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ABSTRACT

Video summarization remains a challenging task in capturing the complex inter-
play of visual dynamics, spoken content, and behavioural cues that collectively
shape viewer understanding in human-centric videos. Human communication is
inherently multimodal; however, existing approaches in video summarization either
rely solely on visual features or rudimentary text-visual combinations, neglecting
critical audio prosodic patterns and their interactions. Crucially, the synchronous
behavioural signals that convey emotional expression and communicative intent
are not considered entirely. In this paper, we present a behaviour-aware multi-
modal framework for video summarization that explicitly models synchronized
behavioural cues across visual, audio, and textual modalities through a transformer-
based architecture with cross-modal attention mechanisms. Our approach integrates
CLIP visual embeddings enhanced with facial movement detection and emotional
transitions, HUBERT audio features enriched with prosodic patterns including
pitch variations and voice quality measures, and RoBERTa textual embeddings
that preserve narrative flow and discourse structure. We employ heuristic-based
behavioural cue detection methods combined with large language model-guided
extractive summarization to generate pseudo-ground truth references that capture
both semantic importance and behavioural salience. Extensive evaluations on the
ChalLearn First Impressions dataset demonstrate substantial improvements over
state-of-the-art methods, achieving a 33.2% increase in F1-score over CLIP-It and
7.3% over recent multimodal approaches. Comprehensive ablation studies confirm
the effectiveness of behavioural cue integration, with each modality contributing
complementary insights for capturing communicatively significant moments in
interview-style videos.

1 INTRODUCTION

The rapid proliferation of video content across diverse platforms such as education, social media, pro-
fessional interviews, and journalism has heightened the demand for automated video summarization
techniques capable of distilling complex, multimodal videos into concise and meaningful summaries.
Traditional summarization methods often rely on individual cues, such as scene transitions or frame
salience (Otani et al.,|2019; [Zhang et al.,|2016), which fail to capture the rich interplay of visual,
auditory, and textual modalities inherent in modern videos. This limitation is particularly pronounced
in videos rich in human interaction, such as interviews, where coordinated visual gestures, spoken
narratives, and ambient audio convey behavioural and contextual information (Evangelopoulos et al.}
2013). Multimodal video summarization seeks to address this gap by integrating multiple modalities
to produce semantically rich and contextually relevant summaries. However, existing approaches face
significant challenges, including effectively modeling cross-modal interactions, addressing modality
misalignment, and overcoming the scarcity of annotated datasets (Argaw et al.,[2024;|Qiu et al., | 2023).
While recent advancements, such as VSL (Lynch et al.;|2024) and CFSum (Guo et al.,[2025)), have
made progress in integrating visual, audio, and textual modalities, they still fall short in capturing the
behavioural features that are crucial for human-centric videos.

In this paper, we present a novel multimodal framework for summarizing interview videos, empha-
sizing behavioural cues (gestures, vocal prosody) alongside audio and textual data from transcripts.
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Unlike prior methods that process modalities independently (Narasimhan et al.|2022; |[Evangelopoulos
et al.| [2013)), our approach gets inspiration from transformer-based architecture with cross-modal
attention (Vaswani et al.| 2017) to integrate visual, auditory, and textual features, highlighting com-
municative significance and capturing semantic and emotional contexts. An autoregressive decoding
strategy ensures temporally coherent segments, mitigating class imbalance in binary classification
(Narasimhan et al [2021)) and reducing redundancy in frame-based scoring (Narasimhan et al.|
2022; He et al.} 2023 [Zhang et al., [2016). The framework features a preprocessing pipeline with a
forced alignment technique (McAuliffe et al., 2017 |Argaw et al.,|2024) for millisecond-precision
synchronization, modality-specific encoders, and a cross-modal attention mechanism to prioritize
relevant features. Due to the lack of human-annotated summaries, we propose a two-stage method:
heuristic-based detection of behavioural cues (facial expressions, prosodic patterns, gestural empha-
sis) followed by integration with timestamped transcripts as metadata to guide LLLMs in generating
pseudo-ground truth summaries (Argaw et al.l [2024; Moinul Islam et al.l 2025)), combining se-
mantic content and behavioural significance. Speech-to-text models (Radford et al., [2023}; [Baevski
et al.,2020) provide timestamped transcripts, enabling LLMs to select key sentences with preserved
temporal markers for video segment mapping.

Standard video summarization datasets, such as SumMe (Gygli et al, 2014) and TVSum (Song
et al., 2015), focus on action-oriented content (e.g., sports, news, documentaries) with limited
human interaction, which contrasts with our behaviour-aware approach. We evaluate our framework
using the Chalearn First Impressions dataset (Ponce-Lopez et al.,2016)), comprising high-quality
interview-style videos with single speakers in controlled settings. This dataset offers: (1) consistent
single-speaker format for precise behavioural analysis; (2) rich multimodal cues (facial expressions,
gestures, and vocal variations); (3) clear audio-visual synchronization; (4) transcript availability; and
(5) diverse emotional and communication styles. Unlike action-centric datasets where visual salience
prevails, Chal.earn’s emphasis on subtle behavioural signals aligns with our framework’s design,
making it ideal for evaluation. Our work makes the following key contributions:

1. We introduce a novel transformer-based multimodal summarization framework with cross-
modal attention that explicitly models synchronized behavioural cues, such as gestures and
vocal prosody, across visual, audio, and textual modalities. Unlike recent state-of-the-art
methods (Lynch et al.,[2024; |Guo et al., [2025)), which focus on general content relevance,
our approach emphasizes communicative intent by prioritizing behaviour-aware features,
which is crucial for interview video summarization.

2. We advance multimodal feature representation by extracting behaviour-specific features: (a)
CLIP visual embeddings enhanced with facial movements and emotional transitions, (b)
HuBERT audio embeddings capturing prosodic patterns, and (c) contextual text represen-
tations preserving narrative flow. This refined approach contrasts with existing methods
(Apostolidis et al., [2021}; |Argaw et al.| 2024) that rely on generic multimodal fusion and fail
to capture behavioural cues.

3. We contribute a comprehensive evaluation strategy that integrates text and video-based
metrics, validated on the Chalearn First Impressions dataset. Adopting the pseudo-ground
truth generation techniques demonstrated in |Argaw et al.| (2024)); Moinul Islam et al.| (2025),
our approach enables robust comparisons across summarization methods through LLM-
generated reference summaries, with our framework outperforming state-of-the-art models
such as CLIP-It (Narasimhan et al.l 2021 by 33.2%, and |Argaw et al.| (2024) by 7.3%
in Fl-score. This demonstrates the effectiveness of behaviour-aware summarization in
producing high-quality, contextually rich summaries.

4. By addressing the limitations of existing multimodal approaches and introducing a behaviour-
aware perspective, our framework sets a new standard for video summarization, with
potential applications in human-computer interaction and affective computing.

