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Abstract

Previous studies have proved that cross-lingual
knowledge distillation can significantly im-
prove the performance of pre-trained mod-
els for cross-lingual similarity matching tasks.
However, the student model needs to be large
in this operation. Otherwise, its performance
will drop sharply, thus making it impractical
to be deployed to memory-limited devices. To
address this issue, we delve into cross-lingual
knowledge distillation and propose a multi-
stage distillation framework for constructing a
small-size but high-performance cross-lingual
model. In our framework, contrastive learning,
bottleneck, and parameter recurrent strategies
are combined to prevent performance from be-
ing compromised during the compression pro-
cess. The experimental results demonstrate that
our method can compress the size of XLM-R
and MiniLM by more than 50%, while the per-
formance is only reduced by about 1%.

1 Introduction

On the internet, it is widespread to store texts in
dozens of languages in one system. Cross-lingual
similar text matching in multilingual systems is a
great challenge for many scenarios, e.g., search en-
gines, recommendation systems, question-answer
robots, etc. (Cer et al., 2017; Hardalov et al., 2020;
Asai et al., 2021).

In the monolingual scenario, benefiting from
the robust performance of the pre-trained language
models (PLMs) (e.g., BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), T5 (Raffel et al., 2020),
etc.), significant success has been achieved in text-
similarity matching tasks. For example, Reimers
and Gurevych (2019) proposed the SBERT model
trained with similar text pairs and achieved the
state-of-the-art performance in the supervised sim-
ilarity matching. In unsupervised scenarios, Gao
et al. (2021) proposed the SimCSE model, which

∗∗Contribution during internship at Tencent Inc.

STS2017
STS2017-extend

C
or

re
la

tio
n 

Sc
or

es
 (ρ
×1

00
)

50

60

70

80

90

The number of layers
0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 1: Evaluation results of XLM-R with different
number of encoder layers on the STS2017 monolingual
task and the STS2017-extend cross-lingual task, using
SBERT-paraphrases for knowledge distillation.

was trained on Wiki corpus through contrastive
learning task.

Drawing on the success in the monolingual sce-
nario, researchers began to introduce pre-training
technology into cross-lingual scenarios and pro-
posed a series of multilingual pre-trained models,
e.g., mBERT (Devlin et al., 2019), XLM (Conneau
and Lample, 2019), XLM-R (Conneau et al., 2020),
etc. Due to the vector collapse issue (Li et al.,
2020), the performances of these cross-lingual
models on similarity matching tasks are still not sat-
isfactory. Reimers and Gurevych (2020) injected
the similarity matching ability of SBERT into the
cross-lingual model through knowledge distillation,
which alleviated the collapse issue and improved
the performance of cross-lingual matching tasks.

Although the cross-lingual matching tasks have
achieved positive results, the existing cross-lingual
models are huge and challenging to be deployed in
devices with limited memory. We try to distill the
SBERT model into an XLM-R with fewer layers
following Reimers and Gurevych (2020). How-
ever, as shown in Figure 1, the performance will
be significantly reduced as the number of layers
decreases. This phenomenon indicates that cross-
lingual capabilities are highly dependent on the



model size, and simply compressing the number of
layers will bring a serious performance loss.

In this work, we propose a multi-stage distilla-
tion compression framework to build a small-size
but high-performance model for cross-lingual simi-
larity matching tasks. In this framework, we design
three strategies to avoid semantic loss during com-
pression, i.e., multilingual contrastive learning, pa-
rameter recurrent, and embedding bottleneck. We
further investigate the effectiveness of the three
strategies through ablation studies. Besides, we
respectively explore the performance impact of re-
ducing the embedding size and encoder size. Ex-
perimental results demonstrate that our method ef-
fectively reduces the size of the multilingual model
with minimal semantic loss. Finally, our code is
publicly available1.

The main contributions of this paper can be sum-
marized as follows:

• We validate that cross-lingual capability re-
quires a larger model size and explore the se-
mantic performance impact of shrinking the
embedding or encoder size.

• A multi-stage distillation framework is pro-
posed to compress the size of cross-lingual
models, where three strategies are combined
to reduce semantic loss.

• Extensive experiments examine the effective-
ness of these three strategies and multi-stages
used in our framework.

2 Related work

2.1 Multilingual models
Existing multilingual models can be divided into
two categories, namely Multilingual general model
and Cross-lingual representation model.

