(a|s)
µ(a|s)

)]
≥ Es∼D,a∼µ [Q(s, a)]− αEs∼D,a∼π∗

PG

[
g

(
π∗

PG(a|s)
µ(a|s)

)]
= Es∼D,a∼µ

[
Q(s, a)− α g

(
µ(a|s)
µ(a|s)

)]
− αEs∼D,a∼π∗

PG

[
g

(
π∗

PG(a|s)
µ(a|s)

)]
= J(µ)− αEs∼D,a∼π∗

PG

[
g

(
π∗

PG(a|s)
µ(a|s)

)]
= J(µ)− αEs∼D

[
Df (π

∗
PG(·|s)∥µ(·|s))

]
.

This inequality leverages the fact that g(1) = 1 ∗ f(1) = 0. Since Df (π
∗
PG(·|s)∥µ(·|s)) ≥ 0, there is

no guarantee that J(π∗
PG) ≥ J(µ).

D Experimental Details

D.1 Online RL experimental details

Environments, Tasks, and Datasets We evaluate UNIVR on 8 standard continuous control
environments from OpenAI Gym, DeepMind Control Suite (DM Control), and PyBullet. These
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Figure 6: Tasks used in online RL.

tasks vary in agent morphology, dimensionality, and dynamics complexity, ensuring a comprehensive
evaluation of our method.

• AntBulletEnv-v0: It has a 28-dimensional state space consisting of joint positions, velocities,
and body orientation features, and an 8-dimensional action space where each action dimension
lies in [-1, 1]. The agent is a quadruped ant-like robot simulated using the PyBullet physics engine.
The task requires learning stable and efficient forward locomotion under noisy and contact-rich
dynamics.

• BipedalWalker-v3: This task has a 24-dimensional state space including hull angle, angular
velocity, leg joint positions, and contact sensor readings, and a 4-dimensional continuous action
space. The system represents a planar biped that must walk across varying terrain. The challenge
lies in foot placement, balance control, and adapting to sparse footholds.

• finger-turn-hard: The environment has a 12-dimensional state space and a 6-dimensional
action space. It features a robotic finger that must rotate an object to a specific target orientation.
The dynamics are sensitive, the rewards are sparse, and the task demands fine motor control and
long-horizon reasoning. This environment is from the DeepMind Control Suite.

• HalfCheetah-v3: The task includes a 17-dimensional state space representing joint positions
and velocities, and a 6-dimensional action space. The system models a planar cheetah-like robot
that learns to run forward as fast as possible. It is a widely used benchmark for evaluating the
stability and efficiency of learned locomotion policies.

• Hopper-v3: The environment has an 11-dimensional state space and a 3-dimensional action
space. It consists of a one-legged robot that must learn to hop forward without falling. The task is
sensitive to small disturbances and evaluates learning in unstable, underactuated systems.

• Humanoid-v3: This is a high-dimensional task with a 376-dimensional state space and a
17-dimensional action space. The agent is a humanoid robot with 21 actuated joints and must
learn to walk upright. The complexity of the dynamics and control makes it one of the most
challenging continuous control benchmarks.

• quadruped-walk: The task includes a 78-dimensional state space representing joint and body
kinematics and a 12-dimensional action space. The system models a quadrupedal robot using the
DeepMind Control Suite. The goal is to learn stable walking behavior in a realistic 3D setting
with proprioceptive sensing.

• Walker2d-v3: The environment has a 17-dimensional state space and a 6-dimensional action
space. It simulates a planar bipedal robot that must learn to walk forward using two legs with
multiple joints. This task provides a balanced challenge, commonly used to evaluate both stability
and learning efficiency.

Methods and Hyperparameters In all tasks, we computed the average mean returns over 10
evaluations every 5 · 103 training steps, across 5 different seeds.
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For the network, we use 3-layer MLP with 256 hidden units and Adam optimizer (Kingma & Ba,
2015) with a learning rate of 1× 10−3 for both policy and value functions in all tasks. We also use a
target network with soft update weight 5× 10−3 for Q-function. We clip the output of the weight
function by max(w(x), 0) to ensure a non-negative BC weight. We use 0-1 normalization to the
weight in each batch and then clip it to [wmin, wmax] where we set wmin to 0.1 and wmax to 0.9 through
all the datasets.

