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Abstract—In a particle beam microscope, a raster-scanned
focused beam of particles interacts with a sample to generate
a secondary electron (SE) signal pixel by pixel. Conventionally
formed micrographs are noisy because of limitations on acqui-
sition time and dose. Recent work has shown that estimation
methods applicable to a time-resolved measurement paradigm
can greatly reduce noise, but these methods apply pixel by pixel
without exploiting image structure. Raw SE count data can be
modeled with a compound Poisson (Neyman Type A) likelihood,
which implies data variance that is signal-dependent and greater
than the variation in the underlying particle–sample interaction.
These statistical properties make methods that assume additive
white Gaussian noise ineffective. This paper introduces methods
for particle beam micrograph denoising that use the plug-and-
play framework to exploit image structure while being applicable
to the unusual data likelihoods of this modality. Approximations
of the data likelihood that vary in accuracy and computational
complexity are combined with denoising by total variation
regularization, BM3D, and DnCNN. Methods are provided for
both conventional and time-resolved measurements, assuming SE
counts are available. In simulations representative of helium
ion microscopy and scanning electron microscopy, significant
improvements in root mean-squared error (RMSE), structural
similarity index measure (SSIM), and qualitative appearance are
obtained. Average reductions in RMSE are by factors ranging
from 2.24 to 4.11.

Index Terms—electron microscopy, focused ion beam, helium
ion microscopy, Neyman Type A distribution, Poisson processes

I. INTRODUCTION

PARTICLE beam microscope (PBM) measurements con-
tain information about topological and chemical compo-

sition of a sample. The scanning electron microscope (SEM),
used widely in materials and life sciences, is a type of PBM
that uses a focused electron beam to form micrographs at
micro- and nanometer scales [1]. The less common helium ion
microscope (HIM) [2] employs a beam of helium ions and of-
fers larger depth of field and sub-nanometer resolution [3], [4].
The HIM has gained increasing popularity in semiconductor
and biological imaging [5]–[8]. Focused beams of heavier ions,
such as neon, gallium, and xenon, are also used for imaging.
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Conventionally, acquiring accurate micrographs requires a
high dose from a long dwell time or high beam current.1

Desired acquisition speed is one impediment to high dose.
Furthermore, high dose is especially problematic for HIM or
microscopy with heavier ions, where sputtering and radiation
damage are high and increase with dose [9]–[11]. Thus, SEM
and HIM micrographs are inherently noisy. Computational
noise reduction through post-processing that exploits assumed
micrograph structure has received relatively little attention,
perhaps because methods that neglect the unusual statistical
properties of the measurements perform poorly.

Though not currently common in commercial PBMs, direct
detection of secondary electrons (SEs) avoids the noise intro-
duced by scintillators and photomultiplier tubes [12]. Thus,
we assume direct SE detection here to characterize favorable
performance. Another concept for improving the accuracy–
dose trade-off is time-resolved (TR) measurement [13], [14]
(see Section II-C); we consider both TR and non-TR mea-
surements here. A concurrent line of research develops models
and methods for PBM data without direct SE detection [15],
[16]. Advantages from TR measurement persist when direct
SE detection is not available [16]. Measurements in [16] also
provide preliminary evidence to support the Poisson–Poisson–
Gaussian model from [13], which builds directly upon the
model used in this paper. The amount of data that can be
collected with the oscilloscope-based setup described in [16]
is limited by the on-board oscilloscope memory; it is not
practical for collecting datasets for images with many pixels.
The standard interface for a PBM produces 8-bit pixel values
on an arbitrary scale that cannot be unambiguously mapped
to SE counts. This data is thus not amenable to the goal
of developing physics-based, quantitative image formation
methods. For these reasons, the results in this paper are
limited to an idealization of PBM data that emphasizes the
main characteristic that distinguishes a PBM from an optical
microscope or digital camera: the compound Poisson nature
of the SEs.

In a PBM, the numbers of incident particles and the num-
bers of detected SEs per incident particle are both random.
Each of these random numbers may be modeled as Poisson
distributed, resulting in a Neyman Type A distribution for an
SE measurement. This distribution results in signal-dependent
noise variance that is greater than the variance under a Poisson
model for the SE count. Using the distribution explicitly in

1Here, dose is defined as the mean number of incident particles per pixel,
since the absolute spatial scale is not considered. More commonly, dose is
the mean number of incident particles per unit area.
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a model-based reconstruction method is difficult: to write the
measurement likelihood with elementary functions requires an
infinite series (see Section II-A), the negative log likelihood is
not convex, and minimization problems involving the negative
log likelihood do not generally have closed-form solutions.

The central goal of this paper is to provide methods
to include PBM measurement distributions in model-based
reconstruction. In particular, plug-and-play (PnP) methods
have achieved state-of-the-art performance in many applica-
tions [17]–[20] and are gaining in popularity [21]. In the
PnP alternating direction method of multipliers (ADMM)
framework [22], one desires an efficient computation of the
proximal operator of the data fidelity term. While no such
algorithm is known for PBM data, we introduce approxi-
mate data fidelities based on Poisson distributions, which
admit simple proximal operators similar to those used in PnP
methods for Poisson models [23], [24]. Similarly, for a PnP
fast iterative shrinkage-thresholding algorithm (FISTA), one
desires an efficient computation of the gradient of the data
fidelity term, and we provide this for TR measurements. These
proximal operators and gradients may have other uses as well.

TR estimation techniques introduced in [13], [14] operate
pixelwise. The only previous regularized reconstructions from
TR measurements are restricted to total variation (TV) regu-
larization [25], and they do not emphasize efficient implemen-
tations [26], [27]. In this work, we use ADMM or FISTA for
different data fidelity terms depending on whether the proximal
operator of the data fidelity term can be computed efficiently.
In addition to denoising by TV regularization, we plug in
the BM3D image denoiser [28] and a pre-trained deep neural
network denoiser DnCNN [29].

A. Main Contributions

• Introduction of data fidelity terms to make PnP meth-
ods efficiently applicable to denoising of particle beam
micrographs. Five data fidelity terms are presented: one
for conventional (non-TR) measurements, one to study
performance assuming an oracle provides the number of
incident particles, and three for TR measurements.

• Experimental evaluations of PnP methods in emulations
of HIM and SEM. We combined the five data fidelity
terms with three denoisers: TV, BM3D, and DnCNN.
The improvement from regularization is greater for HIM
than for SEM and for conventional data than for TR data.
RMSE reduction factors range from 2.24 for HIM with
TR data to 4.11 for SEM with conventional data.

