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ABSTRACT

What data should a CLIP model see? Many data curation efforts aiming to answer
this question center on the quality of a dataset. However, recent work has shown that
while admitting impressive performance benefits, none of these curation methods
are concept-centric, leading to them inheriting the biased properties of web-scale
data distributions. In this work, we go beyond such concept-agnostic methods and
advocate a more flexible online concept-based curation approach. To enable this,
our first contribution is DATACONCEPT, a collection of 128M web-crawled image-
text pairs annotated with fine-grained details about their concept composition.
Building on DATACONCEPT, we fill another critical gap in the literature: the lack of
a competitive, open-source alternative to highly performant batch sampling methods
for Language-Image Pretraining. Specifically, we introduce Concept-Aware Batch
Sampling (CABS), a simple yet effective batch-sampling algorithm that distills
batches with the broadest set of available concepts. Through rigorous evaluation on
a broad suite of 28 benchmarks, we demonstrate that CABS significantly benefits
Language-Image Pretraining (LIP) and yields highly performant models on long-
tailed evaluations (up to +2.4 p.p. on Let-it-Wag!), while enabling practitioners to
define custom concept distributions that optimize for specific downstream tasks.
Importantly, with only one hyperparameter tuned for a single (backbone, eval)
combination only, CABS shows full compatibility with both CLIP and SigLIP
models. Both DATACONCEPT and the source code for CABS will be released.
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Figure 1: Our two main contributions: DATACONCEPT and CABS: We introduce a new large-
scale concept-annotated dataset that enables a new form of concept-aware batch sampling, which
improves vision-language pretraining.

1 INTRODUCTION

Web-scale pretraining datasets have been a critical ingredient in enabling the impressive generalisation
of Vision-Language Models (VLMs). Consequently, in parallel to the release of state-of-the-art VLMs
(Li et al., 2021; 2022), significant research and engineering efforts have been devoted to collecting and
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open-sourcing such datasets (Sharma et al., 2018; Chen et al., 2015). The advent of CLIP (Radford
et al., 2021), trained on a private collection of 400M image-text pairs, further motivated the open
development of even larger, billion-scale datasets exemplified by LAION (Schuhmann et al., 2022) or
DataComp-1.4B (Gadre et al., 2023). Although the size of these pretraining datasets is an influential
aspect, their quality, as indicated by Nguyen et al. (2022); Gadre et al. (2023); Goyal et al. (2024), is
equally as important, if not more. To improve quality, there exist various ways to curate a dataset,
ranging from filtering according to well-defined metrics (e.g., CLIPScore), to rewriting the crawled
alt-text into a more detailed, meaningful description (Nguyen et al., 2023; Li et al., 2024).

Recently, Udandarao et al. (2024); Wen et al. (2024); Parashar et al. (2024) found that web-scale
datasets exhibit extremely long-tailed concept distributions, contributing to biased downstream
performance. However, none of the widely adopted curation strategies (e.g., those benchmarked by
DataComp (Gadre et al., 2023)) address this issue. In other words, they are concept-agnostic. A
notable exception, and perhaps most related to ours, is MetaCLIP (Xu et al., 2024), an offline curation
strategy that yields a more balanced distribution over CLIP concepts through metadata selection.

In this work, however, we depart from the offline MetaCLIP paradigm and advocate for a much more
flexible alternative: online concept-based curation. Our rationale is simple: there is no “universal”
notion of quality, and importantly, as we show in our experiments, downstream evaluation might bias
what the optimal concept distribution looks like (Mizrahi et al., 2025; Abbas et al., 2024b). Therefore,
we aim to show that incorporating concept-level information during pretraining, without discarding
any data a priori, provides a complementary and effective avenue for VLM data curation.

To achieve this goal, we introduce DATACONCEPT: an open-source multimodal pretraining dataset
with 128M image-text pairs from DataComp Gadre et al. (2023), fully annotated with grounded
concept information. In DATACONCEPT, each sample comes with ① semantic concepts, ② bounding
boxes, ③ per-concept confidence scores, and ④ high-quality, concept-driven synthetic captions
obtained from a state-of-the-art VLM (Wang et al., 2024). With DATACONCEPT, we can therefore
ask: How can we effectively leverage visual concepts during vision-language pretraining?

Based on this premise, we introduce a new training paradigm: Concept-Aware Batch-Sampling
(CABS). In contrast to offline, static curation, we do not impose a fixed, predetermined concept
distribution, but rather enable flexible control over online concept-based batch creation. One variant
of CABS selects samples based on the diversity of their constituent concepts. This scheme is in
line with the MetaCLIP approach and significantly benefits zero-shot classification, especially over
long-tailed evaluations. Additionally, we show that CABS is not limited to such a variant, but allows
for more flexible selection criteria tailored to different downstream tasks, such as image-text retrieval,
which may benefit from a different concept distribution during training (Abbas et al., 2024b).

Importantly, while other highly performant instances of batch-sampling for language-image pretrain-
ing exist (Udandarao et al., 2025; Evans et al., 2024a), they are closed-source algorithms, making
CABS a competitive open-source alternative. Taken together, our contributions are:

1. DATACONCEPT: a new, concept-centric pretraining dataset for VLMs comprising 128M samples,
which augments samples with fine-grained concept annotations and concept-driven synthetic
captions. This helps enable further exploration of concept-centric data curation algorithms, a
relatively underexplored avenue.

2. CABS: a new paradigm for vision-language pretraining that involves online data curation
through concept-aware batch sampling. Paired with DATACONCEPT, the CABS paradigm
enables dynamically control over the concept distribution of the data used throughout training.