In the first category, transformer-based pre-
trained models have been massively adopted in
multilingual NLP tasks (Huang et al., 2019; Chi
et al., 2021; Luo et al., 2021; Ouyang et al., 2021).
mBERT (Devlin et al., 2019) was pre-trained on
Wikipedia corpus in 104 languages, achieved sig-
nificant performance in the downstream task. XLM
(Conneau and Lample, 2019) presented the trans-
lation language modeling (TLM) objective to im-
prove the cross-lingual transferability by leveraging
parallel data. XLM-R (Conneau et al., 2020) was

1https://github.com/KB-Ding/Multi-stage-Distillaton-
Framework

built on RoBERTa (Liu et al., 2019) using Com-
monCrawl Corpus.

In the second category, LASER (Artetxe and
Schwenk, 2019) used an encoder-decoder architec-
ture based on a Bi-LSTM network and was trained
on the parallel corpus obtained by neural machine
translation. Multilingual Universal Sentence En-
coder (mUSE) (Chidambaram et al., 2019; Yang
et al., 2020) adopted a bi-encoder architecture and
was trained with an additional translation ranking
task. LaBSE (Feng et al., 2020) turned the pre-
trained BERT into a bi-encoder mode and was opti-
mized with the objectives of mask language model
(MLM) and TLM. Recently, Mao et al. (2021) pre-
sented a lightweight bilingual sentence representa-
tion method based on the dual-transformer archi-
tecture.

2.2 Knowledge distillation

However, Multilingual models do not necessarily
have cross-lingual capabilities, especially in the
first category, in which vector spaces of different
languages are not aligned. Knowledge distillation
(Hinton et al., 2015) used knowledge from a teacher
model to guide the training of a student model,
which can be used to compress the model and align
its vector space at the same time.

For model compression, knowledge distillation
aimed to transfer knowledge from a large model to
a small model. BERT-PKD (Sun et al., 2019) ex-
tracted knowledge from both last layer and interme-
diate layers at fine-tuning stage. DistilBERT (Sanh
et al., 2019) performed distillation at pre-training
stage to halve the depth of BERT. TinyBERT (Jiao
et al., 2020) distilled knowledge from BERT at
both pre-training and fine-tuning stages. Mobile-
BERT (Sun et al., 2020) distilled bert into a model
with smaller dimensions at each layer. MiniLM
(Wang et al., 2021) conducted deep self-attention
distillation.

Unlike previous works presenting general distil-
lation frameworks, we focus on compressing mul-
tilingual pre-trained models while aligning their
cross-lingual vector spaces. In addition, we take
inspiration from Reimers and Gurevych (2020),
which successfully aligned the vector space of the
multilingual model through cross-lingual knowl-
edge distillation (X-KD). Our framework combines
the advantages of X-KD for aligning vectors and
introduces three strategies and an assistant model
to prevent performance from being compromised
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Figure 2: The overview of the model architecture and the multi-stage distillation. It consists of four stages and aims
to obtain a small multilingual student model. For convenience, we take the English SBERT as the teacher model,
XLM-R as the assistant model. < si, ti > is a pair of parallel sentences in two different language. N is the batch
size. MSE is the mean squared error loss function.

during compression.

3 Method

In this section, we will introduce our method in
detail. First, we exhibit the model architecture,
and then introduce the multi-stage distillation strat-
egy for the model training. An overview of our
approach is shown in Figure 2.

3.1 Model architecture

Given a large-size monolingual model as teacher
T and a small-size multilingual model as stu-
dent S, our goal is to transfer semantic similar-
ity knowledge from T to S and simultaneously
compress the size of S with m parallel sentences
P = {< s1, t1 >,< s2, t2 >, · · · < sm, tm >}.

3.1.1 Teacher model
In this work, we use SBERT (Reimers and
Gurevych, 2019) as the teacher model, which has
been proven to perform well on monolingual se-
mantic similarity tasks. SBERT adopts a siamese
network structure to fine-tune a BERT (Devlin
et al., 2019) encoder, and applies a mean pooling

operation to its output to derive sentence embed-
ding.

3.1.2 Assistant model
Mirzadeh et al. (2020) proved that when the gap
between the student and teacher is large, the perfor-
mance of the student model will decrease. We hope
to get a small student model with cross-lingual ca-
pabilities, while the teacher is a large monolingual
model. To alleviate the gaps, we introduce an as-
sistant model A (Mirzadeh et al., 2020), which is a
large multilingual model with cross-lingual ability.