B. Outline

In Section II, we summarize the abstraction, measurement
models and pixelwise estimators in PBM, and in Section III,
we review the PnP ADMM and PnP FISTA frameworks.
The key novelties of this paper are in Section IV, where
we introduce data fidelity terms that allow the application of
PnP methods to PBM denoising. The data fidelity terms have
varying levels of complexity and accuracy to the negative log-
likelihood function of the physical data generation process.
Section V describes the collection of PnP algorithms we

obtain by combining the data fidelity terms with three different
denoisers. We present experimental results in both simulated
HIM and SEM settings in Section VI. These show that time-
resolved measurements and PnP methods provide significant
improvements in estimation accuracy.

II. MEASUREMENT MODELS AND PIXELWISE ESTIMATORS

In this section, we introduce our measurement model for
direct SE detection in PBM and several pixelwise estimators;
see [13], [14] for additional details. This paper develops
regularized estimators analogous to these pixelwise estimators.
While the incident particles may be electrons or ions, we refer
to them as ions for simplicity.

A. Abstract Model

A sample is raster scanned with a focused beam of ions.
During a fixed dwell time t at any one raster scan location,
the number of incident ions M is well modeled as a Poisson
random variable with mean λ = Λt, where Λ represents
the known rate of incident ions per unit time.2 Incident
ion j interacts with the sample, generating Xj number of
detected SEs. Each Xj can be described as a Poisson random
variable with mean η, where η is called the SE yield. This
is the physical quantity that we wish to estimate at each
raster scan location to produce a pixel of the micrograph.
Over the duration of the acquisition, the total detected SEs
Y =

∑M
j=1Xj is a Neyman Type A random variable with

probability mass function (PMF)

PY (y; η, λ) =
e−ληy

y!

∞∑
m=0

(λe−η)mmy

m!
, y = 0, 1, . . . ,

(1)
mean

E[Y ] = λη, (2)

and variance
Var(Y ) = λη(η + 1). (3)

Notice the dependence of both the mean and variance on η and
that this differs substantially from Poisson-distributed data,
assuming η is not too small.

B. Conventional Measurement

The conventional measurement yC ∈ Rd gathers measure-
ments across all d pixels, with each entry drawn from the
distribution in (1). Because the entries of yC are independent,
its joint PMF is given by

PyC(yC ; η, λ) =

d∏
k=1

PY
(
yCk ; ηk, λ

)
, (4)

where ηk is the SE yield at the kth pixel and λ is the per-pixel
dose.

2Although certain operating conditions may cause the beam current to stray
from the desired setting due to contamination [30], we have shown that the
unknown beam current can be estimated at each pixel using time-resolved
measurements [27], [31]. Estimates from TR measurements also have an
inherent insensitivity to knowledge of λ [32], [33].
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C. Time-Resolved Measurement

With TR measurement, the per-pixel dwell time t is split
into n sub-acquisitions, each of length t/n, yielding an n-
length vector of measurements at each pixel. The vector
y ∈ Rdn gathers these TR measurements across all pix-
els with the measurement vector at the kth pixel given by
yk = [y

(1)
k ,y

(2)
k , . . . ,y

(n)
k ]. Each observation is sampled from

the distribution in (1) with λ being replaced by λ/n. We
note that at a given pixel, the conventional measurement
may be obtained by summing the vector of time-resolved
measurements:

yC
k =

n∑
i=1

y
(i)
k . (5)

The entries in y are independent so its joint PMF is given by

Py(y ; η, λ) =

d∏
k=1

n∏
i=1

PY
(
y
(i)
k ; ηk, λ/n

)
. (6)

D. Pixelwise Estimators

We now review estimation methods that operate at a single
pixel without regularization. We include an oracle estimator
that relies on knowledge of the number of incident ions M
(which is not available in practice) and estimators that can be
applied with conventional or TR data.

1) Conventional Estimator: From (2), scaling the observed
SE counts at the kth pixel by λ yields an unbiased estimator:

η̂conv
k = yC

k /λ. (7)

From (3), its mean-squared error (MSE) is

MSE(η̂conv
k ) =

ηk(ηk + 1)

λ
. (8)

The ηk + 1 factor in the MSE stems from the excess variance
in (3) compared with the variance of a Poisson random variable
with the same mean. This excess variance can be attributed to
source shot noise—the randomness of the number of incident
ions.

2) Oracle Estimator: If one were able to know the number
of incident ions Mk at the kth pixel, dividing yC

k by Mk will
produce a superior estimator

η̂oracle
k = yC

k /Mk, (9)

which has the MSE

MSE(η̂oracle
k ) = e−λ(1− e−λ)(ηk − η0)2 +

∞∑
m=1

ηk
m

λm

m!
e−λ,

(10)
where η0 is the estimate assigned when Mk = 0 [13]. For
large enough λ, the choice of η0 has little effect on the MSE.
One can show [14, App. A] that for large λ, the MSE satisfies

MSE(η̂oracle
k ) ≈ ηk

λ
, (11)

which eliminates the excess MSE due to the randomness
of incident ions. We emphasize that such an estimator is
unimplementable since Mk cannot be known exactly from
only observing yC

k .

3) Quotient Mode Estimator: To approach the performance
of the oracle estimator, we may naturally seek a proxy for
Mk that is computable from observed quantities. When n is
large enough, the dose for each subacquisition λ/n becomes so
small that the probability that more than one ion will arrive
during one subacquisition is negligible. Assuming that η is
large enough, most ions will produce at least one SE. In this
case, the number of subacquisitions at the kth pixel measuring
a positive number of SEs,

Lk =

n∑
i=1

1{y(i)
k >0}, (12)

is a good approximation for the number of incident ions Mk,
where 1{y(i)

k >0} is equal to 1 when {y(i)
k > 0} and is equal

to 0 otherwise. Analogous to the oracle estimator in (9), the
quotient mode (QM) estimator is defined as

η̂QM
k =

yC
k

Lk
=

∑n
i=1 y

(i)
k∑n

i=1 1{y(i)
k >0}

. (13)

The QM name is taken from a similar concept proposed by
John Notte in [34], where counting of the analog-domain
pulses produced by SE bursts is adopted as the denominator
of an estimator similar to (13). A closed-form expression for
the MSE of η̂QM

k is given in [14]. The MSE of η̂QM
k is

significantly lower than that of η̂conv
k except when η is small.

