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Abstract

Feature importance (FI) estimates are a popular form of explanation, and they are
commonly created and evaluated by computing the change in model confidence
caused by removing certain input features at test time. For example, in the standard
Sufficiency metric, only the top-k most important tokens are kept. In this paper, we
study several under-explored dimensions of FI explanations, providing conceptual
and empirical improvements for this form of explanation. First, we advance a
new argument for why it can be problematic to remove features from an input
when creating or evaluating explanations: the fact that these counterfactual inputs
are out-of-distribution (OOD) to models implies that the resulting explanations
are socially misaligned. The crux of the problem is that the model prior and
random weight initialization influence the explanations (and explanation metrics)
in unintended ways. To resolve this issue, we propose a simple alteration to the
model training process, which results in more socially aligned explanations and
metrics. Second, we compare among five approaches for removing features from
model inputs. We find that some methods produce more OOD counterfactuals than
others, and we make recommendations for selecting a feature-replacement function.
Finally, we introduce four search-based methods for identifying FI explanations
and compare them to strong baselines, including LIME, Anchors, and Integrated
Gradients. Through experiments with six diverse text classification datasets, we
find that the only method that consistently outperforms random search is a Parallel
Local Search (PLS) that we introduce. Improvements over the second best method
are as large as 5.4 points for Sufficiency and 17 points for Comprehensiveness.1

1 Introduction

Estimating feature importance (FI) is a common approach to explaining how learned models make
predictions for individual data points [51, 46, 34, 57, 36, 11]. FI methods assign a scalar to each
feature of an input representing its “importance” to the model’s output, where a feature may be an
individual component of an input (such as a pixel or a word) or some combination of components.
Alongside these methods, many approaches have been proposed for evaluating FI estimates (also
known as attributions) [41, 1, 13, 22, 20, 67]. Many of these approaches use test-time input ablations,
where features marked as important are removed from the input, with the expectation that the model’s
confidence in its original prediction will decline if the selected features were truly important.

1All supporting code for experiments in this paper is publicly available at https://github.com/
peterbhase/ExplanationSearch.
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For instance, according to the Sufficiency metric [13], the best FI explanation is the set of features
which, if kept, would result in the highest model confidence in its original prediction. Typically the
top-k features would be selected according to their FI estimates, for some specified sparsity level k.
Hence, the final explanation e is a k-sparse binary vector in {0, 1}d, where d is the dimensionality of
the chosen feature space. For an explanation e and a model f that outputs a distribution over classes
p(y|x) = f(x), Sufficiency can be given as:

Suff(f, x, e) = f(x)ŷ − f(Replace(x, e))ŷ
where ŷ = argmaxy f(x)y is the predicted class for x and the Replace function replaces features
in x with some uninformative feature at locations corresponding to 0s in the explanation e.

The Replace function plays a key role in the definition of such metrics because it defines the
counterfactual input that we are comparing the original input with. Though FI explanations are often
presented without mention of counterfactuals, all explanations make use of counterfactual situations
[38], and FI explanations are no exception. The only way we can understand what makes some
features “important” to a particular model prediction is by reference to a counterfactual input which
has its important features replaced with a user-specified (uninformative) feature.

In this paper, we study several under-explored dimensions of the problem of finding good explanations
according to test-time ablation metrics including Sufficiency and a related metric, Comprehensiveness,
with a focus on natural language processing tasks. We describe three primary contributions below.

First, we argue that standard FI explanations are heavily influenced by the out-of-distribution (OOD)
nature of counterfactual model inputs, which results in socially misaligned explanations. We use
this term, first introduced by Jacovi and Goldberg [24], to describe a situation where an explanation
communicates a different kind of information than the kind that people expect it to communicate.
Here, we do not expect the model prior or random weight initialization to influence FI estimates. This
is a problem insofar as FI explanations are not telling us what we think they are telling us. We propose
a training algorithm to resolve the social misalignment, which is to expose models to counterfactual
inputs during training, so that counterfactuals are not out-of-distribution at test time.

Second, we systematically compare Replace functions, since this function plays an important role in
evaluating explanations. To do so, we remove tokens from inputs using several Replace functions,
then measure how OOD these ablated inputs are to the model. We compare methods that remove
tokens entirely from sequences of text [41, 13], replace token embeddings with the zero embedding or
a special token [34, 57, 1, 65, 57], marginalize predictions over possible counterfactuals [68, 30, 63],
and edit the input attention mask rather than the input text. Following our argument regarding the
OOD problem (Sec. 4), we recommend the use of some Replace functions over others.