We implemented UNIVR using PyTorch and ran it on all datasets. We followed the same reporting
methods as mentioned earlier. In online experiments, we run baselines using the implementation
from ACME (Hoffman et al., 2020)2. We use the reported hyperparameters in each paper.

In UNIVR, we have two hyperparameters: regularization weight α and reference policy updating
frequency λ. We search α over [0.1, 0.5, 1.0, 2.0] and λ over [0.01, 0.05, 0.1, 0.2] The best value of
α and λ for all environments are listed in Table 3.

D.2 Offline and Offline-To-Online RL experimental details

Environments, Tasks, and Datasets In offline and offline-to-online, UNIVR is evaluated on
different kinds of datasets from various environments.

For MuJoCo environments, we have the following datasets.

• halfcheetah/hopper/walker2d-m (medium): Collected by a policy with moderate per-
formance, typically reaching around one-third of expert returns. These datasets represent struc-
tured but suboptimal behavior.

• halfcheetah/hopper/walker2d-m-r (medium-replay): Contains the replay buffer of
the mediocre SAC policy. It includes a wide range of off-policy transitions, many of which are
suboptimal or noisy.

• halfcheetah/hopper/walker2d-m-e (medium-expert): A 50-50 mixture of medium
and expert trajectories. These datasets are designed to test whether algorithms can leverage
near-optimal data when it is partially present.

The AntMaze environments involve a quadruped ant navigating through a 2D maze using sparse
goal-based rewards. The agent has a 29-dimensional state space and an 8-dimensional action space,
corresponding to joint positions, velocities, and target location encoding. The tasks are particularly
challenging due to long-horizon planning and sparse supervision.

• antmaze-u (umaze): A small maze where the agent must reach a fixed goal location using
sparse rewards. The environment is relatively easy due to short trajectories.

• antmaze-u-d (umaze-diverse): Similar to umaze, but with broader trajectory diversity col-
lected from random exploration.

• antmaze-m-p (medium-play): A medium-sized maze where data is collected via a play policy.
The task is harder due to longer horizons and sparse goal rewards.

• antmaze-m-d (medium-diverse): Features more diverse and noisy behavior than
medium-play, increasing exploration coverage but decreasing consistency.

• antmaze-l-p (large-play): A large maze with random play data. The agent must navigate long
distances, making the task especially difficult under sparse reward signals.

• antmaze-l-d (large-diverse): Similar to large-play, but with broader and more varied
behavior. It is one of the most challenging offline datasets due to the size of the environment and
variability in data.

The Adroit environments are high-dimensional dexterous manipulation tasks based on a 24-DoF
Shadow Hand. Each environment has a 100-dimensional state space that includes joint angles,
velocities, and object pose information, and a 24-dimensional continuous action space controlling

2https://github.com/google-deepmind/acme

https://github.com/google-deepmind/acme
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Figure 7: Tasks used in offline and offline-to-online RL.

finger joints. The cloned datasets are generated by behavior cloning from expert demonstrations and
represent a moderate level of task success.

• pen-cloned-v1: The task requires rotating a pen to a target orientation using a 24-DoF
anthropomorphic hand. The dataset is generated by cloning expert demonstrations. It is highly
sensitive to precision and coordination.

• door-cloned-v1: A dexterous hand must unlock and open a door by grasping and rotating
the handle. This task involves contact-rich control and precise force application, with cloned
demonstrations as the data source.

• hammer-cloned-v1: The agent must use a hammer to drive a nail into a board. This involves
both grasping and tool use, making it one of the most complex manipulation tasks in D4RL.

• relocate-cloned-v1: The goal is to pick up a ball and move it to a target location using
precise grasping and positioning. The cloned dataset reflects human-like strategies but is difficult
to exploit due to sparse rewards and high-dimensional dynamics.