3. Extensive evaluation on 28 benchmarks, 4 visual backbones, and 2 training objectives (CLIP
vs SigLIP), demonstrates that CABS is highly effective for vision-language pretraining, while
offering complementary benefits to existing curation recipes. CABS also represents a strong,
open-source alternative to proprietary batch-sampling algorithms.

We hope this work encourages further study into concept-awareness as a critical dimension of
improving data quality for VLMs.
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Figure 2: DATACONCEPT. We start by crawling images from DataComp (Gadre et al., 2023) and
building a concept bank C by merging, deduplicating, and filtering various sources. Subsequently,
① First-order tagging assigns a preliminary list of concepts (from C) to each sample; ② We ground
each concept in the image, removing noise in initial candidates; lastly, ③ we rewrite alt-texts into
context-aware captions.

2 DATACONCEPT: CONCEPT-AWARE DATASET AUGMENTATION

In this section, we introduce the pipeline used for constructing our large-scale, concept-annotated
pool of 128M image-text pairs, DATACONCEPT. In the next section, we demonstrate the usefulness
of our annotations by presenting the algorithm they enable and the resulting performance benefits.

Initial pool. We start with the DataComp’s medium pool consisting of 128M image-text pairs (Gadre
et al., 2023). The standard protocol for downloading the dataset suffers from significant link-rot.1
Hence, we opt for randomly sampling a 128M subset from Datacomp’s XLarge pool (12.8B).

Building a concept bank. The first step for annotating our pool is determining a concept bank, i.e.,
the set of concepts that we seek to detect and tag. Previous work (Udandarao et al., 2024) curated a
concept bank but it is rather limited (4, 029) due to being constructed from 27 evaluation datasets.
For broader coverage, we further source concepts from the class labels used in RAM++ (Huang et al.,
2023), V3Det (Wang et al., 2023), and OpenImages (Kuznetsova et al., 2020), resulting in 19, 261
concepts, after de-duplication and safety removal. More details can be found in Appx. A.1.

Concept tagging. Equipped with an expansive concept bank, following Udandarao et al. (2024), we
employ the RAM++ model to provide multiple concept tags for each sample in our pool.

Concept grounding. While RAM++ annotations provide fine-grained concept annotations per
sample, we find that (i) RAM++ can be miscalibrated in its confidence predictions due to the extreme
diversity of our concept bank, and (ii) RAM++ only provides a list of concept tags, without localising
them in the image, which can lead to incorrect grounding. Thus, we use GroundingDINO (Liu et al.,
2024) to additionally provide concept-specific bounding boxes. To enable precise localization of
concepts, we propose two methods: (i) Confidence seeding – we feed RAM++ concept tags per sample
(only those with at least 0.75 confidence) as seed prompts to GroundingDINO – and (ii) Resolution
ensembling – we use Weighted Box Fusion (Solovyev et al., 2021) to ensemble the GroundingDINO
predictions over multiple image resolutions of {384, 512, 800, 1000}. These enable us to reduce
hallucinations without significantly increasing processing latency. With the two aforementioned steps,
we tag all samples in our pool using 6, 201 concepts, i.e. C, the concept vocabulary for CABS.

Concept-aware recaptioning. Lastly, we augment each sample with a text caption by using a
concept-aware captioner. Synthetic re-captions improve training data quality by reducing the noise
in alt-text captions (Nguyen et al., 2023; Faghri et al., 2025; Fan et al., 2023). In our pipeline, we use
Qwen2-VL-7B (Wang et al., 2024) to recaption each image in a concept-aware manner: we provide
the list of detected concepts and the original caption in the prompt to the model for recaptioning.

1We successfully downloaded only 79% of the medium scale, as of 28/09/2024.
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DATACONCEPT. Our multi-stage pipeline, fully summarised in Fig. 2, yields our final dataset. Each
image-text sample in our dataset consists of concept metadata including coarse-grained tags with
confidence scores, localised bounding-boxes, and concept-aware synthetic captions. In the next
section, we describe how we can leverage these annotations to improve language-image pretraining.

3 CABS: CONCEPT-AWARE BATCH SAMPLING

Like all uncurated web-crawled datasets, DataComp pool exhibits natural frequency imbalances,
leading to highly skewed concept distributions under IID sampling. These imbalances, in turn, bias
batch-level supervision during pretraining. The core idea of the CABS paradigm is to counteract this
bias by establishing a flexible target concept distribution over the data pool and selecting samples that
approximate it. To make this possible, we leverage annotations from our proposed DATACONCEPT,
where each image-text pair (Ii, Ti) is complemented with a set of semantic concepts Si from the
concept vocabulary C. This augmentation enriches the dataset with structured metadata, which in
turn enables flexible batch construction protocols according to the downstream task of interest.

Formulation: We now formulate CABS as a sampling function. Given a filter ratio f ∈ [0, 1) and
a super-batch of size B, our objective is to extract sub-batches of size b = (1− f)B according to
different heuristic functions, conditioned on the sample-level concepts c as priors. The heuristic
sampling function can flexibly be implemented to enable different batch compositions. For example,
one heuristic variant can explicitly seek to be diversity-maximizing (like MetaCLIP) while another
variant can seek to prioritize unique concepts. As we will show in Secs. 4 and 5, this inherent
flexibility of our CABS paradigm can be leveraged to target different tasks of interest. Next, we
develop a variant of CABS that explicitly aims to maximize concept diversity within a batch.