Third, we provide several novel search-based methods for identifying FI explanations. While finding
the optimal solution to argmaxe Suff(f, x, e) is a natural example of binary optimization, a problem
for which search algorithms are a common solution [43, 49, 3], we are aware of only a few prior
works that search for good explanations [19, 47, 15]. We introduce our novel search algorithms for
finding good explanations by making use of general search principles [43]. Based on experiments
with two Transformer models and six text classification datasets (including FEVER, SNLI, and
others), we summarize our core findings as follows:

1. We propose to train models on explanation counterfactuals and find that this leads to greater model
robustness against counterfactuals and yields drastic differences in explanation metrics.

2. We find that some Replace functions are better than others at reducing counterfactual OOD-ness,
although ultimately our solution to the OOD problem is much more effective.

3. We introduce four novel search-based methods for identifying explanations. Out of all the methods
we consider (including popular existing methods), the only one that consistently outperforms random
search is the Parallel Local Search (PLS) that we introduce, often by large margins of up to 20.8
points. Importantly, we control for the compute budget used by each method.

2 Related Work

Feature Importance Methods. A great number of methods have been introduced for FI estimation,
drawing upon local approximation models [46, 47, 31], attention weights [25, 61, 66], model gradients
[51, 50, 57, 52], and model-based feature selection [4, 2, 62, 42, 8, 11]. While search approaches are
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regularly used to solve combinatorial optimization problems in machine learning [49, 5, 3, 16, 40],
we know of only a few FI methods based on search [19, 47, 15]. Fong and Vedaldi [19] perform
gradient descent in explanation space, while Ribeiro et al. [47] search for probably-sufficient subsets
of the input (under a perturbation distribution). In concurrent work, Du and Xu [15] propose a genetic
search algorithm for identifying FI explanations. We introduce several novel search algorithms for
finding good explanations, including (1) a gradient search similar to Fong and Vedaldi [19], a (2)
local heuristic search inspired by an adversarial attack method [16], (3) a global heuristic search, and
(4) a parallel local search (PLS) making use of general search principles [43].

Choice of Replace Function. Past evaluations of explanation methods typically remove tokens or
words from the text entirely [41, 13] or replace them with fixed feature values [22, 64]. Methods for
creating explanations also use several distinct approaches, including (1) replacing token embeddings
with the zero vector [34, 57, 1], (2) using a special token [65, 57], (3) marginalizing predictions
over a random variable representing an unobserved token [68, 30, 63, 27], and (4) adversarially
selecting counterfactual features [23]. Sturmfels et al. [55] carry out a case study involving a few
Replace functions for a vision model, which they compare via test-time ablations with image
blurring techniques, though the case study is not intended to be a full comparison of methods. Haug
et al. [21] assess a number of Replace functions for explanation methods used with tabular data, but
they compare between functions to use when generating explanations, rather than when evaluating
explanations, for which they offer no recommendation. In addition to evaluating Replace functions
from the above works, we also consider setting attention mask values for individual tokens to 0.

The Out-of-distribution Problem of Explanations. Many papers have expressed concerns over
how removing features from an input may result in counterfactuals that are out-of-distribution
to a trained model [65, 57, 19, 7, 22, 30, 23, 63, 56, 27, 45, 21, 48, 28, 59]. In response to the
problem, some have proposed to marginalize model predictions over possible counterfactual inputs
[68, 30, 63, 27], use counterfactuals close to real inputs [7, 48], weight their importance by their
closeness to real inputs [45], or to adversarially select counterfactual features rather than use any
user-specified features [23]. Others reject the whole notion of test-time ablations, preferring metrics
based on train-time ablations [22]. Jethani et al. [28] propose a specialized model for evaluating
explanations that is trained on counterfactual inputs in order to make them in-distribution, but since
the evaluation model is distinct from the model used to solve the task, explanation metrics calculated
using this evaluation model may not reflect the faithfulness of explanations to the task model. In
concurrent work, Vafa et al. [59] independently adopt a solution equivalent to our Counterfactual
Training with an Attention Mask Replace function, an approach which we empirically justify in
Sec. 5. In general, prior works make arguments for their approach based on intuition or basic machine
learning principles, such as avoiding distribution shift. In Sec. 4, we give a more detailed argument
for preferring in-distribution counterfactuals on the basis of social alignment, a concept introduced
by Jacovi and Goldberg [24], and we propose a solution to the OOD problem. Our solution allows
for test-time evaluation of explanations of a particular model’s decisions for individual data points,
unlike similar proposals which either evaluate large sets of explanations all at once [22] or use a
separate model trained specifically for evaluation rather than the blackbox model [28].

3 Problem Statement

Feature Importance Metrics. The problem we are investigating is to find good feature importance
explanations for single data points, where explanation are evaluated under metrics using test-time
ablations of the input. In this context, an explanation for an input in a d dimensional feature space
is a binary vector e ∈ {0, 1}d, which may be derived from discretizing an FI estimate v ∈ Rd. We
consider two primary metrics, Sufficiency and Comprehensiveness [13]. Sufficiency measures whether
explanations identify a subset of features which, when kept, lead the model to remain confident
in its original prediction for a data point. Comprehensiveness, meanwhile, measures whether an
explanation identifies all of the features that contribute to a model’s confidence in its prediction, such
that removing these features from the input lowers the model’s confidence.