2 RELATED WORKS

Video summarization has evolved from unimodal approaches, which rely solely on visual features,
to multimodal frameworks that integrate visual, auditory, and textual modalities to capture richer
semantic and contextual information.
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Unimodal video summarization focuses on visual features, such as keyframes, scene transitions, or
object dynamics, using heuristic, statistical, or deep learning-based methods for frame importance
scoring or sequence modeling. These approaches typically ignore complementary modalities such as
audio and text, limiting contextual and emotional richness. |Otani et al.| (2017)) proposed a clustering-
based method that utilizes deep semantic features extracted from video segments to produce coherent
and accessible summaries. /Apostolidis et al.|(2020) introduced an unsupervised GAN-based model
augmented with an actor-critic framework, improving content representation without the need for
labeled data. Similarly, [Zhou et al.| (2018) employed deep reinforcement learning to frame the
summarization task as a sequential decision-making process, optimizing frame selection via diversity
and representativeness rewards. [Feng et al.| (2018) proposed a memory-augmented network for
preserving temporal structure while enabling sparse frame extraction. [Yuan & Zhang| (2022) extended
reinforcement-based strategies by refining shot-level semantics, improving coherence in summary
generation. |[Zhang et al.| (2019b) emphasized temporal dependencies using a dilated temporal
relational adversarial network, while [Messaoud et al.| (2021)) introduced query-aware summarization
via hierarchical pointer networks to align outputs with user intent. Leveraging attention mechanisms,
VASNet scores frames based on temporal dependencies, achieving coherent summaries (Fajtl et al.,
2019). Mahasseni et al.| (2017) proposed an adversarial LSTM-based framework that balances
generative and discriminative objectives to produce visually diverse and representative summaries.
Building on this, |Yuan et al.|(2019) introduced Cycle-SUM, which enforces cycle consistency through
adversarial training with LSTMs to improve temporal coherence.

Multimodal video summarization integrates visual, auditory, and textual modalities to produce
semantically rich and contextually relevant summaries, addressing the limitations of unimodal
approaches by capturing narrative structure, emotional undertones, and contextual importance. Recent
advancements leverage attention mechanisms, memory-augmented networks, and large language
models (LLMSs) to enhance summary coherence, personalization, and cross-modal alignment. A
robust body of work demonstrates the effectiveness of combining these modalities, though explicit
focus on human behaviour-aware summarization remains limited. Early frameworks, such as MM-VS
(Evangelopoulos et al., [2013), combined visual and audio cues for movie summarization using
saliency-based fusion. Raventos et al.|(2015) proposed a framework for soccer videos using audio
and visual descriptors, though it omitted textual data. More recent approaches have incorporated
all three modalities. For instance, [Lynch et al.| (2024) demonstrated how vision-language models
align multimodal features for accurate summarization, while V2XUM-LLM (Hua et al., 20235)) uses
temporal prompt tuning with LLMs to enhance video-text alignment. The VSL framework (Lynch
et al2024) personalizes summaries using video, audio, and closed captioning. Similarly, CFSum
(Guo et al., [2025)) employed a coarse-fine fusion approach, emphasizing audio’s role alongside
visual and textual features. |Apostolidis et al.| (2021)) combined local and global attention with
positional encoding to model temporal dependencies, ensuring contextually coherent summaries.
Argaw et al.|(2024)) proposed a transformer-based framework that integrates visual and textual features
via cross-modal attention, with a masking strategy for text-less scenarios. [Psallidas et al.| (2021)
focused on user-generated videos, using audio and visual features to create dynamic summaries,
highlighting the underutilized potential of auditory cues. [Zhao et al.|(2022) introduced a hierarchical
multimodal transformer by integrating visual and audio modalities. [Palaskar et al.|(2019)) developed
a language-driven framework for abstractive summarization of instructional videos, enabling user-
specific summaries. [Lynch et al.| (2024) further advanced personalization by incorporating user
preferences, such as genres, into multimodal summarization. [Zhu et al.|(2023)) proposed a topic-aware
summarization task, generating multiple summaries based on different topics using a multimodal
transformer. [Zhao et al,| (2022) introduced dynamic sampling to capture inter-frame variations,
enhancing multimodal integration. Targeting instructional videos (TL;DW), Narasimhan et al.| (2022)
integrated visual content with textual metadata via cross-modal saliency to prioritize task-relevant
moments . MultiSum (Q1u et al., 2023)) provides a dataset and methods for multimodal summarization,
combining visual frames with textual transcripts. CLIP-It (Narasimhan et al.,[2021)) and VideoBERT
(Sun et al.} 2019) utilize vision-language pretraining with cross-modal attention to align visual and
textual modalities, improving summarization quality.

Despite these advances, most multimodal approaches prioritize content relevance over explicit
modeling of human behavioural cues, such as gestures, facial expressions, or vocal intonations. For
example, while |Psallidas et al.|(2021)) uses audio features that may capture speech tone, it does not
explicitly target behavioural nuances. Similarly, [Lynch et al.| (2024)) focuses on user preferences
rather than behavioural signals within the video content. Some works indirectly address behaviour-
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related aspects. For instance,Ma et al.| (2023)) explored human-machine collaboration using pupillary
response signals to guide attention-based summarization, reflecting viewer engagement. However,
this approach is unimodal and does not integrate audio or textual cues.

Our proposed framework addresses this gap by explicitly integrating visual dynamics, audio prosody,
and textual transcripts to generate behaviour-aware video summaries. Unlike existing methods that
focus on general content or user preferences, our approach employs cross-modal attention mechanisms
to model behavioural cues, such as vocal intonations and gestures, ensuring summaries reflect both
semantic content and emotional nuance. By leveraging LLM-based supervision, the framework
enhances contextual understanding, particularly for human-centric videos. This distinguishes our
work from prior approaches, such as VSL (Lynch et al.}2024)), which prioritizes personalization, or
MEST (Park et al., [2022), which focuses on multimodal frame-scoring without explicit behavioural
modeling.

In summary, the field of multimodal video summarization has seen significant progress, with frame-
works such as VSL, CFSum, and others demonstrating the power of integrating visual, audio, and
textual modalities. However, the explicit incorporation of human behavioural cues remains a largely
unexplored frontier. Our proposed framework advances the state-of-the-art by focusing on behaviour-
aware summarization that links video, audio and text modalities, while offering a novel approach to
capturing the emotional and contextual richness of human-centric videos.

3 METHODOLOGY

The proposed framework employs a transformer-based encoder-decoder architecture to process and
combine multimodal features for summarization and utilizes LLMs to generate behaviour-aware
pseudo-ground truth summary videos for the evaluation purpose, as shown in Figure [I]
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Figure 1: Architecture of our proposed behaviour-aware multimodal video summarization
framework. The diagram illustrates the dual-pipeline approach: (1) pseudo-ground truth gener-
ation (bottom) using LLM-guided extractive summarization to create reference summaries from
timestamped transcripts, and (2) the multimodal summarization framework (top) integrating three
parallel processing streams through modality-specific encoders. The framework employs cross-modal
attention to fuse representations from all modalities and uses an autoregressive summary decoder to
generate temporally coherent video summaries.

Data Sources. This study utilizes the ChalLearn First Impressions dataset (Ponce-Ldpez et al.|
2016)), a publicly available collection of 10,000 high-quality video clips featuring 7,138 unique
subjects speaking English during job interview tasks, averaging 15 seconds (range: 8—20 seconds)
at approximately 24 frames per second (fps), with mono audio at 16 kHz and transcripts averaging
38 words (around 152 characters) per clip. Originally designed for personality trait recognition, the
dataset captures diverse behavioural cues, making it ideal for behaviour-aware multimodal video
summarization. A stratified subset of 1,500 clips is selected for the evaluation to ensure diversity in
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age, gender, and behavioural expressions. The detailed information on the preprocessing step can be
found in Section[A.T]of the Appendix.