3.1 CABS WITH DIVERSITY MAXIMISATION (CABS-DM)

We introduce CABS-DM, desiged to mitigate the inherent long-tailed nature of concept distributions
in image-text data. Our desired target batch is a near-uniform concept distribution, subject to lower
and upper bounds on concept frequencies. This is denoted by tc, the target count for concept c,
measured by dividing budget b evenly across the concept spread of B.
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Figure 3: Comparing sub-batch composi-
tions. While IID-sampling represents a strong
skew in concept frequency, CABS-DM de-
biases the contrastive training objective with
a near-uniform distribution.

Since annotated samples are often multi-label (see
Fig. 8), we denote the sample level concept set as
si ⊆ C. CABS-DM proceeds by iteratively selecting
the sample that maximises a gain function g(i) and
updating the sub-batch concept count nc (how many
times concept c has been selected) for all c ∈ si.
This process continues until the desired batch size
for training is obtained. The distilled sub-batch is
vastly different from an IID-sampled batch, as illus-
trated in Fig. 3. An average CABS-DM sub-batch
contains more than 1.5 times the concepts of an IID-
sampled batch and, in addition to exhibiting a flat
concept distribution. This helps increase diversity
and uniformity at the batch construction level.

CABS-DM includes the following components:

Pooling Concepts and Target Count. For each
super-batch of size B, the global frequency fc of
each concept is computed across several distributed
processes. Additionally, we fix the (roughly uniform)
target count tc for concept c, i.e. the maximum number of times c should appear in the sub-batch,
to enforce approximate uniformity. In a simplified setting, if each sample comprises 1 concept,∑

c tc ≈ b = (1− f)B, the sub-batch size.

Gain Function. Central to the effectiveness of CABS-DM is the sample-level gain or utility based
on the current state of the sub-batch’s concept distribution. Given super-batch sample i,
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For concept set si of sample i, define the gain as

g(i) =
1

|si|
∑
c∈si


tc − nc

tc
+

1

fc
, if nc < tc,

−0.5, if nc ≥ tc

Each concept contributes a balance gain(tc−nc/tc) that encourages underrepresented concepts
and a long-tailedness bonus(1/fc), when nc < tc or a−0.5 penalty if nc reaches or exceeds
tc. At each step, we sort all remaining super-batch samples by this gain score and deterministically
insert the top one into the sub-batch. CABS-DM then selects sample i⋆ = argmaxi g(i | n),
appends i⋆ to the sub-batch, and updates nc ← nc + 1 for all c ∈ si⋆ . If c exceeds the maximum
in-batch frequency, all remaining samples containing c are invalidated.

CABS-DM proceeds through a sequence of local maximisations to yield a balanced and diverse
sub-batch. At every iteration, it deterministically selects the sample with the highest gain, conditioned
on the current sub-batch composition, without randomness. The deterministic nature of CABS-DM
ensures reproducibility across runs for the same super-batch. The dual gain terms promotes balanced
batch composition and concept coverage, directly addressing the biases of an IID-sampled batch.

4 EXPERIMENTS

We present an extensive evaluation of CABS-DM—in Sec. 4.2, we show that CABS-DM sig-
nificantly outperforms IID sampling for language–image pretraining. In Sec. 4.3, we compare
CABS-DM against open-source, state-of-the-art batch-sampling methods for Vision-Language Pre-
training. Finally, in Sec. 4.4, we dig into CABS-DM’s performance when training is data- vs
compute-constrained, showing full compatibility with SOTA data filtering methods (i.e., CLIPScore).

4.1 SETUP

Models. We train a ViT-B-32 (Dosovitskiy et al., 2020) CLIP using 224 image-resolution and ViT-
B-16 SigLIP (Zhai et al., 2023) at 256 resolution. We further test CABS-DM by training ViT-S-16
CLIP and ViT-SO400M-14 SigLIP (Alabdulmohsin et al., 2023) models in Appx. B.

Data. For each model, we train two variants on DATACONCEPT: one using noisy alt-texts and another
with our concept-aware re-captions. Note that IID sampling with alt-text corresponds to training on
128M samples from DataComp.

Benchmarks. Following Gadre et al. (2023); Abbas et al. (2024b); Udandarao et al. (2025) we
consider a diverse pool of 25 classification and 2 image-text retrieval benchmarks, spanning fine-
grained, object-centric, and scene-centric categories. Additionally, to assess the effectiveness of
CABS-DM in the long-tail setting, we test on the “Let-It-Wag!” test set from Udandarao et al. (2024).

Training. We fix the training budget to 128M samples seen, which is equivalent to the medium scale
of the DataComp benchmark. We closely follow the hyper-parameters set by DataComp for fair
comparison across settings, including a batch-size of 4096. Unless otherwise specified, we set the
filter ratio to f=0.8, thereby sampling from superbatches of size B=20480.

4.2 CABS-DM IMPROVES MULTIMODAL PRETRAINING

We comprehensively evaluate the effectiveness of CABS-DM against standard IID sampling for
language–image pretraining. As shown in Tab. 1, CABS-DM consistently delivers improvements
across four different evaluation settings. On ImageNet zero-shot classification, CABS-DM yields
substantial gains over IID sampling, with an absolute improvement of +5.0% for CLIP ViT-B-32 and
+6.9% for SigLIP B-16-256. Similar trends are observed across the broader suite of classification
benchmarks, where CABS-DM provides higher average accuracy (final column of the table). Beyond
standard benchmarks, CABS-DM also enhances long-tailed recognition: on Let-It-Wag!, we observe
consistent boosts of 1.0−2.4%. This demonstrates that CABS-DM not only strengthens general
representation learning but also better equips models to handle challenging, imbalanced distributions.