The Sufficiency metric for an explanation e ∈ {0, 1}d and model p(y|x) = fθ(x) is given as

Suff(fθ, x, e, s) = fθ(x)ŷ − fθ(Replaces(x, e))ŷ (1)

where ŷ = argmaxy f(x)y is the predicted class for x, and the Replaces function retains a pro-
portion s of the input features (indicated by e) while replacing the remaining features with some
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user-specified feature. In order to control for the explanation sparsity, i.e. the proportion s of tokens
in the input that may be retained, we average Sufficiency scores across sparsity levels in {.05, .10,
.20, .50}, meaning between 5% and 50% of tokens in the input are retained [13]. A lower Sufficiency
value is better, as it indicates that more of the model’s confidence is explained by just the retained
features (increasing fθ(Replace(x, e))ŷ).

Similarly, Comprehensiveness is given as Comp(fθ, x, e, s) = fθ(x)ŷ − fθ(Replaces(x, e))ŷ but
with sparsity values in {.95, .90, .80, .50}, as we are looking to remove features that are important
to the prediction (while keeping most features). A higher Comprehensiveness value is better, as it
indicates that the explanation selects more of the evidence that contributes to the model’s confidence
in its prediction (resulting in a lower fθ(Replace(x, e))ŷ).

Overall Objective. Finally, our overall Sufficiency and Comprehensiveness objectives are given by
averaging Suff (or Comp) scores across several sparsity levels. With a model p(y|x) = f(x), a single
data point x with d features, and a set of sparsity levels S, the Sufficiency objective is optimized by
obtaining a set E = {ei}|S|i=1 with one explanation per sparsity level as

argmax
E

1

|S|

|S|∑
i=1

Suff(f, x, ei, si) s.t. ei ∈ {0, 1}d and
∑
d

e
(d)
i ≤ ceiling(si · d)

where the ceiling function rounds up the number si · d of tokens to keep. When optimizing for
Comprehensiveness, we use the Comp and argmin functions, and the inequality is flipped. In general,
we will optimize this objective using a limited compute budget, further described in Sec. 6.2.

4 The Out-of-Distribution Problem in Explanations

In this section, we first give a full argument for why it is problematic for explanations to be created
or evaluated using OOD counterfactuals. Then, we propose a solution to the OOD problem. We rely
on this argument in our comparison of Replace functions in Sec. 5. We also assess our proposed
solution to the OOD problem in Sec. 5 and later make use of this solution in Sec. 6.

The OOD problem for explanations occurs when a counterfactual input used to create or evaluate an
explanation is out-of-distribution (OOD) to a model. Here, we take OOD to mean the input is not
drawn from the data distribution used in training (or for finetuning, when a model is finetuned) [39].
In general, counterfactual data points used to produce FI explanations will be OOD because they
contain feature values not seen in training, like a MASK token for a language model. A long line of
past work raises concerns with this fact [65, 57, 19, 7, 22, 30, 23, 63, 56, 27, 45, 21, 48, 28, 59]. The
most concrete argument on the topic originates from Hooker et al. [22], who observe that using OOD
counterfactuals makes it difficult to determine whether model performance degradation is caused
by “distribution shift” or by the removal of information. It is true that, for a given counterfactual,
a model might have produced a different prediction if that counterfactual was in-distribution rather
than out-of-distribution. But this is a question we cannot ask about a single, trained model, where
there is no ambiguity about what causes a drop in model confidence when replacing features: the
features in the input were replaced, and this changes that model’s prediction. If the counterfactual
was in-distribution, we would be talking about a different model, with a different training distribution.
Hence, we believe we need a stronger argument for why we should not use OOD counterfactuals
when explaining a trained model’s behavior.

Our principal claim is that feature importance explanations for a standardly trained neural model
are socially misaligned, which is undesirable. Jacovi and Goldberg [24] originally introduce this
term as they describe shortcomings of explanations from a pipeline (select-predict) model, which is
a kind of classifier designed to be interpretable. Explanations are socially misaligned when people
expect them to communicate one kind of information, and instead they communicate a different
kind of information. For example, if we expected an explanation to be the information that a model
relied on in order to reach a decision, but the explanation was actually information selected after a
decision was already made, then we would say that the explanations are socially misaligned. Our
argument now proceeds in two steps: first, we outline what the social expectations are for feature
importance explanations, and then we argue that the social expectations are violated due to the fact
that counterfactuals are OOD.
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Figure 1: Causal diagram of a feature importance
explanation for a trained model and an input.