3.1.3 Student model
Inspired by ALBERT (Lan et al., 2020), we design
the student model with Parameter Recurrent and
Embedding Bottleneck strategy. Since there is no
available multilingual ALBERT, we need to design
from scratch.
Parameter recurrent. We choose the first M lay-
ers of the assistant model as a recurring unit (RU).
The role of RU is to initialize the student model
with layers from the assistant model. Concretely,
the RU is defined as,

RU = {Li|i ∈ [1,M ]} , (1)



where Li is the ith transformer layer.
Embedding bottleneck. Multilingual pre-trained
models usually require a large vocabulary V to
support more languages, which leads to large em-
bedding layer parameters. We add a bottleneck
layer (He et al., 2016; Lan et al., 2020; Sun et al.,
2020) of size B between embedding layer and hid-
den layer H . In this way, the embedding layer is
reduced from O(V ×H) to O(V ×B +B ×H).

3.2 Multi-stage distillation

Multi-stage Distillation is the key for enabling the
small-size student model with cross-lingual match-
ing ability.

Stage 1. Teaching assistant

As the Stage 1 in Figure 2, we use the teacher
model and parallel corpus to align vector space be-
tween different languages through the loss function
in (2), enabling its cross-lingual ability (Reimers
and Gurevych, 2020).

ℓstage1 =
1

|N |

N∑
i

[
(hsiT − hsiA)

2 + (hsiT − htiA)
2
]
,

(2)
where N is the batch size, and si and ti denotes the
parallel sentences in a mini batch.

Stage 2. Align student embedding

As the Stage 2 in Figure 2, we align the embedding
bottleneck layer with the assistant embedding space
through the loss function in (3),

ℓstage2 =
1

|N |

N∑
i

[
(hsiAe − hsiBe)

2 + (htiBe − htiAe)
2
]
,

(3)
where hsiAe, h

ti
Ae denotes the output of assistant em-

bedding layer, hsiBe, h
ti
Be denotes the output of em-

bedding bottleneck layer.

Stage 3. Teaching student

In the Stage 3, the student model is trained to im-
itate the output of the assistant model with loss
function in (4),

ℓstage3 =
1

|N |

N∑
i

[
(hsiA − hsiS )

2 + (htiS − htiA)
2
]
,

(4)
where hsiA , h

ti
A denotes the output of assistant model,

hsiS , h
ti
S denotes the output of student model.

Stage 4. Multilingual contrastive learning
After the above three stages, we can get a small
multilingual sentence embedding model. How-
ever, as shown in Figure 1, when the model size
decrease, its cross-lingual performance decreases
sharply. Therefore, in this stage, we propose mul-
tilingual contrastive learning (MCL) task further
to improve the performance of the small student
model.

Assuming the batch size is N , for a specific trans-
lation sentence pair (si, ti) in one batch, the mean-
pooled sentence embedding of the student model
is (hsiS , h

ti
S ). The MCL task takes parallel sentence

pair (hsiS , h
ti
S ) as positive one, and other sentences

in the same batch
{
(hsiS , h

tj
S )|j ∈ [1, N ] , j ̸= i

}
as

negative samples. Considering that the MCL task
needs to be combined with knowledge distillation.
Unlike the previous work (Yang et al., 2019; Feng
et al., 2020; Mao et al., 2021), the MCL task does
not directly apply the temperature-scaled cross-
entropy loss function.

Here, we introduce the implementation of the
MCL task. For each pair of negative examples
(si, tj) in the parallel corpus, the MCL task first
unifies (si, tj) into the source language (si, sj),
then uses the fine-grained distance between hsiT and
hsjT in the teacher model to push away the semantic
different pair (hsiS , h

tj
S ) in the student model. For

positive examples, the MCL task pull semantically
similar pair (hsiS , h

ti
S ) together. The MCL task loss

is (5),

ℓ1 =
1

N2

N∑
i

N∑
j

(
ϕ(hsiT , h

sj
T )− ϕ(hsiS , h

tj
S )

)2
,

(5)
where ϕ is the distance function. Following prior

work (Yang et al., 2019; Feng et al., 2020), we set
ϕ(x, y) = cosine(x, y). we also add the knowl-
edge distillation task for multilingual sentence rep-
resentation learning. The knowledge distillation
loss is defined as,

ℓ2 =
1

|N |

N∑
i

[
(hsiT − hsiS )

2 + (hsiT − htiS )
2
]
,

(6)
In stage 4, the total loss function is added by ℓ1

and ℓ2.