Importantly, we also observe consistent improvements in using our concept-aware re-captions vs
alt-text, even with standard IID sampling. For example, with CLIP-ViT-B/32@224, our re-captions
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Table 1: CABS-DM improves over IID sampling for pretraining. Our method substantially
outperforms standard IID sampling, across settings. Importantly, gains from CABS-DM extend to the
long-tailed “Let-It-Wag!” too, demonstrating the utility of our diversity-maximization procedure.

Method Captions
Zero-shot Classification Retrieval

Let-it-Wag! Avg (Clf)
IN-Val IN-shift Obj Scene COCO Flickr

ViT-B-32-CLIP
IID alt 17.3 15.2 32.3 36.4 9.7 16.2 5.1 28.2

CABS-DM alt 21.9 18.6 34.2 37.0 7.7 12.6 7.5 31.0

IID recap 21.7 20.8 36.4 43.1 24.0 41.3 5.9 33.0

CABS-DM recap 26.7 25.4 39.6 42.8 22.8 34.4 7.1 35.5

ViT-B-16-SigLIP-256
IID alt 17.2 15.3 29.6 35.9 11.1 18.9 5.2 26.4

CABS-DM alt 24.1 20.8 33.5 39.6 10.1 14.1 7.0 30.9

IID recap 28.8 27.4 41.5 48.9 37.1 57.0 6.6 38.6

CABS-DM recap 34.7 32.3 43.2 50.6 36.0 51.4 7.6 41.1

contribute to a +4.3% improvement on ImageNet-1k, and +4.8% on average for zero-shot classifica-
tion. For SigLIP-ViT-B/16@256, the same boosts are as large as +11.6% and +12.2%.

Remark on retrieval. While performance on classification tasks is strong, CABS-DM seems
to regress retrieval abilities. We posit why in Sec. 5, where we showcase the flexibility of the
DATACONCEPT+CABS framework in controlling the concept distribution, and introduce a simple
alternative (CABS-FM) that largely benefits retrieval. Note, however, that our concept-aware
recaptioning provides substantial benefits for retrieval vs standard alt-text.

4.3 COMPARISON WITH ONLINE BATCH SAMPLING METHODS

In this section, we compare CABS-DM with GRIT-VLP and MAFA (Byun et al., 2022; 2024), two
popular batch sampling methods. We remark that, although Evans et al. (2024a) and Udandarao et al.
(2025) are also valid baselines, they are proprietary algorithms with no public implementation.

Baselines. Both GRIT-VLP and MAFA are sampling methods that rely on embedding similarity
to sample hard-negatives. Despite their commonalities, they differ in a crucial detail: GRIT’s hard-
negatives are based on the current state of the learner, while MAFA relies on similarities computed
by a pretrained model. In the original paper, MAFA uses BLIP to sample hard-negatives for the
learner. However, BLIP is trained at a much smaller budget than current standards. To avoid this
confounder in our comparison, we pretrain CLIP and SigLIP models with a compute budget of 128M
samples seen, and let them provide the similarities for MAFA.

Results are given in Tab. 2 for both CLIP-ViT-B/32 and SigLIP-ViT-B/16. Surprisingly, we find that
both GRIT and MAFA struggle in providing improvements to the classical CLIP recipe, sometimes
even underperforming the IID baseline. Conversely, they consistently improve on the SigLIP recipe.
This aligns with both ours and other recent observations (e.g., Evans et al. (2024b); Udandarao et al.
(2024)) that SigLIP models tend to benefit more from active batch sampling in general. However,
despite this improvement, they lag far behind CABS-DM, which largely compares favorably. Even
with SigLIP-ViT-B/16, CABS-DM improvements are as large of +6.8% on ImageNet and +4.5%
when averaged across the entire zero-shot suite.

Observations. We speculate that the effectiveness of GRIT and MAFA for early VLMs does not
transfer to modern LIP for a variety of reasons. For example, current LIP employs much larger batch
sizes than early iterations (e.g., 4096 vs 128 or 256), which potentially smoothens the impact of
hard-negative sampling, simply due to the unlikelihood of having such large clusters of hard-negatives.
Additionally, early VLMs were pretrained on much smaller datasets, thereby entering a multi-epoch
regime and progressively refining the similarities computed for the same samples multiple times.
Current LIP, however, relies on massive pretraining datasets that yield a semi-infinite data stream,
with multi-epoch setups being far less common. In other words, current LIP is typically compute-
constrained. In contrast, data-constrained pretraining regimes become necessary when the size of
such massive datasets is largely reduced due to offline data filtering according to some criterion.
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Table 2: CABS-DM outperforms SOTA open-source batch sampling methods. With both CLIP-
ViT-B/32 (top) and SigLIP-ViT-B/16, CABS-DM provides significant benefits to LIP compared to
Byun et al. (2022; 2024), making it a more suitable alternative to modern LIP.

Method
Zero-shot Classification Retrieval

Let-It-Wag! Avg (Clf)
IN-Val IN-Shift Obj Scene COCO Flickr

ViT-B-32-CLIP
IID 17.3 15.2 32.3 36.4 9.7 16.2 5.1 28.2

GRIT-VLP 17.6 15.0 31.7 35.6 9.7 15.6 6.3 27.5

MAFA 17.0 15.0 32.2 35.9 9.6 15.5 5.6 27.9

CABS-DM 21.9 18.6 34.2 37.0 7.7 12.6 7.5 31.0

ViT-B-16-SigLIP-256
IID 17.2 15.3 29.6 35.9 11.1 18.9 5.2 26.4

GRIT-VLP 17.3 15.1 30.7 37.3 11.6 19.6 5.0 27.2

MAFA 17.2 15.2 30.7 36.2 10.5 19.4 5.2 27.1

CABS-DM 24.1 20.8 33.5 39.6 10.1 14.1 7.0 30.9

Table 3: CABS-DM is compatible with CLIPScore filtering. Although CABS-DM leads to more
repeats, which yield diminishing returns on already curated data (Goyal et al., 2024), CABS-DM
improves over IID even with 2× more repeats across learning recipes.