3.1 MULTIMODAL SUMMARIZATION FRAMEWORK

Let V = {Fy, Fs,...,F,} represent a video as a sequence of n frames F; sampled every A
seconds. Let A = {W1,Ws,...,W,} denote the audio waveform segmented into p frames W,
while T' = {T},T5, ..., T} } corresponds to the transcribed text of V" as a sequence of k sentences T;

(i=1 to k). Given the input {V, A, T'}, the aim is to generate a summary video Y = {Y¥7,Y2,..., Y.},
where Y; are selected frames of V. This process involves three main components: multimodal
processing (visual, audio and text related modalities), cross-modal integration (through cross-modal
attention) and, finally, summary generation. These components are detailed below.

Visual processing. The visual processing pipeline encodes behavioural and semantic moments for
concise video summaries, integrating traditional and vision language-based feature extraction with
transformer-based video encoding to capture expressive dynamics. Traditional approaches identify
frames with significant behavioural signals using MediaPipe Pose (Lugaresi et al., |2019) to track
facial landmarks (e.g., nose, eyes) as 3D coordinates. Facial movement, such as head nods signaling
engagement, is quantified by the mean Euclidean distance between landmarks across consecutive
frames. In the same spirit as (Otani et al., [2017), an adaptive threshold, the mean plus standard
deviation over a 10-frame window, is used to flag expressive frames. Next, emotional shifts, such
as neutral to happy transitions, are detected using DeepFace (Serengil & Ozpinar, [2024), which
classifies emotions (e.g., happy, sad, neutral) over the same window, marking frames with distinct
changes.

We employ Contrastive Language-Image Pre-training (CLIP) (Radford et al., 2021) to obtain a visual
embedding for each frame. CLIP’s vision transformer (ViT) produces 512-dimensional embeddings
for frames sampled at 1 fps, resized to 224 x 224 pixels (RGB, [0, 1] scale). Head movement
scores and emotion labels are concatenated with CLIP embeddings to form enhanced visual tokens
{v1,v2,...,v,}, capturing dynamics such as nods during confident statements. The token sequence,
augmented with start-of-sequence (SOS) and end-of-sequence (EOS) tokens and positional encodings
(Vaswani et al.,[2017), is processed by a video encoder. Multi-head self-attention enables temporal
reasoning:

{0:}7%) = V-Encoder ({sS0s,v1,...,v,,EOS}) (1

The video encoder transforms per-frame embeddings into temporally coherent representations com-
bining static semantic content and behavioural dynamics.

Audio processing. Given an audio stream as a sequence of 16 kHz mono waveform segments,
this pipeline extracts semantic embeddings and behavioural cues. YAAPT (Kasi, 2002) estimates
fundamental frequency (Fy), averaging pitch contours over a 10-frame window to detect prosodic
expressiveness (e.g., rising pitch for emphasis). Missing values are interpolated linearly. OpenS-
MILE’s eGeMAPS (Eyben et al.,|2010) computes standardized acoustic prosodic features. We use
the loudness and the Hammarberg index for voice quality, averaged over short-time frames.

Hidden-Unit BERT (HuBERT) (Hsu et al., [2021)) extracts frame-level embeddings encapsulating
phonetic, prosodic, and speaker-specific features via self-supervised learning. Normalized pitch,
voice quality, and loudness scores are concatenated with HUBERT embeddings to form enhanced
audio tokens {aq,aq, ..., a,}, capturing dynamics such as emphatic speech. The token sequence,
with SOS, EOS, and positional encodings, is processed by an audio encoder:

{a:}?*; = A-Encoder ({s0S,a1,...,a,, EOS}) )

These representations encapsulate both phonetic content and spectro-temporal characteristics but
require additional processing to capture the contextual relationships that characterize prosodic
phenomena such as intonational patterns, rhythmic structures, and paralinguistic cues.
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Text processing. Given a transcript as a sequence of sentences extracted from the audio, this
pipeline extracts semantic embeddings and contextualizes them for multimodal fusion. We employ a
state-of-the-art pretrained sentence-based language model (Reimers & Gurevych, |2019;|Liu et al.,
2019) to derive linguistic embeddings of the raw text. To facilitate discourse-aware learning for video
summarization, we process these embeddings through a text encoder (T-Encoder), comprising a stack
of transformer encoder layers. Augmented with start-of-sequence (SOS) and end-of-sequence (EOS)
tokens and positional encodings, the sequence undergoes multi-head self-attention to model thematic
flow:

{8} = T-Encoder({s0S, s1,..., s, EOS}) (3)

The text encoder outputs contextualized embeddings, mean-pooled into a vector for cross-modal
fusion.

Cross-modal attention. The cross-modal attention mechanism integrates visual, text, and audio
modalities. Given encoded visual features V' € R™*?_ text features S € R¥*< and audio features
A € RP*?, we normalize and concatenate text and audio features to form C' = [S; A] € R(F+P)xd,

Visual features serve as queries (Q = VWQ), while text-audio features serve as keys (K = CWK)
and values (V = CWV):

Attention(Q, K, V') = softmax (QKT) 14 “)
T e

This implementation is followed by residual connections and a feed-forward network with layer
normalization, allowing dynamic weighting of cross-modal relationships while preserving modality-
specific characteristics. The cross-modal attention module fuses information across modalities,
producing context-rich multimodal features by conditioning visual content on both textual and
acoustic information. These features are subsequently utilized as context in the decoder network to
generate the video summary.

Summary generation. Given encoded multimodal features, this pipeline decodes summary mo-
ments, and maps them to video segments for summarization. Temporal embeddings are added to
input sequences using a positional encoding mechanism, ensuring the model captures sequential order.
These embeddings, precomputed for a maximum length of 5000, are added to the input sequences to
preserve temporal context. The generation process employs a transformer-based summary decoder
(Vaswani et al., [2017). The decoder uses multimodal embeddings from cross-modal attention as
context and a target sequence initialized with a start-of-sequence (SOS) token to predict the next
summary frame. Positional encodings are applied to the target sequence, followed by decoding with
a square subsequent mask to ensure autoregressive generation:

fi = Decoder ({multimodal}, {SOS, fi, ..., fi_1}, mask) (5)

In the evaluation phase, the decoder begins with SOS token and iteratively constructs the sequence of
key frames, incorporating previous outputs as input, until the EOS token is decoded. The resulting
sequence is mapped to video segments using cosine similarity between decoded embeddings and
CLIP-derived visual features of the input video, selecting indices that highlight significant interview
moments for a concise summary.

3.2 PSEUDO-GROUND TRUTH SUMMARY GENERATION

With human-annotated summaries unavailable for the Chal.earn dataset, we develop a two-stage
approach to generate pseudo-ground truth references for single-speaker interview videos. First,
we employ heuristic-based methods to detect significant behavioural changes in facial expressions,
prosodic patterns, and gestural emphasis using traditional computer vision and signal processing
techniques (detailed in Section[A.3]of the Appendix). These behavioural markers are then integrated
with timestamped transcripts as metadata to guide LLMs in generating extractive summaries that
prioritize segments exhibiting both semantic importance and behavioural salience. This LLM-driven
approach (Narasimhan et al., [2022; |Argaw et al.,[2024; Zhang et al.,|2024) provides an automated
and scalable solution for behaviourally-informed reference summary generation.
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Task: Generate an extractive summary from a timestamped video transcript that prioritizes
sentences with both high semantic importance and behavioural salience.