We suggest that, for a particular trained model
and a particular data point, people expect a
feature importance explanation to reflect how
the model has learned to interpret features as
evidence for or against a particular decision.2
This social expectation is upheld if FI explana-
tions are influenced only by the interaction of an
untrained model with a training algorithm and
data. But our expectations are violated to the ex-
tent that FI explanations are influenced by factors such as the choice of model prior and random seed
(which we do not intend to influence FI explanations). We depict these possible upstream causes
of individual FI explanations in Fig. 1. In fact, the model prior and random seed are influential to
FI explanations when the counterfactuals employed in these explanations are OOD to the model. A
simple example clearly illustrates the potential influence of model priors: Suppose one trained a BERT
model to classify the sentiment of individual words using training data from a sentiment dictionary,
then obtained feature importance explanations with the MASK token Replace function. In this
situation, model predictions on counterfactual data are always equal to the prediction for a single
MASK token, fθ(MASK). So, by construction, the MASK token never appears in the training data,
but FI explanations for this model make use of the quantity fθ(MASK). Since a model could not have
learned its prediction fθ(MASK) from the data, this quantity will be largely determined by the model
prior and other training hyperparameters, and therefore explanations based on this prediction are
socially misaligned. Now, in general, we know that neural models are sensitive to random parameter
initialization, data ordering (determined by the random seed) [14], and hyperparameters (including
regularization coefficients) [9, 44, 60], even as evaluated on in-distribution data. For OOD data, then,
a neural model will still be influenced by these factors, but the model has no data to learn from in
this domain. As a result, FI explanations are socially misaligned to the extent that these unexpected
factors influence the explanations (while the expected factors like data are not as influential). In
other words, we do not expect explanations to influenced by random factors, the priors of the model
designer, or uninterpretable hyperparameters, but we do expect them to be influenced by what the
model learns from data.

The argument applies equally to explanation metrics. When metrics are computed using OOD
counterfactuals, the scores are influenced by unexpected factors like the model prior and random
seed, rather than the removal of features that a model has learned to rely on. As a result, the metrics
are socially misaligned. They do not represent explanation quality in the way we expect them to.

The solution to the OOD problem is to align the train and test distributions, which we do by
exposing the model to counterfactual inputs during training, a method we term Counterfactual
Training. Since common explanation methods can require hundreds or thousands of model forward
passes when explaining predictions [46, 57], explanations from these methods would be prohibitively
expensive to obtain during training. We therefore propose to train with random explanations that
remove most of the input tokens, which provides a good objective in theory for models to learn
the counterfactual distribution that will be seen at test time [28]. Specifically, we double the
inputs in each training batch, adding a Replace(x, e) version of each input (with the same label)
according to a random explanation e with sparsity randomly selected from {.05, .1, .2, .5}. The
resulting Counterfactual-Trained (CT) models make in-distribution predictions for both observed
and counterfactual data points. While we cannot guarantee that this approach fully eliminates the
influence of the model prior and random seed on FI explanations, the fact that explanations are
influenced by what the model learns from data will resolve social misalignment to a great extent. We
find that these models suffer only slight drops in test set accuracy, by 0.7 points on average across six
datasets (see Table ?? in Supplement). But we observe that this approach greatly improves model
robustness to counterfactual inputs, meaning the counterfactuals are now much more in-distribution
to models (described further in Sec. 5). Similar to the goals of ROAR [22] and EVAL-X [28], our
proposed solution also aims to align the train and test-time distributions. However, our approach
allows for test-time evaluation of individual explanations for a particular trained model, while ROAR
only processes large sets of explanations all at once and EVAL-X introduces a specialized model for
evaluation, which may not reflect the faithfulness of explanations to the task model.

2We mean “people” to refer to the typical person who has heard the standard description of these explanations,
i.e. that they identify features that are “important” to a model decision. Of course, there will be some diversity in
how different populations interpret feature importance explanations [18].
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Figure 2: Model sensitivity to input ablations for several choices of Replace function and training
algorithm. On the left we show the sensitivity of standardly trained models. On the right we show the
effect of using Counterfactual-Trained models.

5 Analysis of Counterfactual Input OOD-ness

Here, we assess how out-of-distribution the counterfactual inputs given by Replace functions are to
models, and we measure the effectiveness of Counterfactual Training. We do this before designing or
evaluating explanation methods because, given our argument in Sec. 4, it is important to first identify
which Replace function and training methods are most appropriate to use for these purposes.

Experiment Design. We compare between Replace functions according to how robust models
are to test-time input ablations using each function, where the set of input features to be removed
is fixed across the functions. We measure robustness by model accuracy, which serves as a proxy
for how in-distribution or out-of-distribution the ablated inputs are. If we observe differences in
model accuracies between Replace functions for a given level of feature sparsity, we can attribute
the change in the input OOD-ness to the Replace function itself. In the same manner, we compare
between Counterfactual-Trained (CT) models and standardly trained models (termed as Standard).