Method
Zero-shot Classification Retrieval

Let-it-Wag! Avg (Clf)
IN-Val IN-shift Obj Scene COCO Flickr

ViT-B-32-CLIP
IID 27.3 23.0 39.8 43.1 13.8 24.1 10.7 35.7

CABS-DM 30.1 25.6 41.8 44.8 14.0 21.7 12.7 37.8

ViT-B-16-SigLIP-256
IID 34.7 29.5 46.2 48.9 18.7 34.8 11.9 42.0

CABS-DM 37.5 32.2 46.2 48.5 18.9 29.3 12.6 42.7

Next, we analyze the properties of CABS-DM when training is compute- or data-constrained.

4.4 HOW DOES CABS-DM BEHAVE IN DATA- VS COMPUTE-CONSTRAINED REGIMES?

Modern pretraining ingredients, such as massive pretraining datasets, led to a critical distinction we
aim to study: how does CABS-DM behave when pretraining is data- vs compute-constrained?

Definitions. In a nutshell, these two different settings can be defined with the following simple
formalism. Let C be the target compute for training (i.e. target FLOPs), D be the pretraining dataset,
and CD the compute spent for a full pass on D (i.e., FLOPs per epoch). When C≤CD, training is
compute-constrained, which means compute is insufficient to train on all available data (or, at most,
just as sufficient). Conversely, when C>CD, training is data-constrained, i.e., data is insufficient
w.r.t. the available amount of compute, rendering data repeats necessary.

Experimental Design. Because of CABS-DM’s superbatches, Sec. 4 displays a data-constrained
setting for CABS-DM and a compute-constrained setting for IID sampling: since a fraction f=0.8
of samples are filtered online, the effective data-per-epoch for CABS-DM is 5× less than for IID,
which instead operates with C=CD. To dissect this dichotomy further, we design two real-world
experiments: ① less data, but higher quality, where we stick to the 128M sample budget, but reduce
the 128M samples in DATACONCEPT via CLIPScore filtering, only keeping the top 30% and ending
up with ≈38M samples.2 To control for worst-case repeats, here we slightly decrease f=0.5; ② long
training, where we match the DataComp-large scale with a budget of 1.28B samples seen.

Less data, but higher quality. The results are given in Tab. 3. Notably, CABS-DM shows full
compatibility with CLIPScore filtered data, even though a worst-case scenario entails 6.67 repeats for
CABS-DM, and only 3.33 for IID. Importantly, while repeating over already curated data is known
to yield diminishing returns (Goyal et al., 2024), CABS-DM still trumps IID sampling.

2We use OpenAI’s CLIP ViT-L/14 model for scoring.
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Figure 5: (left) KDE over concepts distributions yielded by CABS customizations (FM vs DM) and
their alignment with COCO. (right) Corresponding performance on Retrieval benchmarks.
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Figure 4: Longer training for CLIP ViT-B/32.

Long Training behavior along the training tra-
jectory is portrayed by Fig. 4. Due to the large
amount of compute required for this experiment,
we only report CLIP-ViT-B/32, since its lower
count of visual patches yields higher throughput
than SigLIP ViT-B/16. From the figure, we can
clearly see that, as long as training is compute-
constrained for IID (dashed gray line), CABS-
DM significantly outperforms the vanilla CLIP
recipe, displaying an impressive 3.2× data ef-
ficiency. Only after training has progressed far
into the data-constrained regime, with CABS-
DM yielding a worst-case of 50 repeats and IID
yielding only 10, do the performance curves
overlap. In a nutshell, these experiments confirm
CABS-DM is fully compatible with real-world
use cases of massive web-crawled data collections, or much smaller, highly curated resources.

5 OPTIMISING CABS FOR RETRIEVAL

As observed in Sec. 4.2, while the Diversity Maximisation variant of CABS delivers consistent
improvements on zero-shot classification benchmarks, it underperforms on image–text retrieval
tasks such as MSCOCO and Flickr30k. Why would a batch sampling strategy that consistently
boosts classification performance not transfer to retrieval? We hypothesise that this gap stems from
concept-based dataset compositions.

Classification datasets are typically dominated by single-object images, whereas retrieval datasets
often feature multiple objects within a single sample and correspondingly richer scene compositions.
To test this, we collect 4,096 random samples from MSCOCO and visualise the distribution of
per-sample object counts, following the same protocol used to construct DATACONCEPT. As shown
in Fig. 5, CABS-DM produces batches skewed towards single-object images, while MSCOCO
exhibits a distribution skewed towards multi-object scenes.

To address this mismatch, we introduce a complementary CABS sampling algorithm that explicitly
accounts for object multiplicity. Specifically, we rank all candidate samples by detected object count
and filter away 80% of the super-batch (using a filter ratio f = 0.8). We refer to this variant as
CABS-FM (Frequency Maximisation). Visualising the distribution of CABS-FM shows a sharper
peak than MSCOCO, but one that overlaps with the same modal region, aligning more closely with
the multi-object nature of retrieval datasets.

Does this alignment translate to downstream performance? Training a ViT-B-32 CLIP model with
CABS-FM yields consistent improvements on both MSCOCO and Flickr30k. Being able to flexibly
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adapt batch distributions at the pretraining stage, in ways that reflect the structural properties of target
benchmarks, may thus provide a practical path towards task-aware optimisation.