Guidelines: 1) Select sentences aligned with behavioural cue timestamps, 2) Preserve exact
wording, 3) Maintain original timestamps, 4) Output as [start_time, end_time, sentence].
Input: Transcript entries [start_time, end_time, sentence] with behavioural cue annotations
[timestamp, cue_type] for facial movements, emotional transitions, pitch variations, prosodic
emphasis, and voice quality shifts.

Output: Extractive summary as [start_time, end_time, sentence] triplets representing
behaviourally-salient segments.

The process begins with transcribing the audio and aligning text with time markers using Whisper
(Radford et al.,[2023) and MFA (McAuliffe et al.,|2017) to ensure precise correspondence between
spoken content and video frames. We employ GPT-4.5 (Achiam et al.,[2023)) with tailored prompts
that incorporate both the timestamped transcript and behavioural annotations (detected through the
heuristic method) to perform extractive summarization, selecting key excerpts based on combined
semantic importance and behavioural salience. The selected text segments are then mapped to
corresponding video segments using their timestamps, converted to frame ranges, and concatenated
chronologically to form a cohesive pseudo-ground truth video summary that maintains temporal
alignment with the spoken content and behavioural markers.

4 EXPERIMENTS

We describe the experimental setup and evaluation results for the proposed behaviour-aware mul-
timodal video summarization framework. Our approach is benchmarked against state-of-the-art
methods using a combination of text and video metrics to evaluate performance.

Evaluation Metrics. We evaluate our multimodal summarization framework on the Chal.earn First
Impressions dataset, focusing on interview-specific summaries compared against pseudo-ground truth
references. To assess summary quality, we follow prior text and video summarization approaches
(Rochan et al.,[2018} |Otani et al.| 2019; [Islam et al.,|2024)) and employ a comprehensive set of text
and video metrics. Text-based metrics include ROUGE-N for n-gram overlap and ROUGE-S phrase
matching (Lin, 2004), BLEU (Papineni et al., 2002) for precision, and BERTScore (Zhang et al.,
2019a)) for semantic similarity. Length ratio measures summary brevity relative to the full transcript.
For video-based evaluation, we assess the alignment and temporal consistency of the model-generated
summaries against the pseudo-ground truth summary video as reference using F1-score, Kendall’s 7
(Kendall, [1945)), Spearman’s p (Zwillinger & Kokoska, |1999)), and CLIPScore (Hessel et al., [2021).
Together, these metrics provide a comprehensive evaluation of segment relevance and temporal
structure preservation.

4.1 EXPERIMENTAL RESULTS

We evaluate our method against existing state-of-the-art video summarization approaches, including
CLIP-It (Narasimhan et al.|[2021), MFST (Park et al.,|2022) and |Argaw et al.|(2024) on the Chal.earn
dataset, focusing on interview-based summaries. To ensure fair comparison, we adhere to their
implementations and reimplement them as their official source code is unavailable, adapting them
to our dataset’s context. For CLIP-It, we adapt its approach by scoring frames based on cosine
similarity between CLIP embeddings of input frames and a set of summary frames, computing the
highest similarity score to determine frame priority. For|/Argaw et al.| (2024)), we reimplement their
approach by encoding video frames and transcriptions with CLIP and SRoBERTa, respectively, using
a transformer-based network to autoregressively generate interview-focused summaries. While more
recent approaches (Zhang et al., 2023} [Fajtl et al., 2019; Guo et al.}|2025) show promising results in
generalized video summarization techniques, they were excluded due to their limited applicability to
dialogue-heavy interviews and their focus on visual diversity over semantic or prosodic content. Our
selected baselines represent established multimodal summarization benchmarks balancing visual and
textual information (Narasimhan et al., 2021} |Argaw et al., [2024) with audio integration (Park et al.|
2022), excelling in cross-modal scenarios (Jangra et al.,[2023; Hua et al.| 2025)) that align with our
behaviour-aware evaluation framework.
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Table [T] highlights the evaluation of text-based summaries, where our approach achieves a significant
improvement over the baselines, with a BLEU score of 0.4166 (45.1% improvement over |Argaw.
et al. (2024))), and a BERTScore of 0.9247, indicating enhanced semantic fidelity compared to |Argaw
et al.|(2024) and CLIP-It. While CFSum (Xiao et al., 2023)) enhances ROUGE metrics over CLIP-It
via coarse-to-fine multimodal fusion, it underperforms our framework in capturing behavioural
nuances, yielding lower BLEU and BERTScore. ROUGE scores across all variants further confirm
our framework’s ability to generate behaviour-aware and contextual summaries, outperforming the
baselines by at least 18% in ROUGE-1.

Table 1: Performance comparison of text-based video summarization approaches on the
ChaLearn dataset. Our multimodal approach demonstrates significant improvements across all
metrics compared to SOTA methods.

Method Length Ratio ROUGE-1 ROUGE-2 ROUGE-L ROUGE-S BLEU BERTScore
CLIP-It (Narasimhan et al.|[2021) 0.3785 0.4935 0.4120 0.4667 0.3800 0.2139 0.8984
CFSum (Xiao et al.;[2023) - 0.5723 0.4621 0.5841 - 0.3928 0.8977
Argaw et al.|(2024) 0.4203 0.5529 0.4910 0.5333 0.4515 0.2871 09113
Ours (Multimodal) 0.6011 0.6765 0.6086 0.6442 0.5531 0.4166 0.9247

Our proposed framework significantly outperforms existing state-of-the-art methods across all video-
based evaluation metrics, as shown in Table 2] The comprehensive comparison includes CLIP-It,
which relies primarily on vision-based scoring, approach by |Argaw et al.|(2024) utilizing visual and
textual features; and MFST (Park et al., [2022)), which incorporates multimodal features but with a
different architectural approach.

Table 2: Quantitative evaluation of video-based summarization approaches on the Chal.earn
dataset. Our multimodal framework outperforms existing methods across all metrics. F1-Score,
Kendall’s 7 and Spearman’s p highlight our model’s superior ability to preserve the narrative flow of
the original video, while CLIPScore demonstrates better visual-semantic alignment.

Method F1-Score Kendall’s 7 Spearman’sp CLIPScore
CLIP-It (Narasimhan et al., 2021)  0.6087 0.5949 0.5950 0.4918
Argaw et al.| (2024) 0.7559 0.6359 0.6361 0.4827
MFST (Park et al., [2022) 0.7272 0.4500 0.6029 0.4970
Ours (Multimodal) 0.8107 0.6473 0.6466 0.5173

The MFST method demonstrates strong frame selection capabilities with an F1-Score of 0.7272, but
its relatively low Kendall score reveals significant limitations in preserving temporal consistency
compared to other approaches. Our multimodal framework substantially outperforms all baseline
methods, achieving an F1-Score of 0.8107 (7.3% and 33.2% gain over |Argaw et al.| (2024) and
CLIP-It, respectively). Temporal consistency metrics further underscore this advantage, with our
model attaining Kendall’s 7 of 0.6765 and Spearman’s p of 0.6086, surpassing SOTA approaches.
Additionally, our framework improves visual-semantic alignment, as evidenced by CLIPScore of
0.5173, a 5.3% increase over CLIP-It.