4) Lambert Quotient Mode Estimator: When η is small,
Lk =

∑n
i=1 1{y(i)

k >0} significantly underestimates Mk be-
cause the probability of an ion generating zero detected SEs
cannot be neglected. In this case, the bias in η̂QM caused
by the underestimation can be reduced by replacing Lk with
(1 − e−ηk)−1Lk. Since the probability of an incident ion
resulting in at least 1 detected SE is 1 − e−ηk , the adjusted
(1 − e−ηk)−1

∑n
k=1 1{y(i)

k >0} is a more accurate estimate
of Mk. Since ηk is unknown, the substitution results in a
transcendental equation, which has the solution

η̂LQM
k = W

(
−η̂QM

k e−η̂
QM
k

)
+ η̂QM

k , (14)

where W (·) represents the Lambert W function [35]. Hence,
we name η̂LQM

k the Lambert quotient mode (LQM) estimator.
In MSE, η̂LQM

k significantly improves upon η̂QM when η is
small and is nearly indistinguishable from η̂QM otherwise.

5) Time-Resolved Maximum Likelihood Estimator: With
TR data at the kth pixel, [y

(1)
k ,y

(2)
k , . . . ,y

(n)
k ], the value of

η that maximizes the joint likelihood is the time-resolved
maximum likelihood (TRML) estimator:

η̂TRML
k = arg max

η∈[0,∞)

n∏
i=1

PY (y
(i)
k ; η, λ/n), (15)

where PY (· ; ·, ·) is given by (1). According to [14, Fig. 5(a)],
η̂TRML
k has lower MSE than η̂conv

k , η̂QM
k , and η̂LQM

k across
all η values. However, since that domination does not hold
for continuous-time observations (see [14, Fig. 3(a)]), in the
discrete-time setting of the present work, the relative perfor-
mances of estimators may depend on the choices of λ and
n.
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E. Comments on Pixelwise Estimator Performances

The estimators in Section II-D are analyzed and simulated
in [14]. The key takeaway from Fisher information analyses
is to expect3

MSE(η̂TRML
k ) ≈ ηk(1− ηe−ηk)−1

λ
. (16)

This is always better than the conventional estimator MSE
(8). It is worse than the oracle estimator MSE (11) by a factor
(1−ηke−ηk)−1, which is upper-bounded by e/(e−1) ≈ 1.58
and approaches 1 for ηk → 0 and ηk → ∞. Thus, roughly
speaking, TR measurement provides an MSE reduction by
approximately a factor of ηk + 1.

The gains from TR measurement in unregularized esti-
mation have not previously been combined effectively with
regularization.

III. PLUG-AND-PLAY METHODS

In this section, we review ADMM, FISTA, and their uses in
plug-and-play methods for image reconstruction incorporating
image priors.

A. Problem Formulation

Given a vector of conventional measurements yC ∈ Rd
or TR measurements y ∈ Rdn, we seek to reconstruct the
underlying SE yield image η ∈ Rd. This image reconstruction
task may be written as an optimization problem of the form

η̂ = arg min
η

f(η) + βg(η), (17)

where f is a data fidelity term that encourages consistency
with yC or y, g is a regularizer that promotes solutions with
desirable properties, and β is a tuning parameter that controls
the regularization strength. The regularizer g is generally non-
smooth so solving the optimization problem in (17) is a non-
trivial task.

From a Bayesian perspective, (17) can arise as the maximum
a posteriori (MAP) estimator when

f(η) = − log p(y |η), (18)

the negative log-likelihood of the observation y (or similarly
with yC); and

βg(η) = − log p(η), (19)

the negative log prior of η.

B. ADMM

ADMM [36] converts the unconstrained problem in (17)
into a constrained one:

(η̂, v̂) = arg min
η,v

f(η) + βg(v), subject to η = v. (20)

This constrained problem can be solved by minimizing its
augmented Lagrangian function

L(η,v) = f(η) + βg(v) + uT (η − v) +
ρ

2
‖η − v‖2, (21)

3This is the reciprocal of the Fisher information for a continuous-time
measurement [14, Eq. (26)] so it assumes an efficient estimator and λ/n� 1.

where ρ is a penalty parameter and u is the Lagrange multi-
plier. The solution can be obtained by iterating the following
steps:

η(t+1) = arg min
η∈Rd

f(η) +
ρ

2
‖η − (v(t) − u(t))‖2, (22a)

v(t+1) = arg min
v∈Rd

g(v) +
1

2σ2
‖v − (η(t+1) + u(t))‖2,

(22b)

u(t+1) = u(t) + (η(t+1) − v(t+1)), (22c)

where σ =
√
β/ρ.

C. FISTA

The fast iterative shrinkage-thresholding algorithm
(FISTA) [37] is another popular method to solve the
optimization problem (17). FISTA iterates the following
steps:

u(t+1) = v(t) − γ∇f(v(t)), (23a)

η(t+1) = arg min
η∈Rd

g(η) +
1

2σ2
‖η − u(t+1)‖2, (23b)

qt+1 =
1

2

(
1 +

√
1 + 4q2t

)
,

v(t+1) = η(t+1) +
qt − 1

qt+1
(η(t+1) − η(t)), (23c)

where γ is the step size, σ =
√
γβ, and q0 = 1. In contrast to

ADMM, FISTA only needs to evaluate the gradient ∇f(η),
without needing to solve (22a). This is especially important
when (22a) does not have a closed-form solution.

D. Plug-in Denoiser

ADMM and FISTA have similar decouplings into pairs
of subproblems. Specifically, (22a) and (23a) can be viewed
as inversion steps since f(η) is determined by the forward
image measurement model; and (22b) and (23b) can be viewed
as denoising steps since g(η) represents an image prior.
In particular, (22b) is equivalent to Gaussian denoising on
η(t+1) + u(t) with noise level σ =

√
β/ρ. Based on the

intuition that any other Gaussian denoiser could be used
instead, Venkatakrishnan et al. [22] proposed the PnP ADMM
algorithm, which does not specify g explicitly. Instead, (22b)
is replaced with an off-the-shelf denoiser, denoted as Dσ , to
yield

v(t+1) = Dσ(η(t+1) + u(t)). (24)

Similarly, replacing (23b) with

η(t+1) = Dσ(u(t+1)), (25)

where σ =
√
γβ, results in a PnP FISTA [38].

IV. DATA FIDELITY TERMS

In many applications of PnP methods, the data fidelity term
f(η) is derived from a measurement process that involves
linear mixing and signal-independent additive white Gaussian
noise (AWGN); (18) then results in f(η) ∝ ‖y − Aη‖22 for
some matrix A, which is quite convenient for computations.