Specifically, we train 10 BERT-Base [12] and RoBERTa-Base [35] on two benchmark text classifica-
tion datasets, SNLI [6] and SST-2 [54]. These are all Standard models, without the counterfactual
training we propose. We use ten random seeds for training these models. Then, we evaluate how
robust the models are to input ablations, where we remove a proportion of random tokens using one
of five Replace functions (i.e. we Replace according to a random explanation). We evaluate across
proportions in {0.2, 0.5, 0.8}. The five Replace functions we test are:

1. Attention Mask. We introduce this Replace function, which sets a Transformer’s attention mask
values for removed tokens to 0, meaning their hidden representations are never attended to.

2. Marginalize. This method marginalizes model predictions over counterfactuals drawn from a
generative model pφ(x) of the data, i.e. as argmaxy ln

∑
x̃∼pφ(x̃|x,e) pθ(y|x̃)pφ(x̃|x, e), where

pφ(x̃|x, e) is the distribution over tokens to be replaced given by e.g. BERT [68, 30, 7, 63].
3. MASK Token. In this method, we simply replace tokens with the MASK token.
4. Slice Out. This approach removes selected tokens from the input sequence itself, such that the

resulting sequence has a lower number of tokens.
5. Zero Vector. Here, we set the token embeddings for removed tokens to the zero vector.

We train additional CT models for BERT-Base on SNLI, with ten random seeds per model, for all
Replace functions except Marginalize, since this function is exceedingly expensive to use during
Counterfactual Training. For further details, see the Supplement.

Results for Replace functions. We show the results of this experiment in Fig. 2, via boxplots of the
drops in accuracy for each of the 10 models per condition. First, we describe differences in Replace
functions for Standard models, then we discuss the effect of Counterfactual Training. On the left in
Fig. 2, we see that Standard models are much more sensitive to some Replace functions than others.
The Attention Mask and Mask Token functions are the two best methods. The best of these two
methods outperforms the third best method by up to 1.61 points with BERT and SNLI (p = .0005),3

3p-values for two-sided difference in means tests are calculated by block bootstrap with all data points and
model seeds being resampled 100k times [17].
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5.48 points with RoBERTa and SNLI (p < 1e−4), 2.42 points with BERT and SST-2 (p = 0.0008),
and 4.72 points with RoBERTa and SST-2 (p < 1e−4). The other methods often far underperform
the best method. For instance, with BERT on SST-2, Zero Embedding is up to 10.45 points worse
than Mask Token (p < 1e−4), and with RoBERTa on SST-2, Slice Out underperforms Attention
Mask by up to 4.72 points (p < 1e−4). Marginalize is regularly more than 10 points worse than the
best method. Overall, we recommend that, when not using Counterfactual Training, researchers use
either the Attention Mask or Mask Token Replace functions.

Counterfactual Training vs. Standard Training. On the right side of Fig. 2, we see the effect
of Counterfactual Training on model robustness for several Replace functions. We find that coun-
terfactual inputs are much less OOD for Counterfactual-Trained models than for Standard models,
regardless of the Replace function used. The improvement in robustness is up to 22.9 points. More-
over, the difference between Replace functions is almost entirely erased, though we do observe a
statistically significant difference between Attention Mask and Zero Embedding with 80% of tokens
removed (by 2.23 points, p < 1e−4). Given these results, and following Sec. 4, we ultimately rec-
ommend that researchers use Counterfactual Training with the Attention Mask, Mask Token,
or Slice Out Replace function whenever they intend to create FI explanations.

6 Explanation Methods and Experiments

6.1 Explanation Methods

We describe explanation methods we consider below, with implementation details in the Supplement.

Salience Methods. One family of approaches we consider assigns a scalar salience to each feature
of an input. The key property of these scores is that they allow one to rank-order features. We obtain
binarized explanations through selecting the top-k features, or up to the top-k features when some
scores are negative (suggesting they should not be kept). We list the methods below:4

1. LIME. LIME estimates FI by learning a linear model of a model’s predicted probabilities with
samples drawn from a local region around an input [46]. Though it is common to use the Slice Out
Replace function with LIME, we use the Attention Mask Replace function (following Sec. 5),
meaning we sample local attention masks rather than local input sequences.

2. Vanilla Gradients. We obtain model gradients w.r.t. the model input as salience scores, one early
method for explanation [33]. We compute the gradient of the predicted probability w.r.t. input token
embeddings, and we obtain a single value per token by summing along the embedding dimension.

3. Integrated Gradients. We evaluate the Integrated Gradients (IG) method of Sundararajan et al.
[57]. This method numerically integrates the gradients of a model output w.r.t. its input along a
path between the observed input and a user-selected baseline. Given our results in Sec. 5, we use
a repeated MASK token embedding for our baseline x̃ rather than the all-zero input suggested by
Sundararajan et al. [57] for text models. We use the model’s predicted probability as the output, and
to obtain token-level salience scores, we sum the output of IG along the embedding dimension.