The effectiveness of our approach derives from the integration of three complementary modalities,
where our framework distinctively incorporates vocal inflections and speech patterns from interviews
that enhance the contextual understanding of visual scenes and transcribed texts. While MFST wasn’t
evaluated using text-based metrics due to its architecture focusing solely on frame importance scoring
without text generation capabilities, our comprehensive evaluation demonstrates the clear advantages
of our multimodal approach. By implementing an adaptive attention mechanism that balances
modal influences based on context-specific needs, we generate more coherent and semantically rich
summaries. Our decoding strategy further enhances quality by conditioning each summary moment
on prior outputs, improving sequential coherence throughout the interview narrative. Though our
consistency metrics remain moderate (< 0.7), suggesting opportunities for further refinement in
capturing narrative structures, the comprehensive improvements across all measures validate our
multimodal approach for interview summarization. Please see Section[A.T|and[A.3]of the Appendix
for more details.
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4.2 ABLATION STUDIES

In Table 3] we conduct an ablation study to assess the contributions of various components in our
proposed framework on the ChalLearn dataset. We first explore the impact of excluding textual infor-
mation, relying solely on audio-visual inputs. The configuration produces acceptable performance,
but incorporating textual data significantly improves summarization quality, highlighting the strength
of multimodal integration over an audio or visual-only approach. Similarly, omitting audio features
while retaining text and visual inputs yields reasonable outcomes, yet adding audio provides addi-
tional context, emphasizing its supplementary role in capturing subtle interview dynamics. Removing
visual features, however, leads to a marked decline in effectiveness, underscoring the foundational
role of visual data in interpreting video content and structure.

Table 3: Ablation study results for text-based and video-based metrics on the ChaLearn
dataset.‘R-’ stands for ROUGE- metric, ‘Ken’ for Kendall, ‘Spea’ for Spearman coefficient, ‘BS’ for
BERTScore, and ‘CS’ for CLIPScore.

Text-based Metrics Video-based Metrics

Method R-1 R-2 R-L R-S BLEU BS F1-Score  Ken’s T  Spea’s p CS

Video Only 0.5948  0.5385  0.5765 0.5021  0.3581  0.8810 0.7986 0.6281 0.6265 0.4761
Text Only 0.6341 05746  0.6130  0.5339  0.3596  0.8804 0.7603 0.6265 0.6283 0.4761
Audio Only 0.4390 03923 04217 0.3558  0.2139  0.7276 0.6460 0.5207 0.5174 0.3924
w/o Audio 0.6329 05748  0.6121  0.5337  0.3585  0.8806 0.7975 0.6287 0.6271 0.4748
w/o Text 0.6308  0.5753  0.6098  0.5333  0.3590  0.8794 0.7986 0.6247 0.6268 0.4747
w/o Video 0.5322 04737 05087 04315 02582  0.8813 0.6986 0.6278 0.6270 0.4776
w/o CM-Attn ~ 0.6267  0.5693  0.6056  0.5280  0.3568  0.8729 0.6947 0.6199 0.6208 0.4712
Proposed 0.6765  0.6086  0.6442  0.5531 0.4166  0.9247 0.8107 0.6473 0.6466 0.5173

Further evaluation examines the contribution of cross-modal learning. excluding cross-attention mech-
anism (CM-Attn) exhibits a noticeable drop in performance, indicating that cross-modal interactions
are essential for effectively combining all the modalities. Assessing each modality independently
reveals that visual features offer the strongest stand-alone performance, followed by text, with audio
being the least effective, yet all single-modality fall short compared to multimodal configurations,
reinforcing the value of integration. Our full multimodal framework, which integrates visual, textual,
and audio features through adaptive cross-modal learning and autoregressive decoding, consistently
achieves the highest performance across most metrics. The superior results in all the metrics confirm
that combining all modalities enhances summarization quality, affirming our hypothesis that the mul-
timodal approach significantly improves behaviour-aware video summarization in interview-focused
scenarios. Please see Section[A.4]of the Appendix for additional ablations.

5 CONCLUSION

This paper introduces a behaviour-aware multimodal video summarization framework that advances
the state-of-the-art by integrating visual, audio, and textual modalities using cross-modal attention
mechanisms. Our approach captures synchronized behavioural features: CLIP embeddings with
facial movements and emotional transitions, HuBERT audio representations with prosodic patterns,
and contextualized text embeddings to convey communicative intent in interview videos. Addressing
the absence of annotated data, we develop a heuristic-based pseudo-ground truth generation technique
guided by detected behavioural cues using LLMs. Experiments on the ChalLearn First Impressions
dataset show significant metric improvements, with ablation studies confirming that cross-modal
attention optimizes performance, setting a new benchmark in behaviour-aware summarization.

Our framework’s modular design offers inherent advantages for domain generalization through inter-
pretable, domain-agnostic feature extraction and threshold calibration, facilitating transfer learning
across content domains by separating behavioural cue detection from deep learning components.
Comprehensive analysis, including case studies and failure modes (Appendix Section [A.5A.8| of
the Appendix), highlights its strength in detecting synchronized behavioural emphasis, though multi-
speaker and diverse contexts warrant further exploration. Future work will focus on cross-domain
validation across various video types and human evaluation studies to strengthen the link between
detected cues and perceived importance, laying a foundation for behaviour-aware video understanding
with broad implications for educational technology, accessibility, and human-centered Al.
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A APPENDIX

A.1 SUPPLEMENTARY IMPLEMENTATION SPECIFICATIONS

Data preprocessing. Our preprocessing step isolates and synchronizes visual, audio, and textual
streams for multimodal analysis. Frames are sampled at 1 fps to capture key visual moments (e.g.,
expressive gestures). Audio streams are also extracted using FFmpeg, providing high-quality and
single-channel audio files (.wav) at 16 kHz sampling rate. The Whisper automatic speech recognition
(ASR) model (Radford et al.,|2023)) transcribes audio, handling diverse speech conditions such as,
accents, minor background noise with high accuracy. Whisper produces a raw transcript, segmenting
the audio into sentences or phrases based on pauses and intonation. Transcripts are then structured
using SpaCy (Honnibal et al.l 2020), which performs sentence boundary detection to correct run-on
sentences, adds punctuation (e.g., periods, commas), and normalizes text by converting to lowercase
and removing extra whitespace. The Montreal Forced Aligner (MFA) (McAuliffe et al., [2017)
aligns each transcribed word with its precise audio timestamp using hidden Markov models and
Kaldi-based pretrained English acoustic models, enabling millisecond-level synchronization with
video frames and text. MFA matches the audio’s phonetic features to the text, generating start and end
timestamps for each word. Sentence-level timestamps are derived by aggregating word timestamps.
Alignment accuracy is verified to ensure sentence timestamps correspond to video frames (e.g., 7.21s
to 8.51s maps to frames 173-204 at 24 fps), with a 50ms tolerance for minor discrepancies. MFA’s
precision, robustness, and granularity make it the optimal choice for accurate temporal alignment in
this framework, outperforming other alignment methods for cross-modal synchronization.

Implementation details. The multimodal summarization is optimized for the Chalearn First
Impressions dataset (Ponce-Lopez et al., [2016)), utilizing its controlled single-speaker interview
setting. Visual features are extracted at 1 fps, forming a sequence of frames for both input videos
and pseudo-ground truth summaries. Feature encoding utilizes CLIP-ViT-large-patch14/'| (Radford
et al.,|2021) for visual embeddings, HuBERT—base—ls96(ﬂ (Hsu et al.} 2021) for audio embeddings
(16 kHz sampling rate, 20 ms frames), and RoBERTa-larg(Liu et al.}2019) for text embeddings.
The architecture comprises a video encoder, a text encoder and an audio encoder, a cross-modal
attention mechanism, and a summary decoder. Each layer has a transformer-based architecture with 6
layers, 8 attention heads, and a 2048-dimensional feed-forward network, incorporating dropout at 0.1.
Decoding initiates with a start-of-sequence (SOS) token and proceeds iteratively, generating summary
frames using a subsequent mask to enforce sequential dependency. Final summary alignment
maps decoded frames to video segments by computing cosine similarity between 1024-dimensional
embeddings and CLIP-derived visual features of the input video. Selected indices, corresponding to
significant interview moments, are converted to timestamps, ensuring a concise and representative
output.