DENOISING PARTICLE BEAM MICROGRAPHS WITH PLUG-AND-PLAY METHODS 5

In this work, we wish to apply PnP methods to particle beam
micrograph denoising, where the challenge is not rooted in
linear mixing. Instead, challenges arise from the measurement
likelihood function even though it is separable. To directly
apply (18) with the measurement likelihood function (4) or
(6) is problematic because of the form of the Neyman Type A
PMF (1). This is an obstacle to regularized estimation of any
form, whether or not one employs PnP methods.

This section introduces several data fidelity terms f(η)
that vary in their closeness to (18) and their computational
complexity. For conventional measurement data, we have a
data fidelity term based on a spatially adapted Gaussian
approximation. For oracle or TR data, the data fidelity terms
have correspondences with the oracle, QM, LQM, and TRML
estimators of Section II. In cases in which (22a) has a closed-
form solution, the data fidelity term becomes the basis for a
PnP ADMM algorithm; for the remaining case, we provide an
approximation to ∇f(η) so that the data fidelity term becomes
the basis for a PnP FISTA method. These PnP methods are
detailed in Section V.

A. Gaussian

We may approximate the entries of yC as independent
Gaussian random variables, each with mean and variance given
in (2) and (3):

yC
k ∼ N (ληk, ληk(ηk + 1)). (26)

Simple point evaluation of the Gaussian probability density
function gives a reasonable approximation of the Neyman
Type A probability mass function provided that ληk is not
small, and there is pointwise convergence of the moment
generating function for λ → ∞ [39]. Omitting a constant
term, the corresponding negative log-likelihood function is

fconv(η) =

d∑
k=1

(
1

2
log ηk +

1

2
log(ηk + 1) +

(yC
k − ληk)2

2ληk(ηk + 1)

)
.

(27)
To obtain a closed-form solution when we compute the inverse
step (22a), we can further approximate (26) as

yC
k ∼ N (ληk, λη

prev
k (ηprev

k + 1)), (28)

where the variance is set to be independent of ηk by using
ηprev
k , an estimated value of ηk at the previous iteration. In this

case, the observation yC becomes a Gaussian random vector
with constant, diagonal covariance matrix, and the negative
log-likelihood function is

fconv(η) =

d∑
k=1

(yC
k − ληk)2

2ληprev
k (ηprev

k + 1)
(29)

after dropping terms that do not depend on η. With this
f , the ADMM inversion step (22a) is separable over the d
components, with closed-form solution

η
(t+1)
k =

(
λ

ηprev
k (ηprev

k + 1)
+ ρ

)−1
·
(

yC
k

ηprev
k (ηprev

k + 1)
+ ρ(v

(t)
k − u

(t)
k )

)
. (30)

In the model (28), we are positing a variance for pixel k that
gives spatially varying strength to the regularizer g. When the
detected yC

k is unluckily small relative to a moderate or larger
underlying true value ηk, estimation will perform poorly if
too much confidence is ascribed to the observed yC

k . To avoid
this, performance is improved by allowing the local variance
estimate ληprev

k (ηprev
k + 1) to depend on a neighborhood of

pixel k rather than pixel k alone. Specifically, when computing
η
(t+1)
k , we choose ηprev

k to be the average of η(t)
k across a

neighborhood of pixel k:

ηprev
k =

1

9

∑
`∈N (k)

η
(t)
` , (31)

where N (k) is a 3×3 patch centered at pixel k. We chose the
patch size to be 3× 3 as using a 5× 5 patch was empirically
inferior.

B. Oracle

When the number of incident ions is exactly known, the
number of SEs observed at the kth pixel may be modeled as
a Poisson random variable with parameter Mkηk:

yC
k ∼ Poisson(Mkηk). (32)

The negative log-likelihood function is

foracle(η) =

d∑
k=1

(
Mkηk − yC

k log ηk
)

(33)

after dropping terms that do not depend on η. Since foracle is
convex, the minimum in (22a) is achieved when the gradient of
the objective is zero. Hence, we obtain a closed-form update:

η
(t+1)
k = −1

2
ϕ+

1

2

√
ϕ2 +

4yC
k

ρ
where ϕ =

Mk

ρ
− vk + uk.

(34)
Although instruments are not capable of measuring Mk, the
oracle data fidelity term serves as an interesting benchmark.
We note that the forward model is reduced to sampling from a
Poisson distribution. In fact, similar closed-form updates have
been used in PnP ADMM methods for Poisson models, such
as equation (16) in [24]. QM and LQM data fidelity terms,
which we will discuss next, also follow Poisson distributions
and thus have similar closed-form updates.

C. Quotient Mode

As in (13), our QM data fidelity term uses the number of
subacquisitions where more that one SE was observed as a
proxy for Mk. Here we have

yC
k ∼ Poisson(Lkηk), (35)

with Lk defined in (12). The negative log-likelihood function
is

fQM(η) =

d∑
k=1

(
Lkηk − yC

k log ηk
)

(36)



6 PENG, KITICHOTKUL, SEIDEL, YU, & GOYAL

after dropping terms that do not depend on η. Similar to the
oracle case, since fQM is convex, the ADMM inversion step
(22a) again has a closed-form solution:

η
(t+1)
k = −1

2
ϕ+

1

2

√
ϕ2 +

4yC
k

ρ
where ϕ =

Lk
ρ
− vk + uk.

(37)

D. Lambert Quotient Mode
Using the same adjustment as in (14) to compensate for the

underestimate of Mk in Lk, our LQM data fidelity term is
based upon the model

yC
k ∼ Poisson

(
(1− e−ηk)−1Lkηk

)
. (38)

The negative log-likelihood function after dropping terms that
do not depend on η is

fLQM(η) =

d∑
k=1

(
ηk

1− e−ηk
Lk + yC

k log(1− e−ηk)

− yC
k log ηk

)
. (39)

For faster computation, (38) may be approximated as

yC
k ∼ Poisson((1− e−η

prev
k )−1Lkηk), (40)

where ηprev is based on the previous iteration as in Sec-
tion IV-A. Then

fLQM(η) ≈ Lkηk

1− e−η
prev
k

− yC
k log ηk. (41)

With this approximation, the ADMM inversion step (22a) has
closed-form solution

η
(t+1)
k = −1

2
ϕ+

1

2

√
ϕ2 +

4yC
k

ρ
(42a)

where
ϕ =

Lk

ρ(1− e−η
prev
k )

− vk + uk. (42b)

E. Time-Resolved Maximum Likelihood
In our TRML data fidelity term, we use the full likelihood

in (6). Here we have

fTRML(η) = − log Py(y ; η, λ). (43)

To use derivatives of (43) directly with the substitution of (1)
and (6) is computationally expensive and delicate. However, as
derived in [27, App. D] with the aid of Touchard polynomials,
the derivatives of (43) with respect to the entries in η are
approximately

∂fTRML(η)

∂ηk
≈ (n−Lk)

λ

n
e−ηk − yC

k

ηk

+
∑
i∈S

n+ (2y
(i)
k − 1)λe−ηk

n+ (2y
(i)
k −1 − 1)λe−ηk

, (44)

where S = {i : y
(i)
k > 0}. The approximation is accurate

when λ/n is small. The experimental results in Section VI
are for λ/n = 0.1, which is small enough for accurate
approximation and for most of the gains from TR measurement
to be realized [14].