With gains on retrieval benchmarks using CABS-FM, we posit that classification and retrieval
evaluations favor divergent inductive biases during training batch construction. This observation
resonates with recent work (Abbas et al., 2024b), which calls for separate curation strategies for
classification and retrieval. To the best of our knowledge, CABS-DM and CABS-FM together
represent the first public and reproducible demonstration of task-aware online batch sampling.

6 RELATED WORK

Sampling Approaches for Training Foundation Models. Training web-scale foundation models
typically uses uniform, IID mini-batch sampling, which assigns equal weights to each data samples.
However, in multimodal corpora, examples differ drastically in quality (Gadre et al., 2023; Schuhmann
et al., 2022; Xu et al., 2023), are possibly redundant (Abbas et al., 2023; Elazar et al., 2023;
Abbas et al., 2024a; Sorscher et al., 2022; Webster et al., 2023), and exhibit skewed, long-tailed
distributions across concepts (Udandarao et al., 2024; Parashar et al., 2024). Moreover, for contrastive
objectives like CLIP (Radford et al., 2021), batch composition heavily shapes the learning process.
In this context, uniform sampling is not neutral: it can overexpose trivial or spurious correlations
and under-represent rare but informative cases. Hence, several recent approaches try to apply
better batch sampling schemes to ensure more effective cross-modal learning. Early approaches
like RHO-Loss (Mindermann et al., 2022) and Bad-Students (Evans et al., 2024c) underscore the
importance of more effective mini-batch sampling, but they only select data samples independently,
without considering the overall batch composition. Works such as GRIT-VLP (Byun et al., 2022),
MAFA (Byun et al., 2024), JEST (Evans et al., 2024a), B3 (Thirukovalluru et al., 2025), Falcon (Kim
et al., 2025) and ACID (Udandarao et al., 2025) propose improved batch-aware sampling methods for
optimizing the batch composition during each training step. Our paper builds on this line of works
by incorporating concept diversity into training batch construction, an aspect missing from previous
multimodal batch-sampling methods.

Analyzing Concepts in Multimodal Datasets. Understanding the composition of multimodal
datasets is important for building better batch sampling methods. Early image-text datasets like
CC-3M (Sharma et al., 2018), CC-12M (Changpinyo et al., 2021) and YFCC-100M (Thomee et al.,
2016) partially characterize their inherent concept distributions using metadata from the original web
sources where images are scraped from. The WebLI (Chen et al., 2022) dataset (used for training
models like PaliGemma and SigLIP) was annotated using OCR models to detect objects in images.
However, due to the large volume and compute resources required for annotating recent open datasets
like LAION-5B (Schuhmann et al., 2022) and DataComp-1B (Gadre et al., 2023), very few works
have studied their distribution of concepts. Udandarao et al. (2024) annotated the LAION-400M
dataset by tagging each data sample with its constituent concepts by using a pretrained image-tagging
model (Huang et al., 2023) and text search. Other works have proposed improving concept coverage in
various ways, e.g. considering multilingual data Nguyen et al. (2024) or strategies for recaptioning Li
et al. (2024). Our DATACONCEPT is also created through a curated pipeline that enriches samples
with fine-grained concept annotations. However, a unique aspect of our work is that DATACONCEPT
is specifically designed to enable explicit control over online, concept-based batch creation.

7 CONCLUSION

In this work, we investigate the role of incorporating concept-level information during large-scale
language–image pretraining. In contrast to prior LIP dataset curation approaches that ignore concept-
level information, we demonstrate that concept-awareness constitutes an underexplored yet crucial
aspect. To this end, we introduced DATACONCEPT, a large-scale, fully annotated pretraining dataset
designed to expose concept-level information, and CABS, a flexible framework for online, concept-
aware batch sampling for LIP. Our extensive experimental evaluation demonstrates the benefits of
CABS over IID and other batch sampling methods. Our results also reveal that CABS lead to
improved performance across both classification and image–text retrieval tasks, demonstrating its
versatility. By releasing DATACONCEPT and CABS as open resources, we aim to advance research
on more robust and generalizable VLMs.
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A DATACONCEPT CURATION: FURTHER DETAILS

A.1 VOCABULARY CONSTRUCTION

We scale up the tag generation pipeline of RAM++(Recognise Anything) (Huang et al., 2023) by
incorporating more long-tailed concepts. In the original work, RAM++ extracts the top 4, 585
concepts by parsing 14 million sentences from their pool of pretraining datasets and then extracting
tags using a SceneGraph Parser (Wu et al., 2019), hence attempting to focus on more common
concepts.

However, our work focusses more on open-vocabulary recognition and localisation, hence we scale
up the concept vocabulary to include objects that may be found in-the-wild in image-text pretraining
datasets. We also adopt and filter the vocabulary pool from V3Det (Wang et al., 2023), a state-of-
the-art open-vocabulary dataset which observes and encodes the relationship between categories by
defining a hierarchy tree of concepts.

Curating this concept pool comes with redundancies, which need to be systematically resolved.
Firstly, we perform a normalisation step to remove morphological variants of the same concept
(e.g singular and plural forms) into a single entity using lemmatisation. Next, we remove semantic
redundancies using WordNet(formalised through synsets) to detect synonyms. We then identify
spelling/spacing artefacts and remove them if they are duplicated (" cat" and the correct "cat").
Finally, we identify unsafe concepts(e.g. racially motivated concepts like white man and black
man) through thorough manual inspection and remove them.