Methods and Hyperparameters In Mujoco locomotion tasks, we computed the average mean
returns over 10 evaluations every 5 · 103 training steps, across 5 different seeds. For Antmaze and
Kitchen tasks, we calculated the average over 50 evaluations every 2 · 104 training steps, also across 5
seeds. We measure binary task success rates (in percentage) for AntMaze and normalized returns for
Adroit, following the original evaluation scheme (Fu et al., 2020). Following previous research, we
standardized the returns by dividing the difference in returns between the best and worst trajectories
in MuJoCo tasks. In AntMaze tasks, we subtracted 1 from the rewards.

For the network, we use 4-layer MLP with 256 hidden units and Adam optimizer (Kingma & Ba,
2015) with a learning rate of 2× 10−4 for both policy and value functions in all tasks. We also use a
target network with soft update weight 5× 10−3 for Q-function. For UNIVR with Diffusion models
as the policy, the score network ϵθ we used is based on a U-net architecture, which is fairly common
in diffusion-based RL algorithms (Ajay et al., 2022; Mao et al., 2024b). We clip the output of the
weight function by max(w(x), 0) to ensure a non-negative BC weight. We use 0-1 normalization
to the weight in each batch and then clip it to [wmin, wmax] where we set wmin to 0.1 and wmax to 0.9
through all the datasets.

We implemented UNIVR using PyTorch and ran it on all datasets. We followed the same reporting
methods as mentioned earlier. In offline experiments, baseline results for other methods were directly
sourced from their respective papers. In offline-to-online experiments, we run baselines using
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Table 2: Hyperparameters for UNIVR.

Hyperparameter Value

Learning rate 0.0002 (offline), 0.001 (offline)
Optimizer Adam
Gradient steps 500000
Minibatch size 256
MLP dimensions [256, 256, 256, 256]
Target network smoothing coefficient 0.005
Discount factor γ 0.99
Diffusion steps (if used) 10
Regularization weight α Tables 3 and 4
π̄ updating frequency λ Tables 3 and 4

the pytorch implementation from CORL (Tarasov et al., 2024b)3. Since CORL doesn’t have the
implementation of RLPD, we re-implement it in the codebase. We use the reported hyperparameters
in each paper.

In UNIVR, we have two hyperparameters: regularization weight α and reference policy updating
frequency λ. We search α over [0.1, 0.5, 1.0, 2.0] and λ over [0.01, 0.05, 0.1, 0.2] The best value of
α and λ for all datasets are listed in Table 4 and Table 5.

Table 3: UNIVR hyperparameters in online RL.

Env α λ

AntBulletEnv-v0 1.0 0.1
BipedalWalker-v3 1.0 0.1
finger-turn-hard 0.5 0.1
quadruped-walk 0.5 0.1
HalfCheetah-v3 1.0 0.2
Hopper-v3 1.0 0.2
Humanoid-v3 1.0 0.2
Walker2d-v3 1.0 0.2

3https://github.com/corl-team/CORL

https://github.com/corl-team/CORL
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Table 4: UNIVR hyperparameters in offline RL.

Env α

halfcheetah-medium-v2 1.0
hopper-medium-v2 1.0
walker2d-medium-v2 1.0
halfcheetah-medium-replay-v2 1.0
hopper-medium-replay-v2 1.0
walker2d-medium-replay-v2 1.0
halfcheetah-medium-expert-v2 1.0
hopper-medium-expert-v2 1.0
walker2d-medium-expert-v2 1.0

antmaze-umaze-v2 0.1
antmaze-umaze-diverse-v2 2.0
antmaze-medium-play-v2 0.1
antmaze-medium-diverse-v2 0.1
antmaze-large-play-v2 0.1
antmaze-large-diverse-v2 0.1

Table 5: UNIVR hyperparameters in offline-to-online RL.

Env α λ

pen-cloned-v1 1.0 0.01
door-cloned-v1 2.0 0.01
hammer-cloned-v1 2.0 0.01
relocate-cloned-v1 2.0 0.01

antmaze-medium-play-v2 0.5 0.01
antmaze-medium-diverse-v2 0.5 0.01
antmaze-large-play-v2 0.5 0.01
antmaze-large-diverse-v2 0.5 0.01