V. PROPOSED METHODS

In this work, we test the five data fidelity terms proposed in
Section IV within the PnP framework using three different de-
noisers: TV-regularized least squares, BM3D [28], and a deep
neural network. This section explains the overall algorithm
design and different types of denoising.

Algorithm 1 Plug-and-Play ADMM

Input: α, β, ρ, yC or y = [y(1),y(2), . . . ,y(n)]
Initialize: t = 0, η(0) = v(0) = η̂conv,u(0) = 0, σ =

√
β/ρ

1: while not converged do
2: η(t+1) = arg min

η∈Rd

f(η) + 1
2ρ‖η − (v(t) − u(t))‖2

3: v(t+1) = Dσ(η(t+1) + u(t))
4: u(t+1) = u(t) + (η(t+1) − v(t+1))
5: t = t+ 1
6: end while
7: return η(t+1)

Algorithm 2 Plug-and-Play FISTA

Input: α, β, γ, ρ, yC or y = [y(1),y(2), . . . ,y(n)]
Initialize: t = 0, η(0) = v(0) = η̂conv, q0 = 1, σ =

√
γβ

1: while not converged do
2: u(t+1) = v(t) − γ∇f(v(t))
3: η(t+1) = Dσ(u(t+1))
4: qt+1 = 1

2 (1 +
√

1 + 4q2t )
5: v(t+1) = η(t+1) + ((qt − 1)/qt+1)(η(t+1) − η(t))
6: t = t+ 1
7: end while
8: return η(t+1)

A. Algorithm Overview

Algorithms 1 and 2 outline the key steps of PnP ADMM and
PnP FISTA, as detailed in Section III, adapted to our setting.
We apply Algorithm 2 with the TRML data fidelity term since
(22a) does not have a closed-form solution in that case, and
we apply Algorithm 1 to the other cases.

In Algorithm 1, Line 2, the inversion step, incorporates the
data fidelity term. For the Gaussian, oracle, QM or LQM data
fidelity term), it is computed with (30), (34), (37) or (42),
respectively. Line 3 is the denoising step of (24). Line 4
updates the Lagrange multiplier.

In Algorithm 2, Line 2 makes u a step from v in the
direction of the negative gradient of the data fidelity f . This is
computed with (44) for the TRML data fidelity term. Line 3
applies a denoiser to remove noise in u. Line 4 updates qt,
which controls the convergence rate. Line 5 uses qt to update
v.

Both algorithms terminate when convergence is achieved.
Here, convergence is declared when ∆t+1 ≤ α, where α is a
threshold parameter. For PnP ADMM,

∆t+1 :=
1√
d

(
‖η(t+1) − η(t)‖2 + ‖v(t+1) − v(t)‖2

+ ‖u(t+1) − u(t)‖2
)
. (45)
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For PnP FISTA,

∆t+1 :=
1√
d
‖η(t+1) − η(t)‖2. (46)

If one wishes to constrain η to a convex set, it is natural to
include a projection to that set within each iteration [23], [40]–
[42]. Though the physical meaning of η implies nonnegativity
of each entry, we have not imposed this explicitly because
our experimental conditions keep all entries of the estimates
nonnegative at all iterations.

B. Denoisers

We employ three denoising methods.
1) Total Variation: Under this formulation, the denoising

step is regularized least-squares estimation (22b) with regular-
izer g(η) = ‖η‖TV. The isotropic TV cost ‖η‖TV is given
by

‖η‖TV = ‖Dη‖2, (47)

where D denotes the discrete image gradient. This cost term is
designed to promote estimates that are piecewise smooth while
maintaining edge features. The corresponding denoising step
is solved iteratively as in [37].

2) BM3D: One branch of denoising algorithms exploits
non-local similarity of image patches to recover a clean image
from the noisy observation. BM3D [28] is one of the most
widely used among these methods. It groups image patches
based on similarity, then applies collaborative filtering and
recombines to yield a reconstructed image.

3) Deep Neural Network: In recent years, deep learning-
based methods have achieved great success in image denoising
tasks. Most existing deep neural networks use a large number
of clean–noisy image pairs as training samples, which is
one key factor contributing to performance improvements.
However, collecting a large dataset of clean–noisy image pairs
can be expensive and challenging, especially in PBM. Without
access to such a dataset, [26] used synthetic data, generated
using accurate knowledge of the PBM forward model, to train
a deep neural network. The network’s weights were optimized
to minimize the L2 difference between reconstructed and
ground truth images. This method did not explicitly leverage
the model information during inversion but instead relied on
the PBM model to generate a noisy counterpart to each clean
training image. In contrast, we use the PnP framework to
combine knowledge of the PBM model with the assistance
of a deep neural network to extract meaningful features,
resulting in improved performance. In the denoising step
(Line 3 of Algorithm 1), we adopt a deep neural network
called DnCNN [29]. It combines residual learning [43] and
batch normalization [44], and it has been demonstrated to be
effective in removing AWGN.

In the formulation of ADMM in Section III-B, the Gaus-
sian denoising problem (22b) has a noise standard deviation
σ =

√
β/ρ derived directly from the regularization parameter

β and variable-splitting penalty ρ. Similarly, in PnP FISTA,
the noise standard deviation σ =

√
γβ depends on β and

the step size γ. This dependence on σ can be troublesome in

PnP methods because the denoiser may require training that
depends on σ or it may have no analogous parameter.

Denoiser scaling [45] is a method for introducing tunable
regularization to a denoiser trained for a specific noise standard
deviation σ. Suppose only that some denoiser D is given. Then
a scaled denoiser is defined as

Dµ(η) ≡ (1/µ)D(µη), (48)

where µ > 0 is the denoiser scaling parameter. This approach
makes it possible to use a single pre-trained network across a
variety of noise levels.

C. Convergence

When f and g are convex functions, both ADMM [36] and
FISTA [37] will converge to the global minimum of the convex
optimization problem (20) under some additional technical
conditions. While a denoiser in PnP methods may not be the
proximal operator of any convex function g, they can still have
fixed point convergence. Specifically, PnP ADMM and PnP
iterative shrinkage-thresholding algorithm (ISTA), i.e., FISTA
without Nesterov acceleration, are shown to have fixed point
convergence under appropriate choices of the parameters ρ
and γ when f is strongly convex and the residue Dσ − I has
a sufficiently small Lipschitz constant, where I is the identity
operator [46].