ℓstage4 = ℓ1 + ℓ2. (7)



Model AR-AR ES-ES EN-EN Avg. Embedding size Encoder size

Pre-trained Model
mBERT(mean) 50.9 56.7 54.4 54.0 92.20M 85.05M
XLM-R(mean) 25.7 51.8 50.7 42.7 192.40M 85.05M
mBERT-nli-stsb 65.3 83.9 80.2 76.5 92.20M 85.05M
XLM-R-nli-stsb 64.4 83.1 78.2 75.3 192.40M 85.05M
LASER 68.9 79.7 77.6 75.4 23.56M 17.06M
LaBSE 69.1 80.8 79.4 76.4 385.28M 85.05M

Knowledge Distillation
mBERT← SBERT-nli-stsb 78.8 83.0 82.5 81.4 92.20M 85.05M
XLM-R← SBERT-nli-stsb 79.9 83.5 82.5 82.0 192.40M 85.05M
mBERT← SBERT-paraphrases 79.1 86.5 88.2 84.6 92.20M 85.05M
DistilmBERT← SBERT-paraphrases 77.7 85.8 88.5 84.0 92.20M 46.10M
XLM-R← SBERT-paraphrases 79.6 86.3 88.8 84.6 192.40M 85.05M
MiniLM← SBERT-paraphrases 80.3 84.9 85.4 83.5 96.21M 21.29M

Ours(Teacher model=SBERT-paraphrases)
XLM-R(b = True, bs = 128, |RU | = 3) 76.7 84.5 86.6 82.6 32.49M 21.26M
XLM-R(b = True, bs = 128, |RU | = 12) 79.0 85.5 88.4 84.3 32.49M 85.05M
XLM-R(b = False, |RU | = 3) 79.9 86.8 88.4 85.0 192.40M 21.26M

Ours(Teacher model=SBERT-paraphrases)
MiniLM(b = True, bs = 128, |RU | = 3) 72.8 79.3 84.4 78.8 32.05M 5.32M
MiniLM(b = True, bs = 128,|RU | = 12) 79.0 84.4 85.2 82.9 32.05M 21.29M
MiniLM(b = False, |RU | = 3) 79.9 85.3 85.6 83.6 96.21M 5.32M

Table 1: Spearman rank correlation (ρ × 100) between the cosine similarity of sentence representations and the
gold labels for STS 2017 monolingual dataset. b indicates whether to use the Embedding Bottleneck strategy, bs
indicates the hidden size of Bottleneck layer. |RU | indicates the first |RU | layers from the basic model are taken as
Recurrent Unit, the recurrent times = basic model layers/|RU |.

4 Experimental results

4.1 Evaluation setup

Dataset. The semantic text similarity (STS) task re-
quires models to assign a semantic similarity score
between 0 and 5 to a pair of sentences. Follow-
ing Reimers and Gurevych (2020), we evaluate
our method on two multilingual STS tasks, i.e.,
STS2017 (Cer et al., 2017) and STS2017-extend
(Reimers and Gurevych, 2020), which contain three
monolingual tasks (EN-EN, AR-AR, ES-ES) and
six cross-lingual tasks (EN-AR, EN-ES, EN-TR,
EN-FR, EN-IT, EN-NL).

Parallel corpus. In stage 1, stage 2 and stage 3,
we use TED2020 (Reimers and Gurevych, 2020),
WikiMatrix (Schwenk et al., 2021), Europarl
(Koehn, 2005) and NewsCommentary (Tiedemann,
2012) as parallel corpus for training. In stage 4,
TED2020 is used for contrastive learning. In this
way, the student model first learns generalized mul-
tilingual knowledge and then possesses semantic
similarity capabilities.

Metric. Spearman’s rank correlation ρ is re-
ported in our experiments. Specifically, we first
compute the cosine similarity score between two
sentence embeddings, then calculate the Spearman
rank correlation ρ between the cosine score and the
golden score.

4.2 Implementation details

Mean pooling is applied to obtain sentence embed-
dings, and the max sequence length is set to 128.
We use AdamW (Loshchilov and Hutter, 2019) op-
timizer with a learning rate of 2e-5 and a warm-up
of 0.1. In stage1, stage2, and stage3, the models
are trained for 20 epochs with a batch size of 64,
while in stage 4, the student model is trained for
60 epochs. The mBERT, XLM-R used in this work
are base-size model obtained from Huggingface’s
transformers package (Wolf et al., 2020), and the
MiniLM refers to MiniLM-L12-H3842. Our imple-
mentation is based on UER(Zhao et al., 2019).