Multimodal cues detection. Behavioural emphasis for visual cues in our framework is derived from
two key sources: head movement trajectories, as illustrated in Figure[2] facial emotion transitions,
and semantic visual understanding. To ensure consistent analysis, we extract frames at fixed intervals
using OpenCV |Bradskil (2000). We select the nose landmark to represent head position. Any
displacement exceeding the threshold (\) was flagged as a head movement cue, indicating physical
emphasis or non-verbal communication. For facial emotions, we analyze each frame and a visual
cue is recorded when a transition occurs between distinct emotions. These traditional features are
complemented with CLIP Radford et al.| (2021)) visual embeddings (512-dimensional), which capture
high-level semantic content through its Vision Transformer (ViT) architecture pretrained on 400M
image-text pairs, enabling our model to recognize contextually significant visual elements beyond
simple motion or emotion detection.

Next, we process audio streams to detect prosodic emphasis through three key acoustic features:
pitch, loudness and voice quality, enriched with HuBERT Hsu et al.|(2021) embeddings. HuBERT
leverages self-supervised learning on 960 hours of speech data to extract frame-level representations
that capture phonetic, prosodic, and speaker-specific characteristics. Pitch (Fp) is extracted to handle
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Figure 2: Example of head movement detection for behavioural visual cue identification. The
graph displays frame-by-frame head position deviations (blue line) measured as Euclidean distance
between consecutive frames using facial landmark tracking. The moving average (green dashed line)
smooths the signal, while the adaptive threshold (red dashed line) identifies significant movements.
Notable spikes around frames 200, 325, and 400 correspond to expressive head gestures that likely
indicate moments of emphasis or emotional significance during the interview, which our framework
leverages as behavioural cues for summary generation.

noise and unvoiced segments, loudness is quantified via short-time root mean square (RMS) energy
and voice quality is assessed using the d B difference between the strongest harmonic peak in 0-2
kHz and 2-5 kHz ranges of the speech spectrum. This index characterizes spectral slope, with
lower values indicating flatter spectra (suggesting vocal strain) and higher values reflecting greater
low-frequency energy (associated with breathier voice). Figure [3| provides an example of pitch (Fp),
loudness, and voice quality (Hammarberg Index) variations over time.

Summary video compilation. The decoded sequences from our proposed framework undergo
systematic post-processing to synthesize the final summary video. We first transform the identified key
moments into precise temporal frame boundaries by mapping each predicted segment to specific frame
indices using the source video’s native frame rate. This temporal alignment ensures frame-accurate
extraction while preserving the semantic integrity of selected content. For segment extraction, we
leverage FFmpeg’s advanced filtering capabilities with optimized parameters to preserve perceptual
quality during extraction. We synchronize textual content with visual segments and each sentence
from the transcript is mapped to its corresponding time interval using our millisecond-precision
alignment data generated during preprocessing. The subtitle integration employs a custom rendering
pipeline to ensure readability across diverse viewing conditions. The extracted segments undergo
temporal concatenation that preserves frame continuity and audio transitions while maintaining
codec consistency. This process yields a cohesively structured summary that effectively condenses
the original content while retaining the multimodal behavioural cues critical for understanding the
speaker’s communicative intent. The resulting output represents approximately 60% of the original
duration, representing a balance between conciseness and comprehensive coverage of semantically
salient content.

A.2 GENERALIZATION TO SMALLER MODELS

LLMs are provided identical prompts requesting extractive summaries of transcripts with timestamp
preservation. The results in Table ] reveal that our framework achieves optimal performance when
using GPT-4.5 for pseudo-ground truth summary generation. Summaries generated by GPT-4.5 attain
the highest F1-Score compared to GPT-3.5 and LLaMA-3.2. Our analysis on the LLM-generated
summaries indicate that GPT models produce more balanced summaries and preserve contextual
information, whereas 3B variant of LLaMA-3.2 model exhibits less consistent adherence to the extrac-
tive constraints specified to our prompts and sometimes retained less significant content or produce
redundant content. These findings highlight the importance of selecting the most capable language
model for generating high-quality pseudo-ground truth summaries in multimodal summarization
evaluation.
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Figure 3: Example of prosodic features for audio cue detection. The figure shows three acoustic
features extracted from an interview audio: (top) fundamental frequency/pitch (Fp) tracking intonation
patterns; (middle) Hammarberg Index measuring voice quality (spectral slope); and (bottom) loudness
measurements capturing speech intensity, with significant audio cues marked as round.

Table 4: Impact of different LLMs for pseudo-ground truth summary generation. Our evaluation
compares the quality of summaries generated by three large language models when used as reference
for evaluation. GPT-4.5 consistently produces the highest quality reference summaries, leading
to better metric scores across all evaluation dimensions, while GPT-3.5 and LLaMA-3.2 show
progressively lower performance.

Method F1-Score Kendall’s 7 Spearman’sp CLIPScore
LLaMA-3.2  0.6823 0.5417 0.5213 0.4125
GPT-3.5 0.7965 0.6358 0.6342 0.5027
GPT-4.5 0.8107 0.6473 0.6466 0.5173

While these findings highlight the importance of selecting the most capable language model for
generating high-quality references, we acknowledge that reliance solely on pseudo-ground truth
summaries raises concerns regarding evaluation reliability. To address this, we implement several
methodological safeguards. First, our summary generation process using LLMs employs a carefully
designed prompt-engineering approach that constrains the LLM to perform extractive summarization
only, preserving the exact wording and structure of original sentences. This eliminates potential
hallucination issues that might arise with abstractive approaches and maintains fidelity to the source
content. Then, we implement a consistency verification procedure where we generate three inde-
pendent summaries for a subset of randomly selected videos using different LLM parameters. The
high inter-summary agreement (average Jaccard similarity of 0.83) demonstrates the stability of our
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LLM-based summary generation approach. The analysis revealed that about 93% of summaries
maintained high coverage of key information points, with minimal redundancy and strong temporal
coherence.

A.3 EXPERIMENTAL ANALYSES

Classification approach. We investigate our approach with the traditional binary classification
framework. In our framework, summary generation follows a decoding strategy where each prediction
conditions on previously selected segments. For comparison, we implement a binary classification
alternative that replaces our temporal decoder with a frame-level binary classifier using a fully-
connected layer with sigmoid activation against the same reference summaries.

Our experimental results, presented in Table[5] demonstrate the significant advantages of the sequential
approach. The binary classification model achieves moderate F1-Score, yet lower than our proposed
model. Similar performance gaps exist across temporal consistency metrics and semantic alignment
measures. These findings suggest that frame-by-frame classification, while computationally simpler,
fails to capture the crucial narrative dependencies between summary moments. The sequential
model’s strength lies in its ability to model temporal relationships through iterative conditioning,
producing more coherent summaries that maintain narrative integrity.

Table 5: Comparison between our proposed and binary classification approaches for video
summarization. Our proposed model outperforms the binary classification approach, demonstrating
the advantages of modeling temporal dependencies through decoding rather than independent frame-
level decisions.