2



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.2 OBJECT TAGGING

Previous attempts to annotate pretraining datasets have used object tagging to return a list of probable
objects in a sample ((Udandarao et al., 2024) used RAM++ Huang et al. (2023) to annotate visual
concepts in many large image-text datasets. However, as discussed in Sec. 2, the expanded vocabulary
introduces miscalibrations and overestimations in the model predictions. For example, abiding by the
confidence threshold of 0.7 image resolution of (384,384) from (Udandarao et al., 2024), we note
that simply generating concept tags can lead to mistakes, a stricter regime is required. As a sanity
check, we increase the confidence threshold to 0.75 and still see miscalibrations in some form (see
Fig. 6). Additionally, concept tags injects only one form of added metadata - other tasks like object
detection can add richer and more valuable fine-grained information into these large datasets.

boa constrictor | iguana | snake | African 
chameleon | cobra | fence | cage | zoo | museum | 
animal | closeup | picture | display | close-up | 
python | display device | burmese python | brown 
snake | crotalus oreganus | pantherophis guttatus 
| crotalus ornatus | moa | barosaur | hoop snake | 
hognose snake | leaf-nosed snake | horseshoe 
whipsnake | masticophis lateralis | sonoran 
whipsnake | chicken snake | indian rat snake | 
glossy snake | viperine grass snake | banded sand 
snake | black-headed snake | sonoran lyre snake | 
carpet snake | reticulated python | indian python 
| rock python | amethystine python | black mamba | 
death adder | notechis scutatus | taipan | vipera 
berus | puff adder | gaboon viper | horned viper | 
crotalus adamanteus | western diamondback | rock 
rattlesnake | snake charmer

boa constrictor | iguana | 
snake | cobra | fence | cage 
| zoo | museum | animal | 
closeup | picture | display | 
python | burmese python | 
brown snake | hognose snake | 
leaf-nosed snake | chicken 
snake | reticulated python | 
indian python | rock 
rattlesnake 

C = 0.7 C = 0.75

Figure 6: RAM++ tends to overestimate classes when the vocabulary is expanded, even at high
confidence thresholds. This arises from the increased semantic similarity among real-world concepts
in the visual space, as a factor of a large vocabulary. This leads to an increase in the hierarchy for
common and long-tailed classes(there are several sub-species of snakes in the vocabulary) and to
some inherent uncertainty of making predicting for images that induce visual uncertainty.
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Image Size: 384

Image Size: 800

Image Size: 512

Image Size: 1000

Ensembled

[‘road bicycle’, 
‘man’,
‘helmet’]

[‘bicycle’, 
‘man’,
‘helmet’]

[‘road bicycle’, 
‘man’,
‘helmet’
‘shirt’,
‘road’]

[‘road bicycle’, 
‘man’,
‘helmet’
‘shirt’,
‘bicycle’]

[‘road bicycle’, ‘man’, ‘helmet’, 
‘shirt’, ‘road’, ‘bicycle’]

Figure 7: Using Weighted Box Fusion, we are able to detect single instances(no overlap of bounding
boxes) of all relevant objects in an image.

A.3 OBJECT DETECTION

Object tagging using RAM++ provides great insights into the object composition of images in
inage-text datasets. However, relevant factors for the holistic understanding of pretraining data such
as the number of instances of the same concept in an image(count) and the localisation of these
concepts(spatial awareness) are confounded away by simply tagging an image with objects. To
mitigate this, we indoctrinate bounding box information into the pipeline, which resolves both the
issues identified.

Given an image and text pair, GroundingDINO returns bounding boxes, where each box is tagged
with a similarity score across the individual input text tokens. GroundingDINO can effectively detect
objects from an image when provided an input text. Some approaches involve having a user-defined
text prompt and providing the entire pool of concepts as the text input. Both these approaches
have their set of problems: firstly, we are unable to individually define prompts when dealing with
pretraining data as it involves manually annotating millions of images, and secondly, providing the
entire pool of concepts leads to over-representation of objects being detected which are not visually
present in the image, thus leading to some form of hallucination.

Our solution involves providing RAM++ object tags at a 0.75 confidence threshold as prompts to
GroundingDINO. By reducing the vocabulary pool, we mitigate hallucinations and errors while
also improving the detection model’s processing speed. Through manual inspection, to remove
low-confidence predictions to prevent a second degree of over-representation, we set a text threshold
by only extracting concepts with a box-concept similarity score higher than 0.27. We set the same
threshold for bounding box confidence scores too. With this configuration, we can now annotate each
image of a pretraining dataset with the concept tags, per-concept logit scores from RAM++ and the
set of bounding boxes, detected classes and their corresponding confidence scores.

An additional confounder is that DataComp-128M is available in multiple resolutions. To leverage this
and increase the trustworthiness of DATACONCEPT, we apply Weighted Box Fusion (WBF) Solovyev
et al. (2021) for bounding box ensembling. WBF generates the final set of bounding boxes by using
the confidence scores of the proposed bounding boxes of multiple object detection models/various
configurations of the same object detection model. This approach is in contrast to Non-maximum
suppression(NMS) which just removes part of the predictions instead of aggregating them. Ensem-
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bling has proven to be an effective strategy in complex object detection tasks (Tuggener et al., 2024).
Specifically, we ensemble across image resolutions 384, 512, 800, 1000 to obtain more robust final
detection results, refer to Fig. 7 for visual inspection.

As we have demonstrated, DATACONCEPT has been curated using high confidence thresholds and
stricter annotation protocols, with localisation requiring bounding boxes to be generated for the precise
regions of objects. This added difficulty has led to extremely rare concepts being underrepresented in
the annotations. Nevertheless, DATACONCEPT-M contains 6, 201 unique concepts, which we define
as C, the concept pool for CABS. How these concepts are distributed and how concept-dense they
are can be found in Fig. 8.