4.3 Performance comparison

We compare the model obtained from our multi-
stage distillation with the previous state-of-the-
art models, and results are shown in Table 1 and
Table 2. In Pre-trained Model, mBERT(mean)
and XLM-R(mean) are mean pooled mBERT
and XLM-R models. mBERT-nli-stsb and
XLM-R-nli-stsb are mBERT and XLM-R
fine-tuned on the NLI and STS training sets.
LASER and LaBSE are obtained from Artetxe
and Schwenk (2019) and Feng et al. (2020). In
Knowledge Distillation, we use the paradigm of
Student←Teacher to represent the Student
model distilled from the Teacher model. There

2https://huggingface.co/microsoft/Multilingual-MiniLM-
L12-H384



Model EN-AR EN-DE EN-TR EN-ES EN-FR EN-IT EN-NL Avg. Embedding size Encoder size

Pre-trained Model
mBERT(mean) 16.7 33.9 16.0 21.5 33.0 34.0 35.6 27.2 92.20M 85.05M
XLM-R(mean) 17.4 21.3 9.2 10.9 16.6 22.9 26.0 17.8 192.40M 85.05M
mBERT-nli-stsb 30.9 62.2 23.9 45.4 57.8 54.3 54.1 46.9 92.20M 85.05M
XLM-R-nli-stsb 44.0 59.5 42.4 54.7 63.4 59.4 66.0 55.6 192.40M 85.05M
LASER 66.5 64.2 72.0 57.9 69.1 70.8 68.5 67.0 23.56M 17.06M
LaBSE 74.5 73.8 72.0 65.5 77.0 76.9 75.1 73.5 385.28M 85.05M

Knowledge Distillation
mBERT← SBERT-nli-stsb 77.2 78.9 73.2 79.2 78.8 78.9 77.3 77.6 92.20M 85.05M
DistilmBERT← SBERT-nli-stsb 76.1 77.7 71.8 77.6 77.4 76.5 74.7 76.0 92.20M 46.10M
XLM-R← SBERT-nli-stsb 77.8 78.9 74.0 79.7 78.5 78.9 77.7 77.9 192.40M 85.05M
mBERT← SBERT-paraphrases 80.8 83.6 77.9 83.6 84.6 84.6 84.2 82.7 92.20M 85.05M
DistilmBERT← SBERT-paraphrases 79.7 81.7 76.4 82.3 83.2 84.3 83.0 81.5 92.20M 46.10M
XLM-R← SBERT-paraphrases 82.3 84.0 80.9 83.1 84.9 86.3 84.5 83.7 192.40M 85.05M
MiniLM← SBERT-paraphrases 81.3 82.7 74.8 83.2 80.3 82.4 82.2 80.9 96.21M 21.29M

Ours(Teacher model=SBERT-paraphrases)
XLM-R(b = True, bs = 128, |RU | = 3) 78.0 79.8 73.9 80.5 82.1 80.3 81.2 79.4 32.49M 21.26M
XLM-R(b = True, bs = 128, |RU | = 12) 79.4 83.6 78.7 83.3 84.2 85.6 84.8 82.8 32.49M 85.05M
XLM-R(b = False, |RU | = 3) 81.1 84.3 79.8 82.6 84.5 84.8 85.4 83.2 192.40M 21.26M

Ours(Teacher model=SBERT-paraphrases)
MiniLM(b = True, bs = 128, |RU | = 3) 73.0 76.0 63.7 71.4 71.8 72.1 74.7 71.8 32.05M 5.32M
MiniLM(b = True, bs = 128, |RU | = 12) 79.7 81.0 74.1 81.9 80.1 80.8 80.7 79.8 32.05M 21.29M
MiniLM(b = False, |RU | = 3) 82.3 82.8 76.9 82.1 80.5 82.3 82.4 81.3 96.21M 5.32M

Table 2: Spearman rank correlation (ρ× 100) between the cosine similarity of sentence representations and the gold
labels for STS 2017-extend cross-lingual dataset. b indicates whether to use Embedding Bottleneck strategy, bs
indicates the hidden size of Bottleneck layer. |RU | indicates the first |RU | layers from the basic model are taken as
Recurrent Unit, the recurrent times = basic model layers/|RU |.

are two teacher models, i.e., SBERT-nli-stsb
and SBERT-paraphrases, which are released
by UKPLab3. The former is fine-tuned on the En-
glish NLI and STS training sets, and the latter is
trained on more than 50 million English paraphrase
pairs. The student models include mBERT, XLM-
R, DistilmBERT (Sanh et al., 2019) and MiniLM
(Wang et al., 2021).