In our case, not all of the proposed data fidelity terms are
convex with respect to η. While foracle and fQM are convex,
fconv, fLQM, and fTRML are not. We find that fLQM is locally
strongly convex for typical values of y and η in our experi-
ments. Consequently, we can establish fixed point convergence
of PnP ADMM and PnP ISTA for foracle, fQM, and fLQM

under appropriate choices of ρ, γ, and β, and the denoiser Dσ .
We note that the TV denoiser is a proximal operator and that
DnCNN typically has contractive residue even without further
modification [46], so using these denoisers will not hinder
fixed point convergence of PnP methods. However, BM3D
has been shown to violate the residue contractiveness criterion
[46], so the PnP methods that use BM3D may not converge,
even if f is convex. We find that the theory outlined here
predicts the empirical convergence of PnP ADMM and PnP
FISTA well in our experiments.

VI. EXPERIMENTAL RESULTS

In this section, we compare the performances of the pro-
posed methods using simulated HIM and SEM micrograph
images. While previous works [13], [14] have characterized
the QM, LQM, and TRML estimators of Section II-D, here
we aim to compare how these and the benchmark conventional
and oracle estimators perform in combination with the three
denoisers in Section V-B, within the PnP ADMM and PnP
FISTA frameworks. The five estimators are included in the PnP
methods through the data fidelity terms detailed in Section IV.
Code is available online [47].
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A. Datasets and Experiment Details

We use five crops of images from the “porous sponge”
NFFA-EUROPE SEM dataset [48] as the ground truth images
in our experiments. We scale the images to η ∈ [2, 8] to
emulate HIM [49] and to η ∈ [1, 2] to emulate SEM. Given
a ground truth image, we apply (6) to generate noisy TR
measurements pseudorandomly using total dose λ = 20 split
over n = 200 sub-acquisitions for each pixel for the HIM
sample and total dose λ = 50 split over n = 500 sub-
acquisitions per pixel for the SEM sample. The conventional
measurement is obtained by summing over the n subacqui-
sitions at each pixel. All PnP experiments use a stopping
threshold of α = 5 × 10−4 as defined in Section V-A. For
PnP ADMM methods, we fix ρ = 2.5 for HIM and ρ = 10
for SEM. For PnP FISTA methods, we fix γ = 0.1 for HIM
and γ = 0.01 for SEM. We tune σ (for TV and BM3D
denoisers) and µ (for the DnCNN denoiser), which implies
the β that controls the regularization strength, on a hold-
out validation image. For HIM experiments, we use σ ∈
{0.24, 0.32, 0.72, 0.96, 1.2} and µ ∈ {0.5, 0.75, 1, 1.25, 1.5}.
For SEM experiments, we use σ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and
µ ∈ {0.25, 0.5, 0.75, 1, 1.25, 1.5}. We use σ and µ values
that yield the least root mean-squared error (RMSE) on the
validation image for each combination of f and the denoiser
in the corresponding experiments with the remaining 4 test
images.

We train the DnCNN denoiser to minimize `2 loss using 500
natural images from the Berkeley Segmentation Dataset (BSD
500) [50]. The pixel values are scaled to [0, 1], and the standard
deviation of the additive white Gaussian noise is 25/255.
When applying DnCNN to an image with a different dynamic
range, such as η ∈ [2, 8] in the case of HIM experiments, we
shift and scale the image so that the dynamic range of the input
to DnCNN is [0, 1]. Then, we scale and shift the output back
to the original dynamic range. Note that denoiser scaling as in
(48) is performed on the image that is already transformed to
the [0, 1] dynamic range. In addition, DnCNN-related methods
are GPU-accelerated for faster computation.

B. Reconstruction Quality Comparisons

We compare the reconstruction qualities of pixelwise esti-
mations and proposed PnP methods with different data fidelity
terms and denoisers. Figures 1 and 2 show reconstructed η
micrographs under HIM and SEM settings, respectively. All
micrographs are on the same scale shown in the ground truth
image. The colorbars are chosen so that no more than 2%
of pixels are saturated in any given image. Absolute error
images |η̂ − η| for sub-regions marked by green boxes are
displayed for each micrograph as well. We report RMSE and
also the structural similarity index measure (SSIM) to quantify
the perceived image quality.

Pixelwise estimators (top rows): To validate the use
of regularization in general, we show the performance of
pixelwise application of each of the five estimation methods
(right five columns of the top row in Figures 1 and 2). Without
regularization, the best TR methods significantly outperform
the conventional method, as demonstrated in [14] as well. The

RMSE reduction of the best implementable method of these—
TRML—is by a factor of 2.1 for HIM and 3.6 for SEM;
these factors are consistent with theoretical predictions (see
Section II-E and [14]).

Data fidelity terms (comparisons by column): The bottom
three rows in Figures 1 and 2 present results obtained by PnP
methods. Moving from the second column to the rightmost
column, each unregularized estimator is improved through
regularization by comparing the top row with the bottom three
rows in a single column for both HIM and SEM samples.

In comparing the methods using TR data and including
regularization, it is uniformly true that the TRML data fidelity
term gives the best performance, LQM second, and QM the
worst. For SEM emulation, the QM-related PnP results suffer
from large bias due to the large bias of the QM estimator
when η < 2 [14]. Interestingly, the SSIM metric when using
the QM data fidelity term is still decent, which is consistent
with invariance properties of SSIM [51]. For HIM emulation,
the performance of the Gaussian data fidelity term is similar
to QM and worse than TRML by a factor of 1.4 in RMSE.
For SEM emulation, the performance of the Gaussian data
fidelity term is competitive with the best TR method, but still
worse than TRML in terms of RMSE. However, in terms of
SSIM, both TRML and LQM data fidelity terms outperform
the Gaussian data fidelity term by a noticeable margin. These
empirical results with regularization are consistent with theo-
retical results from [13], [14] that show increasing utility of TR
measurements over conventional measurements as η increases.

Along with the combinations of data fidelity terms and
denoisers yielding fifteen PnP methods (bottom three rows
and right five columns in Figures 1 and 2), we compute three
additional naı̈ve estimates to demonstrate the virtue of accurate
modeling of the acquisition process. The naı̈ve estimators
assume that yC/λ is Gaussian with mean η and constant
variance (bottom three rows of the left column in Figures 1
and 2). These are computed by solving

η̂naive = arg min
η∈Rd

∥∥η − yC/λ
∥∥2
2

+ βg(η) (49)

for each of the three regularizers g given explicitly or im-
plicitly in Section V-B. The large reconstruction error from
assuming a spatially invariant Gaussian distribution reinforces
the significance of having accurate modeling of the acquisition
process.