Method F1-Score Kendall’s 7 Spearman’sp CLIPScore
Binary Classification ~ 0.7214 0.5479 0.5295 0.4826
Ours (proposed) 0.8107 0.6473 0.6466 0.5173

Multimodal heuristic approach. While our main manuscript focuses on the transformer-based
architecture with cross-modal attention for behavioural feature fusion, this approach provides an en-
tirely separate, interpretable, and rule-based method that serves two critical functions: (1) identifying
behaviourally significant moments for pseudo-ground truth reference generation using LLMs, and (2)
generating video summaries as a standalone alternative to the transformer-based decoder architecture.
This approach prioritizes key terms identified as bonus words (a concept popularized in Edmundson’s
summarizer (Edmundson, [1969)) that temporally align with significant visual (e.g., pose shifts,
emotional changes), textual, and audio (e.g., pitch peaks, loudness variations) cues. These bonus
words are weighted using their frequency and multimodal relevance. For example, when a speaker
emphasizes a point through simultaneous gesturing and vocal stress, this approach captures this
cross-modal emphasis with precise frame timestamps, which then serves dual purposes: informing
LLM prompts for behaviourally-aware pseudo-ground truth generation and directly contributing to
heuristic-based summary selection.

To implement this dual-purpose approach, we apply a fundamentally different importance scoring
mechanism that operates independently of deep learning architectures. First, we assign weights
to sentences based on their detected behavioural bonus words, which increases their likelihood of
selection in both the LLM-guided reference summaries and the direct heuristic summarization process.
Second, we prioritize video segments with higher bonus word density during segment selection,
ensuring that moments with rich multimodal cues are preserved in both evaluation references and
heuristic-generated summaries. Third, we apply a diversity-promoting filtering algorithm based on
TF-IDF vectors and cosine similarity to prevent redundancy in the selected segments. Unlike our
main transformer approach, this heuristic method does not utilize any form of autoregressive decoding
or cross-attention mechanisms, instead relying entirely on rule-based sentence scoring and selection
algorithms, following Edmundson’s extractive summarization principles (Edmundson, |1969), while
simultaneously providing the critical behavioural metadata that guides LLM-based pseudo-ground
truth generation.

The implementation uses adaptive thresholds for detecting cross-modal emphasis across different
modalities, creating a robust foundation for both summarization approaches. For head movement
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Figure 4: Multimodal heuristic framework for behavioural cue detection and video summariza-
tion. The framework operates through two parallel paths: (Left) LLM-guided pseudo-ground truth
generation using detected behavioural metadata for evaluation, and (Right) extractive summarization
using rule-based scoring mechanisms. Both paths share a common multimodal cue detection founda-
tion but serve complementary functions.
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detection, we flag significant movements when Euclidean displacement exceeds the mean plus 1.5
standard deviations, capturing deliberate gestures while filtering out minor involuntary movements.
These detected movements are timestamped and used both as direct heuristic cues and as behavioural
annotations in LLM prompts. Pitch variation is identified when Z-score normalized changes exceed
+1.2, highlighting vocal emphasis patterns that indicate communicative intent. Voice quality changes
are detected when the Hammarberg Index, which characterizes spectral slope and vocal effort, shows
fluctuations exceeding £2.0 standard deviations. For textual significance, we consider terms in the
top 20% by TF-IDF weight, focusing on content-rich words rather than functional terms. All detected
behavioural cues are mapped to their corresponding transcript segments, creating enriched annotations
that inform both the heuristic scoring mechanism and the LLM-based reference generation process.

Table 6: Comparative evaluation of video summarization approaches. Our proposed transformer-
based architecture demonstrates superior performance across all metrics, while the heuristic approach
also shows significant improvement over the Edmundson baseline.

Method F1-Score Kendall’s7 Spearman’sp CLIPScore
Edmundson 0.5709 0.2295 0.2681 0.3513
Ours (heuristic) 0.6995 0.3148 0.3690 0.4162
Ours (proposed)  0.8107 0.6473 0.6466 0.5173

We evaluate this heuristic approach in both capacities: as a standalone video summarization method
and as the behavioural cue detection foundation for our pseudo-ground truth generation pipeline. The
results, presented in Table [6] demonstrate the effectiveness of this dual-purpose methodology. As
a direct summarization approach, while it does not achieve the state-of-the-art performance of our
proposed transformer model, this heuristic method demonstrates considerable improvement over
traditional baselines with an F1-score of 0.6995 compared to Edmundson’s baseline of 0.5709. More
critically, the behavioural cues detected by this heuristic approach serve as the essential metadata that
enables LLMs to generate behaviourally-informed pseudo-ground truth references. This creates a
synergistic relationship where traditional computer vision and signal processing techniques inform
modern language models, resulting in evaluation references that capture both semantic importance
and behavioural salience.

The behavioural annotations generated through this heuristic approach are formatted as [timestamp,
cue_type] triplets, where cue_type includes facial movement, emotional transitions, pitch variation,
loudness change, or voice quality shift. These annotations are integrated with timestamped transcripts
and provided to LLMs (GPT-4.5, GPT-3.5, LLaMA-3.2) as contextual metadata, guiding the extractive
summarization process to prioritize segments that exhibit cross-modal behavioural emphasis. LLMs
receive prompts that include both the raw transcript and these behavioural markers, enabling them
to make informed decisions about which sentences to select based on combined semantic and
behavioural criteria.

Experimental setup. The pipeline runs on a 32GB NVIDIA V100 GPU, requiring approximately
200GB of SSD storage for the 1,500 video dataset and intermediate files. Each experimental run
on the full dataset takes about 10 GPU hours, with a total compute of approximately 50 GPU hours
across the reported experiments. Preliminary experiments required an additional 20 GPU hours,
though these are not detailed in the main results. For pseudo-ground truth summary generation, we
utilize the GPT-4.5 and GPT-3.5 APIs to process transcripts from 1,500 videos, with an estimated 600
tokens per transcript (input and output combined). Based on the provided pricing for GPT models,
the total cost is about $300.

A.4 ADDITIONAL ABLATIONS
To complement the modality ablation studies in the main manuscript, we present additional experi-

ments in Table[7|isolating the contributions of modality-specific encoders and feature enhancements
on the Chalearn First Impressions dataset.

V-Encoder. Removing the video encoder significantly impairs performance across all metrics,
particularly affecting temporal consistency and behavioural detection. Without the video encoder’s
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Table 7: Additional ablation study of encoder components and feature types. Results show the
impact of removing individual encoders and isolating specific features on both text and video-based
metrics. The proposed method significantly outperforms all ablated variants. ‘R-’ stands for ROUGE-
metric, ‘Ken’ for Kendall, ‘Spea’ for Spearman coefficient.