Table 1 and Table 2 show the evaluation results
on monolingual and multilingual STS task, respec-
tively. For the XLM-R, our method compresses
the embedding size by 83.2% with 0.3% worse
monolingual performance and 0.9% worse cross-
lingual performance, compresses the encoder size
by 75% with slightly higher (0.4%) monolingual
performance and 0.5% worse cross-lingual perfor-
mance. When compressing the embedding layer
and the encoder simultaneously, the model size is
reduced by 80.6%, its monolingual performance
drop by 2% and cross-lingual performance drop by
4%, but it still outperforms the pre-trained models.

For comparison with other distillation methods,
MiniLM← SBERT-paraphrases is taken as a strong
baseline. Our framework can further compress
its embedding size by 66.7% with 0.6% worse in
monolingual performance and 1.1% worse in cross-
lingual performance. Its encoder size is further
compressed by 75% with slightly higher monolin-

3https://github.com/UKPLab/sentence-transformers

Model AR-AR ES-ES EN-EN Avg.

ours 76.7 84.5 86.6 82.6
w/o MCL 76.4 83.9 86.8 82.3
w/o Rec. 67.4 80.1 86.6 78.0
w/o MCL+Rec. 67.9 79.3 86.6 77.9

Table 3: Results of ablation studies on STS-2017 mono-
lingual task

Model EN-AR EN-DE EN-TR EN-ES EN-FR EN-IT EN-NL Avg.

ours 78.0 79.8 73.9 80.5 82.1 80.3 81.2 79.4
w/o MCL 75.9 79.7 73.2 79.9 80.4 80.4 80.5 78.5
w/o Rec. 69.1 73.4 66.5 70.2 73.7 73.0 75.9 71.7
w/o MCL+Rec. 67.8 73.6 66.4 68.5 72.8 71.8 75.2 70.9

Table 4: Results of ablation studies on STS2017-extend
cross-lingual task

gual (0.1%) and cross-lingual (0.4%) performance.
In addition, our compressed XLM-R(b = True,
bs = 128, |RU | = 12) achieves higher monolin-
gual(0.8%) and cross-lingual(1.9%) performance
with the same model size.

4.4 Ablation study

Among the three key strategies, multilingual con-
trastive learning (MCL) and parameter recurrent
(Rec.) are two crucial mechanisms to improve
model performance. The bottleneck is used to com-
press the model. In this section, ablation studies is
performed to investigate the effects of MCL and
Rec.. The effects of the bottleneck will be dis-
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Figure 3: Performance of XLM-R (b=True, bs=128,
|RU | = 3) after each training epoch on EN-AR, EN-ES,
EN-FR, EN-TR tasks with different contrastive learning
settings.

cussed in section 4.7.
XLM-R(b=True, bs=128, |RU | = 3) is selected

as the basic model. We consider three different
settings: 1) training without MCL task. 2) training
without parameter recurrent. 3) training without
both. The monolingual results and multilingual
results are presented in Table 3 and Table 4.

It can be observed that: 1) without MCL task, the
model performs poorer on the cross-lingual tasks.
2) without parameter sharing, the model performs
poorer on all datasets. 3) MCL task can signifi-
cantly improve the cross-lingual performance on
EN-AR, EN-ES, EN-FR, EN-NL. It can be con-
cluded that both MCL task and parameter recurrent
play a key role in our method.

4.5 Effect of contrastive learning

To investigate the effects of contrastive learning in
stage 4, we select XLM-R(b=True, bs=128, |RU |
= 3), modify the original objective in (5) into three
different settings, namely, Bool, CE and w/o CL.

In the Bool setting, the soft label in (5) is re-

Settings EN-AR EN-DE EN-TR EN-ES EN-FR EN-IT EN-NL Avg.

Ours 78.0 79.8 73.9 80.5 82.1 80.3 81.2 79.4
Bool 77.0↓ 80.5↑ 73.5↓ 79.8↓ 80.3↓ 80.7↑ 81.2 79.0↓
CE 76.6↓ 79.9↑ 74.3↑ 80.0↓ 80.8↓ 80.6↑ 80.7↓ 78.9↓
w/o CL 75.9↓ 79.7↓ 73.2↓ 79.9↓ 80.4↓ 80.4↑ 80.5↓ 78.5↓

Table 5: Evaluation results of XLM-R (b = True, bs =
128, |RU | = 3) on the STS2017-extend cross-lingual
task with different contrastive learning settings.