Denoisers (comparisons by row): In the HIM emulation,
for each of the four PnP ADMM data fidelities (oracle,
Gaussian, QM, LQM), the DnCNN denoiser and BM3D give
nearly equal performance, better than TV. PnP FISTA with
TRML data fidelity exhibits the best performance coupled
with BM3D denoiser and nearly equal performance with TV
denoiser; these are markedly better in the metrics and recovery
of fine details compared to coupling with DnCNN denoiser.

Denoiser comparisons in SEM emulation have different
trends. The impact of denoiser choice on RMSE is nearly neg-
ligible. We observe that BM3D and DnCNN reconstructions
provide better visual reconstruction results than the TV de-
noiser as the image with TV denoiser displays patchy artifacts.
Arguably, BM3D denoiser also results in oversmoothing. This
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Ground truth Oracle Conventional QM LQM TRML
N

o
re

gu
la

ri
za

tio
n

RMSE = 0.495
SSIM = 0.536

RMSE = 1.171
SSIM = 0.261

RMSE = 0.649
SSIM = 0.487

RMSE = 0.644
SSIM = 0.477

RMSE = 0.561
SSIM = 0.493

PnP estimators
Naı̈ve Oracle Gaussian QM LQM TRML

T
V

RMSE = 0.391
SSIM = 0.650

RMSE = 0.263
SSIM = 0.765

RMSE = 0.394
SSIM = 0.619

RMSE = 0.396
SSIM = 0.755

RMSE = 0.358
SSIM = 0.751

RMSE = 0.275
SSIM = 0.746

B
M

3D

RMSE = 0.371
SSIM = 0.667

RMSE = 0.248
SSIM = 0.775

RMSE = 0.363
SSIM = 0.675

RMSE = 0.386
SSIM = 0.776

RMSE = 0.350
SSIM = 0.770

RMSE = 0.265
SSIM = 0.776

D
nC

N
N

RMSE = 0.382
SSIM = 0.678

RMSE = 0.240
SSIM = 0.788

RMSE = 0.368
SSIM = 0.633

RMSE = 0.384
SSIM = 0.784

RMSE = 0.346
SSIM = 0.780

RMSE = 0.324
SSIM = 0.693

Fig. 1: HIM sample with ground truth η ∈ [2, 8], total dose λ = 20, and n = 200. All images are shown on the same scale as in the ground
truth image. Absolute error images for the sub-region in each green square are included for reconstructed micrographs.

may justify employing a deep network, which can represent
more complex structural properties of the images.

C. Accuracy and Runtime Trade-Offs

Accuracy summary: Table I summarizes the average
quantitative results from the test images. The Regularized
columns present the best metrics over the choices of denoisers
and data fidelity terms, excluding the oracle. The summary
highlights the effectiveness of the PnP methods introduced in
this paper for both HIM and SEM emulation and both conven-
tional and time-resolved data. Comparing with pixelwise esti-
mators across the four combinations in the table, regularization
with PnP methods reduces RMSE by factors ranging from
2.24 to 4.11. Comparing the regularized results using TR data

against using conventional data, the RMSE is reduced by a
factor of 1.35 for HIM emulation and 1.10 for SEM emulation.
This shows that the improvement from regularization is at least
partially complementary to the improvement from the use of
TR data. Also, the lesser improvement from TR data for SEM
emulation is consistent with earlier results [13], [14].

For each of the 4 test images, we repeat Monte Carlo
emulations of HIM and SEM with 10 different random seeds.
For the HIM emulations, for estimators with regularization, the
standard deviation of RMSE of η̂ relative to the mean RMSE
was 5.1% on average, with the highest not exceeding 10%.
The relative standard deviation of RMSE for the conventional
estimator without regularization is only slightly lower at 4.1%,
suggesting reasonably robust convergence of the PnP methods.
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Ground truth Oracle Conventional QM LQM TRML
N

o
re

gu
la

ri
za

tio
n

RMSE = 0.169
SSIM = 0.273

RMSE = 0.259
SSIM = 0.161

RMSE = 0.565
SSIM = 0.204

RMSE = 0.266
SSIM = 0.175

RMSE = 0.214
SSIM = 0.206

PnP estimators
Naı̈ve Oracle Gaussian QM LQM TRML

T
V

RMSE = 0.077
SSIM = 0.580

RMSE = 0.057
SSIM = 0.672

RMSE = 0.069
SSIM = 0.565

RMSE = 0.538
SSIM = 0.562

RMSE = 0.115
SSIM = 0.596

RMSE = 0.062
SSIM = 0.642

B
M

3D

RMSE = 0.072
SSIM = 0.602

RMSE = 0.058
SSIM = 0.641

RMSE = 0.067
SSIM = 0.625

RMSE = 0.536
SSIM = 0.597

RMSE = 0.115
SSIM = 0.647

RMSE = 0.062
SSIM = 0.655

D
nC

N
N

RMSE = 0.113
SSIM = 0.498

RMSE = 0.071
SSIM = 0.536

RMSE = 0.066
SSIM = 0.600

RMSE = 0.540
SSIM = 0.542

RMSE = 0.114
SSIM = 0.605

RMSE = 0.059
SSIM = 0.674

Fig. 2: SEM sample with ground truth η ∈ [1, 2], total dose λ = 50 and n = 500. All images are shown on the same scale as in the ground
truth image. Absolute error images for the sub-region in each green square are included for reconstructed micrographs.

TABLE I: Summary of quantitative accuracy metrics.

Conventional data Time-resolved data
Pixelwise Regularized Pixelwise Regularized

H
IM RMSE 1.173 0.339 0.561 0.251

SSIM 0.225 0.643 0.448 0.741

SE
M RMSE 0.267 0.065 0.218 0.059

SSIM 0.147 0.563 0.190 0.626

In addition, the performance ranking stays unchanged in each
simulation, indicating a fairly robust ranking of methods for
the HIM case. The variation for SEM emulations is higher,
suggesting that one should consider some of the performances

in Figure 2 virtually indistinguishable. The greater variation
in SEM emulations may be attributable to higher noise level
in the data (the SSIM value for the oracle estimator without
regularization is significantly higher in Figure 1 than that in
Figure 2) and convergence challenges (see Section VI-E).