Search Methods. An alternative class of methods searches through the space of possible explana-
tions. Search methods are regularly used to solve combinatorial optimization problems in machine
learning [49, 5, 3, 16, 40]. All search methods use the Attention Mask Replace function, and the
search space is restricted to explanations of the maximum allowable sparsity (or minimum, with
Comprehensiveness), except for Anchors which takes a maximum number of features as a parameter.

1. Random Search. For each maximum explanation sparsity k (or minimum, for Comprehensiveness),
we randomly sample a set of k-sparse explanations, compute the current objective for each of them,
and choose the best explanation under the objective.

2. Anchors. Ribeiro et al. [47] introduce a method for finding a feature subset that almost always
yields the same model prediction as its original prediction for some data point, as measured among
data points sampled from a distribution centered on the original data point. Explanations are also
preferred to have high coverage, meaning the feature subset is likely to be contained in a local sample.
The solution is identified via a Multi-Armed Bandit method combined with a beam search.

4In early experiments, we found that a parametric model (similar to [4, 2, 42]) performed far worse than
other salience methods, and hence we leave out parametric models from further consideration.
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3. Exhaustive Search. Exhaustive search returns the optimal solution after checking the entire solution
space. This is prohibitively expensive with large inputs, as there is a combinatorial explosion in the
number of possible explanations. However, we are able to exactly identify optimal explanations for
short sequences, typically with 10 or fewer tokens.

4. Gradient Search. Fong and Vedaldi [19] propose to search through a continuous explanation
space by gradient descent. We introduce a Gradient Search that uses discrete explanations, because
continuous explanations do not reflect test-time conditions where discrete explanations must be used.
For an input of length L, this method sequentially updates a continuous state vector s ∈ RL via
gradient descent to minimize a regularized cross-entropy loss between the model prediction on the
input x and the model prediction for Replace(x, et), where et is a discrete explanation sampled
from a distribution p(et|st) using the Gumbel-Softmax estimator for differentiability [37, 26]. The
regularizer maintains sparsity of the solution. The final explanation is obtained from the last state st.

5. Taylor Search. Inspired by HotFlip [16], this method explores the solution space by forecasting the
change in the objective using a first-order Taylor approximation. Specifically, this is a local search
method with a heuristic function computed as follows: We first calculate the gradient g ∈ RL of
the cross-entropy loss (same loss as Gradient Search) with respect to the explanation et. Then we
find the two indices i and j as the solution to argmaxi,j g

(i) − g(j). The next state is obtained by

setting e(i)t = 1 and e(j)t = 0. This is a first-order approximation to the change in loss between
the new and old state, based on the Taylor expansion of the loss [16]. Note when optimizing for
Comprehensiveness, we use the argmin. Following Ebrahimi et al. [16], we ultimately use this
search heuristic within a beam search, starting from a random explanation, with width w = 3.

6. Ordered Search. Next, we introduce a global search algorithm, Ordered Search. This method
searches through all explanations in an order given by a scoring function f : e→ R. We only require
that f is linear in e, as this allows for efficient ordering of the search space using a priority queue [3].
The algorithm proceeds by first estimating parameters for fθ, then searching through explanations in
order of their score, θT e. For the first stage, we obtain parameters for fθ from the per-token salience
scores given by LIME, which is the best salience method evaluated in Sec. 6. In the second stage, we
enumerate the search space in order of the score given by fθ. We allocate 25% of the compute budget
to the first stage and 75% to the second (measured in terms of forward passes).

7. Parallel Local Search (PLS). Lastly, we again consider the class of local search algorithms,
which have a long history of success with constrained optimization problems [43, 3]. We propose
a parallelized local search algorithm (PLS) tailored to the problem at hand. Given a number r of
parallel runs to perform, a proposal function Propose, and compute budget b per run, an individual
search proceeds as follows: (1) Sample a random initial explanation e1 and compute the objective
function for that explanation. (2) For the remaining budget of b−1 steps: sample a not-already-seen
explanation et according to Propose and adopt et as the new state only if the objective is lower
at et than at the current state. The Propose function samples not-already-seen explanations from
neighboring states to the current state. We use r = 10 parallel runs following tuning results.

6.2 Experimental Setup

Data. We compare the above explanation methods on six benchmark text classification datasets:
SNLI [6], BoolQ [10], Evidence Inference [32], FEVER [58], MultiRC [29], and SST-2 [53]. One
important distinction among these datasets is that BoolQ, FEVER, MultiRC, and Evidence Inference
data points include both a query and an accompanying document. The query is typically critical
information indicating how the model should process the document, and therefore we never replace
query tokens. We use 500 test points from each dataset to compare methods. See Table ?? in the
Supplement for dataset statistics, including average sequence length.