Settings Avg. (Monolingual) Avg. (Cross-lingual)

Single-stage
Random Initialize 78.1 71.1

+ Pre-Distillation 79.0 73.8

Multi-stage
stage 1 + 2 48.4 20.8
stage 1 + 2 + 3 75.2 70.6
stage 1 + 2 + 3 + 4 82.6 79.4

Table 6: Comparison of using different stage settings
on monolingual and multilingual STS task. XLM-R is
the basic model. The first three layers from XLM-R are
taken as a Recurrent Unit, bottleneck hidden size is 128.

placed with hard label (0 or 1), as (8),

ℓBool =
1

N2

N∑
i

N∑
j

(
δ(hsiT , h

sj
T )− ϕ(hsiS , h

tj
S )

)2
,

(8)
where δ(x, y) = 1, if x = y, otherwise 0.

In the CE setting, the objective in (5) is replaced
with temperature-scaled cross-entropy, as (9),

ℓCE = −
N∑
i

N∑
j

ϕT log
eϕS/τ∑N
k=1 e

ϕS/τ
, (9)

where ϕT = cos(hsiT , h
sj
T ), ϕS = cos(hsiS , h

tj
S ),

τ = 0.05 is a hyperparameter called temperature.
In the w/o CL setting, the contrastive learning is

removed in Stage 4.
Table 5 presents the model performance of cross-

lingual semantic similarity task with different set-
tings. It can be observed that all the above training
objectives can improve the model performance on
the cross-lingual task, compared with the w/o CL
settings. Model trained with (8) and (9) underper-
form that trained with (5), especially on EN-AR,
EN-ES, EN-FR, EN-NL task.

We plot the convergence process of different set-
tings in Figure 3. On EN-AR, EN-ES, EN-FR tasks,
our setting outperform other settings. It is worth
mentioning that on the EN-TR task, our setting
underperform the CE setting according to Table 5.
However, our setting reaches the same level as CE
setting during the 30 to 40 epoch.



Model AR-AR ES-ES EN-EN Avg. Embedding size Encoder size

Teacher model=SBERT-paraphrases, Student model=XLM-R, |RU | = 3
b = True, bs = 128 76.7 84.5 86.6 82.6 32.49M 21.26M
b = True, bs = 256 76.2 84.9 87.4 82.8 64.59M 21.26M
b = False 79.9 86.8 88.4 85.0 192.40M 21.26M

Teacher model=SBERT-paraphrases, Student model=XLM-R, b = True, bs = 128
|RU | = 3 76.7 84.5 86.6 82.6 32.49M 21.26M
|RU | = 6 78.1 84.8 87.4 83.4 32.49M 42.52M
|RU | = 12 79.0 85.5 88.4 84.3 32.49M 85.05M

Teacher model=SBERT-paraphrases, Student model=MiniLM, |RU | = 3
b = True, bs = 128 72.8 79.3 84.4 78.8 32.05M 5.32M
b = True, bs = 256 72.2 81.2 85.2 79.5 64.10M 5.32M
b = False 79.9 85.3 85.6 83.6 96.21M 5.32M

Teacher model=SBERT-paraphrases, Student model=MiniLM, b = True, bs = 128
|RU | = 3 72.8 79.3 84.4 78.8 32.05M 5.32M
|RU | = 6 75.6 83.8 85.1 81.5 32.05M 10.64M
|RU | = 12 79.0 84.4 85.2 82.9 32.05M 21.29M

Table 7: The performance of STS2017 monolingual task based on XLM-R(b=True, bs=128, |RU | = 3) and
MiniLM(b=True, bs=128, |RU | = 3), We evaluated the effect of increasing bs or |RU |.

Model EN-AR EN-DE EN-TR EN-ES EN-FR EN-IT EN-NL Avg. Embedding size Encoder size

Teacher model=SBERT-paraphrases, Student model=XLM-R, |RU | = 3
b = True, bs = 128 78.0 79.8 73.9 80.5 82.1 80.3 81.2 79.4 32.49M 21.26M
b = True, bs = 256 79.2 81.8 73.8 82.3 82.7 81.6 82.6 80.6 64.59M 21.26M
b = False 81.1 84.3 79.8 82.6 84.5 84.8 85.4 83.2 192.40M 21.26M