Figure 8: What is the representation of concepts in web-scale pretraining samples? We demon-
strate the distribution of concept counts per sample after annotations using GroundingDINO, using
optimised thresholding and confidence scores. that GroundingDINO can predict a concept many
times, hence these numbers reflect the total number of concepts detected in an image, not unique
concepts.
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B EXTENDED BENCHMARK PERFORMANCE: MORE MODELS

Table 4: Extended Results including CLIP ViT-S-16 and SigLIP ViT-SO400M. CABS-DM delivers
consistent improvements with these variants as well.

Method Captions
Zero-shot Classification Retrieval

Let-it-Wag! Avg (Clf)
IN-Val IN-shift Obj Scene COCO Flickr

ViT-S-16
IID alt 16.9 15.0 30.3 35.4 9.6 17.4 6.1 26.6

CABS-DM alt 24.6 20.6 34.8 39.0 10.3 16.1 8.3 31.5

IID recap 24.8 22.8 39.4 44.4 28.7 47.2 6.3 35.4

CABS-DM recap 30.0 27.4 40.6 45.0 27.5 41.7 8.0 37.8

ViT-B-32
IID alt 17.3 15.2 32.3 36.4 9.7 16.2 5.1 28.2

CABS-DM alt 21.9 18.6 34.2 37.0 7.7 12.6 7.5 31.0

IID recap 21.7 20.8 36.4 43.1 24.0 41.3 5.9 33.0

CABS-DM recap 26.7 25.4 39.6 42.8 22.8 34.4 7.1 35.5

ViT-B-16-SigLIP-256
IID alt 17.2 15.3 29.6 35.9 11.1 18.9 5.2 26.4

CABS-DM alt 24.1 20.8 33.5 39.6 10.1 14.1 7.0 30.9

IID recap 28.8 27.4 41.5 48.9 37.1 57.0 6.6 38.6

CABS-DM recap 34.7 32.3 43.2 50.6 36.0 51.4 7.6 41.1

ViT-SO400M-14-SigLIP
IID alt 15.5 13.7 27.5 34.7 8.8 13.7 4.7 24.5

CABS alt 22.6 18.8 33.4 40.0 11.3 15.9 6.2 30.2

IID recap 34.1 31.8 46.3 55.9 37.7 53.8 7.6 42.2

CABS recap 39.6 36.1 45.1 57.5 39.0 52.3 9.4 44.2

To provide a more in-depth analysis of the trends seen when comparing IID sampling and CABS-
DM, we conduct experiments on two additional models, CLIP ViT-S-16 and SigLIP ViT-SO400M.
We arrive at the same conclusions as discussed in Sec. 4.2, we see strong performance boosts on
classification datasets with a dip in performance on retrieval datasets. However, we see some outliers
such as ViT-S-16 on MSCOCO for alt-text (+0.7%) as well as for the ViT-SO400M-14-SigLIP models.
However, the perdomance gains aren’t universal or significant enough to conclude that CABS-DM
is an ideal sampling algorithm for retrieval. We defer to CABS-FM for retrieval-optimised batch
sampling.
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C CONTINUAL PRETRAINING

Table 5: Continual Pretraining Experiments. In line with the evidence of Sec. 4, CABS improves
over IID sampling even when continually pretraining an IID checkpoint.

Method Captions
Zero-shot Classification Retrieval

Let-it-Wag! Avg (Clf)
IN-Val IN-shift Obj Scene COCO Flickr

ViT-B-32
IID alt 23.7 20.0 37.7 42.3 13.7 24.5 7.9 33.4

CABS-DM alt 27.8 23.9 37.4 42.7 10.7 16.9 8.9 34.4

iid recap 27.7 25.8 41.7 47.7 30.5 49.0 7.7 38.1

CABS-DM recap 31.7 29.1 43.4 46.8 29.7 43.7 8.9 40.0

We wish to see ifCABS-DM is a strong batch sampling algorithm on other pretraining regimes as
well. To this end, we adopt a continual pretraining paradigm, where checkpoints trained at the same
scale (128M samples seen) are used as model weights at the beginning of a new training run. In our
case, we use a CLIP ViT-B-32 checkpoint, trained on DataComp-128M and compare IID-sampling
and CABS-DM. We still see CABS-DM outperforming IID sampling in almost all settings, across
benchmarks and text distributions (alt-text and concept-aware synthetic recaptions).
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D ABLATION ON FILTER RATIOS
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Figure 9: CABS-DM is affected by varying batch filter-ratio.

In this section, we show how the filter ratio f , defined as the parameter that determines the size of a
sub-batch b given super-batch of size B. For example, a filter ratio of f = 0.5 would correspond to a
super-batch of size 8192 for a sub-batch of size 4096. In most of our experiments, we fix the filter
ratio to 0.8. Fig. 9 provides an ablation over various other filter ratios for a ViT-B/32 CLIP model,
tested on ImageNet across filter ratios 0.5,0.75,0.8,0.9. Performance trends over the set of filter ratios
indicate that 0.8 is indeed the optimal filter ratio at the 128M sample scale.
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E FINE-GRAINED BENCHMARK PERFORMANCE

Figure 10: Dataset-wise comparisons for all benchmarks of Sec. 4 for CLIP ViT-B/32 between
CABS-DM and IID sampling. A positive performance difference indicates a benchmark where
CABS-DM outperforms IID sampling.

We provide an expanded probe into the specific benchmarks where CABS-DM shows performance
boosts over IID-sampling in 25 out of 28 benchmarks. With this, we can ascertain that despite
maximising for concept diversity, CABS-DM shows strong gains on datasets that test for long-tailed
concepts as well as for more common concepts. This confirms that CABS-DM is an all-round
performant batch sampling algorithm for classification tasks.
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