Models. We train ten seeds of BERT-Base models on each dataset [12], which we term Standard
models. For each dataset we train another ten Counterfactual-Trained (CT) models using the Attention
Mask Replace function, following the approach outlined in Sec. 4 (further details in Supplement).

Controlling for Compute Budget. We wish to control for the available compute budget in order to
fairly compare explanation methods. Some explanations require a single forward and backward pass
[51, 33], while others can require hundreds of forward and backward passes [57] or thousands of
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Table 1: Explanation metrics across methods and datasets
Sufficiency ↓ Comprehensiveness ↑

Dataset Method Standard Model CT Model Standard Model CT Model

SNLI

LIME 20.00 (2.02) 27.08 (1.68) 82.18 (2.82) 75.34 (1.93)
Int-Grad 43.76 (3.27) 32.91 (2.36) 34.01 (2.55) 43.22 (2.28)
Anchors 11.93 (1.53) 30.96 (1.87) 55.72 (2.60) 48.86 (2.38)
Gradient Search 17.55 (1.47) 33.98 (1.43) 53.15 (2.53) 49.36 (1.95)
Taylor Search 6.91 (1.10) 28.00 (1.46) 73.20 (2.57) 66.76 (2.12)
Ordered Search -1.45 (0.93) 15.06 (1.37) 87.78 (2.41) 84.67 (1.61)
Random Search -1.54 (0.96) 15.38 (1.39) 87.36 (2.47) 84.63 (1.68)
PLS -1.65 (1.07) 14.16 (1.38) 87.95 (2.55) 86.18 (1.45)

BoolQ

LIME 2.15 (1.75) -1.56 (0.63) 52.02 (3.69) 36.25 (3.45)
Int-Grad 20.78 (3.57) 9.05 (1.53) 16.80 (1.57) 12.20 (1.68)
Anchors 11.98 (2.62) 6.07 (1.06) 29.87 (4.17) 15.46 (1.97)
Gradient Search 5.12 (1.41) 1.65 (0.81) 30.04 (2.58) 17.65 (1.85)
Taylor Search 6.01 (1.33) 2.28 (0.87) 46.32 (3.89) 26.65 (2.68)
Ordered Search 0.09 (0.84) -2.58 (0.70) 51.59 (3.52) 34.36 (3.34)
Random Search -0.58 (0.63) -2.51 (0.70) 55.78 (3.71) 31.62 (3.06)
PLS -1.17 (0.47) -3.52 (0.88) 72.78 (4.06) 47.80 (3.57)

Evidence
Inference

LIME -16.07 (2.84) -14.92 (1.38) 47.60 (5.66) 33.97 (4.22)
Int-Grad 1.22 (4.42) -2.98 (1.68) 26.51 (2.68) 20.87 (2.57)
Anchors 7.08 (4.70) 3.04 (0.99) 25.01 (6.52) 13.89 (1.55)
Gradient Search -10.57 (2.58) -7.56 (1.46) 31.73 (4.43) 18.07 (2.13)
Taylor Search -4.55 (2.66) -3.33 (1.27) 41.95 (5.63) 26.70 (3.00)
Ordered Search -16.80 (2.75) -14.26 (1.36) 45.37 (5.53) 31.14 (3.73)
Random Search -17.05 (2.83) -12.69 (1.30) 42.81 (6.00) 26.48 (3.15)
PLS -20.76 (3.77) -20.33 (2.65) 56.31 (9.81) 38.71 (3.91)

FEVER

LIME -0.24 (0.50) 0.39 (0.96) 33.86 (3.43) 22.06 (2.36)
Int-Grad 9.72 (1.80) 4.99 (1.40) 17.81 (2.47) 13.69 (1.71)
Anchors 6.19 (1.22) 6.36 (1.10) 20.82 (2.58) 11.94 (1.84)
Gradient Search 0.66 (0.68) 2.63 (1.12) 19.26 (2.68) 11.44 (1.65)
Taylor Search 4.17 (0.96) 4.20 (1.20) 24.51 (2.78) 15.62 (1.85)
Ordered Search -1.26 (0.41) -0.01 (0.90) 31.79 (3.28) 18.90 (2.46)
Random Search -1.51 (0.51) -1.24 (2.33) 32.47 (3.33) 18.84 (2.11)
PLS -2.04 (0.62) -3.66 (0.82) 37.72 (3.28) 24.07 (2.46)

MultiRC

LIME -5.20 (1.18) -5.90 (1.19) 39.75 (4.84) 28.57 (2.18)
Int-Grad 13.19 (3.14) 4.66 (1.71) 15.53 (3.39) 11.84 (1.31)
Anchors 5.40 (3.34) 3.33 (1.27) 24.53 (8.77) 14.55 (1.66)
Gradient Search -0.09 (1.33) -0.73 (1.18) 20.16 (2.92) 11.41 (1.13)
Taylor Search 7.54 (2.53) 1.43 (1.47) 30.76 (4.04) 20.15 (1.83)
Ordered Search -6.43 (0.98) -5.49 (1.13) 35.70 (4.40) 24.38 (2.03)
Random Search -7.42 (1.08) -5.97 (1.22) 35.29 (4.59) 22.19 (1.81)
PLS -10.17 (1.43) -9.77 (1.49) 39.95 (5.44) 26.96 (2.19)

forward passes [46]. Since this is expensive to perform, we limit each method to a fixed number of
forward and backward passes (counted together), typically 1000 in total, to obtain a single explanation.