Teacher model=SBERT-paraphrases, Student model=XLM-R, b = True, bs = 128
|RU | = 3 78.0 79.8 73.9 80.5 82.1 80.3 81.2 79.4 32.49M 21.26M
|RU | = 6 78.8 80.0 74.7 82.9 83.5 83.4 84.6 81.1 32.49M 42.52M
|RU | = 12 79.4 83.6 78.7 83.3 84.2 85.6 84.8 82.8 32.49M 85.05M

Teacher model=SBERT-paraphrases, Student model=MiniLM, |RU | = 3
b = True, bs = 128 73.0 76.0 63.7 71.4 71.8 72.1 74.7 71.8 32.05M 5.32M
b = True, bs = 256 69.7 77.1 66.2 73.5 73.5 74.3 75.6 72.8 64.10M 5.32M
b = False 82.3 82.8 76.9 82.1 80.5 82.3 82.4 81.3 96.21M 5.32M

Teacher model=SBERT-paraphrases, Student model=MiniLM, b = True, bs = 128
|RU | = 3 73.0 76.0 63.7 71.4 71.8 72.1 74.7 71.8 32.05M 5.32M
|RU | = 6 77.1 78.7 68.2 78.1 75.9 77.0 77.6 76.1 32.05M 10.64M
|RU | = 12 79.7 81.0 74.1 81.9 80.1 80.8 80.7 79.8 32.05M 21.29M

Table 8: The performance of STS2017-extend cross-lingual task based on XLM-R(b=True, bs=128, |RU | = 3) and
MiniLM(b=True, bs=128, |RU | = 3), We evaluated the effect of increasing bs or |RU |.

4.6 Effect of multi-stages

To verify the effectiveness of multi-stages, we
shows the performance comparison of using dif-
ferent stage settings in Table 6. In the Single-stage
setting, we first initialize the shrunk student model
in two ways: (1) Random Initialize: Adding the un-
trained embedding bottleneck layers to the student
model. (2) Pre-Distillation: The student model
with bottleneck layer is initialized by distillation
using XLM-R and the same corpus as section 4.1.
Then we follow Reimers and Gurevych (2020) to
align vector space between different languages. In
the Multi-stage setting, the performance of the stu-
dent model is reported after each stage.

As shown in Table 6, the Multi-stage setting out-
performs the single-stage one, indicating that our
multi-stage framework with an assistant model is
effective. Adding stage3 and stage4 further im-
proves the student model performance, suggesting

that multi-stage training are necessary.

4.7 Effect of bottleneck and recurrent unit

In this section, we study the impact of embedding
bottleneck and recurrent unit strategies on multilin-
gual semantic learning. We consider three settings
for each strategy, as shown in Table 7 and Table 8.

First, we found that both XLM-R and MiniLM
perform better as the bottleneck hidden size bs in-
creases. The performance is best when the entire
embedding layer is retained, The MiniLM(b=False)
can outperform its original model in Table 1 and
Table 2. But the benefit of increasing bs is not ob-
vious unless the entire embedding layer is retained.

Second, by increasing the number of recurrent
unit layers |RU |, XLM-R and MiniLM have been
steadily improved on these two tasks. The increase
in model size caused by the |RU | is less than the
bs. For example, the performance of MiniLM on
cross-lingual tasks increased by 8%, while its size



only increased by 15.9M.
Finally, it can be observed that when us-

ing the bottleneck layer (b=True), the model
performance will increase steadily as |RU | in-
creases. The smaller the encoder hidden size, the
more significant effect caused by |RU | increasing
(∆MiniLM>∆XLM-R). However, the increase of
bs can not improve performance significantly but
make the embedding size larger. Therefore, an ef-
fective way to compress the multilingual model is
reducing bs while increasing |RU |. In this way, we
shrink XLM-R by 58%, MiniLM by 55%, with less
than 1.1% performance degradation.

5 Conclusion

In this work, we realize that the cross-lingual simi-
larity matching task requires a large model size. To
obtain a small-size model with cross-lingual match-
ing ability, we propose a multi-stage distillation
framework. Knowledge distillation and contrastive
learning are combined in order to compress model
with less semantic performance loss.

Our experiments demonstrate promising STS re-
sults with three monolingual and six cross-lingual
pairs, covering eight languages. The empirical re-
sults show that our framework can shrink XLM-R
or MiniLM by more than 50%. In contrast, the
performance is only reduced by less than 0.6% on
monolingual and 1.1% on cross-lingual tasks. If
we slack the tolerated loss performance in 4%, the
size of XLM-R can be reduced by 80%.
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