Computation times: Table II shows the average runtimes
of Algorithms 1 and 2 across the test images for different
applicable data fidelity terms and denoisers in HIM emulation.

The runtimes for all PnP ADMM methods are similar
across different data fidelity terms while having much more
dependence on the choice of denoiser; using DnCNN is the
fastest, TV about 10 times slower, and BM3D about another
60 times slower. Considering that none of the PnP ADMM
methods with BM3D give appreciably lower RMSE or higher
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TABLE II: Runtimes in seconds for all combinations of data fidelity
term and denoiser. PnP FISTA is used for the TRML data fidelity
term, while PnP ADMM is used for all other data fidelity terms.

Data fidelity
Gaussian Oracle QM LQM TRML

D
en

oi
se

r TV 0.23 2.86 0.68 1.42 46.50
BM3D 84.82 85.25 85.13 84.88 78.98
DnCNN 0.14 0.17 0.14 0.13 26.14

(a) TV denoiser (b) DnCNN denoiser

Fig. 3: Relationship between RMSE of the reconstruction and the
regularization parameters, β for TV and µ for DnCNN, at λ = 20
and 40. The vertical lines indicate the regularization parameter value
when the RMSE is minimum for the corresponding λ.

SSIM than the corresponding methods with DnCNN, BM3D
is generally unattractive in PnP ADMM.

Using PnP FISTA with the TRML data fidelity term, which
significantly improves reconstruction quality over the PnP
ADMM methods in most cases, the runtimes for TV and
DnCNN denoisers increase by approximately 40 and 180
times, respectively, compared to their PnP ADMM counter-
parts. On the contrary, the runtime for PnP FISTA using BM3D
decreases slightly. Comparing the runtimes of PnP FISTA
using different denoisers, the runtime when using BM3D is
only 1.7 times longer than that of TV and 3 times longer than
that of DnCNN. Consequently, BM3D becomes an attractive
option in PnP FISTA, especially when it also gives better
reconstructions, such as in the case of HIM emulation as
shown in Figure 1.

D. Noise Level and Optimal Regularization Strength

Reconstructions from different pixelwise estimators have
different expected MSE depending on λ and η as explained
in Sections II-D and II-E. However, it is unclear how this
effective noise level determines the optimal choice of the
regularization strength β in (20). In our experiments, we tune
the regularization parameters σ and µ, both of which imply
β, on a hold-out validation image. Still, the question of how
λ influences the optimal choice of β remains.

To study the relationship between λ and the optimal reg-
ularization strength, we simulated two measurements of the
hold-out validation image: one with λ = 20 and n = 200 and
the other with λ = 40 and n = 400.4 Then, we compare
the RMSE of reconstructions from PnP ADMM with the
fLQM data fidelity term using different choices of β. We scale

4Scaling n with λ maintains the advantage of TR measurement and the
validity of approximations used to justify the LQM estimator [14].

TABLE III: Fractions of 40 independent HIM emulations for which
each combination of data fidelity term and denoiser results in con-
vergence to a fixed point.

Data fidelity
Gaussian Oracle QM LQM TRML

D
en

oi
se

r TV 0.70 1 1 1 1
BM3D 0 0 0 0 0
DnCNN 0.55 1 1 1 0.025

fLQM by 1/n to make the comparison fair, since fLQM scales
approximately linearly with n under a fixed expected number
of incident ions per subacquisition. The ADMM inversion step
then becomes

η
(t+1)
k = −1

2
ϕ+

1

2

√
ϕ2 +

4yC
k

ρn
(50a)

where
ϕ =

Lk

ρn(1− e−η
prev
k )

− vk + uk. (50b)

We fix ρ = 0.005 and α = 5 × 10−4, and we use the
TV denoiser and DnCNN with varying β and µ. Note that
β cannot be specified exactly when using DnCNN, because
the relationship between µ and the Gaussian noise standard
deviation σ relies on assumptions about the denoiser that are
not true in practice [45].

The RMSE of the reconstructions are shown in Figure 3. As
expected, the higher the dose λ, the greater the information in
the measurements and thus the smaller the error. Consequently,
as λ increases, we observe that the optimal regularization
strength decreases, i.e., β decreases and µ increases.

E. Empirical Convergence

The empirical fixed point convergence behaviors of our PnP
methods agree with the theory in Section VI-E. As shown
in Table III, the PnP methods with a convex data fidelity
term—foracle, fQM, or fLQM—and a denoiser with contractive
residue—TV denoiser or DnCNN—always converge to some
fixed point. The combination of BM3D with any data fidelity
term always fails to converge because BM3D has expansive
residues [46]. While there is no convergence guarantee for
PnP methods with the nonconvex data fidelity terms fconv and
fTRML, they sometimes converge. One explanation is that the
iterates converge in a locally convex region of the data fidelity
term. We observe similar convergence behaviors in SEM
emulations. However, with SEM data, fixed point convergence
when using fTRML is more difficult. This may be partially
understood through examination of ∂2fTRML(η)/∂η2

k. The
derivative of the leading term of (44) is nonpositive. When
ηk is small (as in SEM), n − Lk is likely to be relatively
large, making the magnitude of the derivative of the leading
term of (44) relatively large; empirically, this term is causing
a lack of local convexity of fTRML(η).

Typical convergence behaviors of some combinations of
data fidelity terms and denosiers are shown in Figure 4. For
PnP methods that converge to fixed points, the final iterate
η(final) is approximately the fixed point. For PnP methods
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Fig. 4: Root mean-square distance between the reconstruction at
each iteration η(t) and the final reconstruction η(final) for selected
combinations of data fidelity terms and denoisers from an HIM
emulation.

that do not converge to fixed points, the root mean-square
distance between the iterates η(t) and η(final) either plateaus
or fluctuates.

VII. CONCLUSION

In this paper, we develop data fidelity terms to make model-
based reconstruction efficiently applicable to the distinctive
measurement model for particle beam microscopy. We use
these data fidelity terms in plug-and-play methods for estima-
tion of the mean secondary electron yield η. Because of the
Neyman Type A likelihood for PBM data, using the negative
log-likelihood directly would be computationally intractable.
We introduce approximations with different computational
complexities and accuracies applicable to conventional or
time-resolved measurements, and we compare their efficacies
when combined with three different denoisers. In synthetic
experiments emulating helium ion microscopy and scanning
electron microscopy, we demonstrate that our approaches
outperform pixelwise (non-regularized) methods substantially
in RMSE, SSIM, and qualitative appearance; RMSE reduction
is by a factor of 2.24 to 4.11. We provide the first systematic
demonstration that improvements due to regularization and to
time-resolved measurement can be complementary.
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