6.3 Main Results

In Table 1, we show Suff and Comp scores across methods and datasets, for both the Standard and
Counterfactual-Trained (CT) models. 95% confidence intervals are shown in parentheses, obtained
by bootstrap with data and model seeds resampled 100k times. Bolded numbers are the best in their
group at a statistical significance threshold of p < .05. We give results for SST-2 in the Supplement,
including for Exhaustive Search since we use short sequences there, as well as for Vanilla Gradient
as it performs much worse than other methods. We summarize our key observations as follows:

1. PLS performs the best out of all of the explanation methods, and it is the only method to
consistently outperform Random Search. Improvements in Sufficiency are statistically significant
for every dataset using both Standard and CT models, with differences of up to 12.9 points over
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LIME and 7.6 points over Random Search. For Comprehensiveness, PLS is the best method in 9 of
10 comparisons, 7 of which are statistically significant, and improvements are as large as 20.8 points
over LIME and 17 points over Random Search.

2. LIME is the best salience method on both Suff and Comp metrics, but it is still outperformed
by Random Search on Sufficiency in 9 of 10 comparisons, by up to 21.5 points. LIME does
appear to perform better than Random Search on Comprehensiveness with three of five datasets for
Standard models and four of five with CT models, where the largest improvement over Random
Search is 7.49 points.

3. Suff and Comp scores are often much worse for CT models than for Standard models. With
Random Search, for instance, Comp scores are worse for all datasets (by up to 24.16 points), and
Suff scores are worse by 16.92 points for SNLI, though there are not large changes in Suff for
other datasets. The differences here show that the OOD nature of counterfactual inputs can heavily
influence metric scores, and they lend support to our argument about the OOD problem in Sec. 4. In
particular, these metrics are more easily optimized when counterfactuals are OOD because it is easier
to identify feature subsets that send the model confidence to 1 or 0.

Given the results above, we recommend that explanations be obtained using PLS for models trained
with Counterfactual Training. Though explanation metrics are often worse for CT models, the only
reason for choosing between Standard and CT models is that CT models’ explanations are socially
aligned, while Standard models’ explanations are socially misaligned. It would be a mistake to prefer
standardly trained models on the grounds that they are “more easily explained” when this difference
is due to the way we unintentionally influence model behavior for OOD data points. When using
CT models, however, we should be comfortable optimizing for Sufficiency and Comprehensiveness
scores, and PLS produces the best explanations under these metrics.

We give additional results for RoBERTa and reduced search budgets in the Supplement.

7 Conclusion

In this paper, we provide a new argument for why it is problematic to use out-of-distribution
counterfactual inputs when creating and evaluating feature importance explanations. We present our
Counterfactual Training solution to this problem, and we recommend certain Replace functions over
others. Lastly, we introduce a Parallel Local Search method (PLS) for finding explanations, which is
the only method we evaluate that consistently outperforms random search.

8 Broader Impacts and Limitations

There are several positive broader impacts of improved feature importance estimation methods and
solutions to the OOD problem. When model developers and end users wish to understand the role
of certain features in model decisions, FI estimation methods help provide an answer. Access to FI
explanations can allow for (1) developers to check that models are relying on the intended features
when making decisions, and not unintended features, (2) developers to discover which features
are useful to a model accomplishing a task, and (3) users to confirm that a decision was based on
acceptable features or dispute the decision if it was not. Our solution to the OOD problem helps align
FI explanations with the kind of information that developers and users expect them to convey, e.g. by
limiting the influence of the model prior on the explanations.

Nevertheless, there are still some risks associated with the development of FI explanations, mainly
involving potential misuse and over-reliance. FI explanations are not summaries of data points or
justifications that a given decision was the “right” one. When explanations are good, they reflect what
the model has learned, but it need not be the case that what the model has learned is good and worth
basing decisions on. It is also important to emphasize that FI explanations are not perfect, as there is
always possibly some loss of information by making explanations sparse. Trust in and acceptance of
these explanations should be appropriately calibrated to the evidence we have for their faithfulness.
Lastly, we note that we cannot guarantee that our Counterfactual Training will eliminate the influence
of the random seed and model prior on explanations, meaning that FI explanations for the models
we consider will still not be perfectly socially aligned. It will be valuable for future work to further
explore how these factors influence the explanations we seek for models.
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