Text-based Metrics Video-based Metrics
Method R-1 R-2 R-L R-S BLEU BERTScore F1-Score Ken’s 7 Spea’s p CLIPScore
w/o V-Encoder 0.5226 04649 05024 04234  0.2539 0.8642 0.6710 0.6163 0.6141 0.4314
w/o T-Encoder 0.5019  0.4451 0.4791 0.4059  0.2425 0.8260 0.6970 0.6265 0.6280 0.4771
w/o A-Encoder 0.5255 04716 05069  0.4290  0.2561 0.8719 0.6955 0.6184 0.6182 0.4713
CLIP Only 0.5326  0.4770  0.5096  0.4328  0.2582 0.8790 0.6979 0.7268 0.6254 0.4962
HuBERT Only 0.5335 04739 0.5101 04327  0.2582 0.8809 0.6978 0.6280 0.6253 0.4789
w/o CLIP 0.5328  0.4740 0.5111 04314  0.2588 0.8802 0.5997 0.6265 0.6261 0.4759
w/o HUBERT 0.5317 04744 05122 04322 0.2585 0.8797 0.5980 0.6254 0.6275 0.4763
Proposed (Full)  0.6765  0.6086  0.6442  0.5531  0.4166 0.9247 0.8107 0.6473 0.6466 0.5173

self-attention mechanisms, the model struggles to capture sequential patterns in facial expressions and
gestures that signal important moments. Raw CLIP embeddings provide semantic understanding but
lack the temporal contextualization needed to identify behavioural significance in interview scenarios.
This confirms the crucial role of the video encoder in establishing relationships between consecutive
frames for coherent summarization.

T-Encoder. Our text encoder ablation demonstrates its importance for semantic alignment and
narrative cohesion. Without the text encoder, the model relies on raw sentence embeddings from
RoBERTa, missing discourse-level patterns and thematic progression within the transcript. This
primarily affects text-based metrics, particularly BLEU and ROUGE scores, while maintaining
reasonable performance on video-based metrics. The text encoder proves essential for identifying
speech segments that complement visual behavioural cues.

A-Encoder. The audio encoder shows the smallest but still meaningful contribution among the
three encoders. Its removal primarily affects the detection of prosodic emphasis and emotional voice
modulation, which serve as complementary signals to visual cues in interview contexts. The relatively
modest impact reflects the visually-dominant nature of the dataset, though audio remains valuable for
detecting emphasis patterns not visible in facial expressions alone.

Feature-specific ablations. Our experiments isolating CLIP features from facial and emotional
features reveal their complementary nature. CLIP-only configurations offer strong semantic un-
derstanding but miss fine-grained behavioural cues such as subtle head movements or emotional
transitions. Conversely, using facial movements and emotional features captures behavioural dynam-
ics but lacks broader semantic context, resulting in summaries that prioritize expressive moments
without sufficient content relevance.

The contrast between HuBERT and prosodic features-based configurations demonstrates the value of
contextualized speech embeddings over isolated acoustic features. HUBERT embeddings implicitly
capture both linguistic content and paralinguistic cues, while explicit prosodic features, such as pitch,
loudness, and voice quality, provide targeted detection of vocal emphasis but miss broader speech
patterns. This explains why our full model benefits from incorporating both representation types for
comprehensive audio understanding.

A.5 CASE STUDY

To demonstrate the practical effectiveness of our behaviour-aware multimodal framework, we present
a detailed case study using an example video from the ChalL.earn First Impressions dataset. This
analysis illustrates how detected behavioural cues guide LLM-based pseudo-ground truth generation.

Video characteristics and behavioural detection. The example video features a 15.3-second
interview segment where a speaker discusses their motivation for writing popular history books. The
complete transcript reads:
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“The short answer is that I really wanted to write this book because I absolutely love writing popular

histories. I mean, I love the deep, detailed histories, of course. This is my thing. But I love being able
to share these stories in a way that makes it really accessible and exciting for people that wouldn’t
necessarily” .

Our heuristic detection pipeline identified several behavioural cues: facial movement peaks at 2.1s
and 13.8s (deliberate head gestures), pitch variations at 4.2s and 8.9s (prosodic emphasis), and voice
quality changes at 6.5s (increased vocal effort). These cues temporally align with semantically

9 <.

important content containing emotional expression (“absolutely love”, “really accessible”).

Figure [5 illustrates the temporal alignment of detected behavioural cues with the LLM selection
process. The behavioural annotations are formatted as [timestamp, cue_type] and integrated into
LLM prompts alongside the timestamped transcript.

Face Pitch Pitch Face
[ I I I I I 1
0Os 2.5 Ss 7.5s 10s 12.5s 15s
Segment 1: 0.0-4.35s Segment 2: 8.76-15.3s
[“absolutely love” + facial cue] [“really accessible” + prosodic emphasis]
Legend: —— Facial Movement —— Pitch Variation mmm [ [M Selection

Figure 5: Temporal alignment of behavioural cues and pseudo-ground truth summary selection
for an example video. The timeline shows detected facial movements (red), pitch variations
(blue), and voice quality changes (green) aligned with LLM-selected summary segments (purple).
Yellow boxes highlight key moments where cross-modal behavioural emphasis influenced extractive
summarization decisions.

The LLM selected two segments: (1) 0.0-4.35s and (2) 8.76-15.3s, excluding the gap 4.35s-8.76s
despite semantic relevance. This demonstrates how behavioural annotations guide LLMs to prioritize
segments with stronger cross-modal emphasis, validating our dual-purpose heuristic methodology.

Table 8: Behavioural cues detection and LLM-guided pseudo-ground truth generation process.
This table illustrates how heuristically detected behavioural cues inform LLM prompts to generate
behaviourally-aware pseudo-ground truth summaries.

Processing Stage Detected Behavioural Cues LLM-Selected Content

Behavioural Cue Detec-  Facial movements: 2.1s, 13.8s (head gestures) Segment 1 (0.0-4.35s): “The short answer is

tion Pitch variations: 4.2s, 8.9s (prosodic emphasis) that I really wanted to write this book because
Voice quality: 6.5s (vocal effort) I absolutely love writing popular histories.”

TF-IDF words: “absolutely,” “really,” “accessible”  Segment 2 (8.76-15.3s): “But I love being
able to share these stories in a way that makes
it really accessible and exciting...”

LLM Integration Behavioural annotations [timestamp, cue_type]  LLM prioritizes segments with behavioural
provided in LLM prompt. emphasis while maintaining extractive in-
Example: [2.1s, facial_movement], [4.2s, tegrity. The gap (4.35s-8.76s) is excluded de-
pitch_variation], [6.5s, voice_quality], [8.9s, spite semantic relevance due to the absence of
pitch_variation], [13.8s, facial_movement] cross-modal behavioural cues.

The heuristic detection pipeline identifies behavioural emphasis moments that are then formatted as
temporal annotations and integrated into LLM prompts. The LLM receives both the timestamped
transcript and these behavioural markers, enabling it to make informed extractive summarization
decisions that balance semantic importance with behavioural salience. This demonstrates how our
detection pipeline supports our core methodology by providing behaviourally-informed pseudo-
ground truth references for evaluation.

Figure [6]represents a visual comparison of summary outputs from different methods applied to an
example. The figure illustrates how our behaviour-aware approach selects different temporal segments
compared to baseline methods. Figure[7] provides a detailed temporal analysis of frame importance
scores, comparing our proposed method against the pseudo-ground truth and baseline approaches.
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Input Video

Full Transcript: “The short answer is that I really wanted to write this book because
T absolutely love writing popular histories. T mean, I love the deep, detailed histo-
ties, of course. This is my thing. But I love being able to share these stories in a

way that makes it really accessible and exciting for people that wouldn’t necessarily."

Pseudo-Ground Truth Summary

Selected Segments: 0-4.35s: “The short answer is that I really wanted

to write this book because I absolutely love writing popular histories."

8.76-15.35: “But I love being able to share these stories in a way that
makes it really accessible and exciting for people that wouldn’t necessarily."

Proposed (Behaviour-aware Multimodal)

Behavioural Analysis: "Detected facial emphasis at 2.1s (head movement during
“really wanted’), emotional peaks at 4.2s (enthusiasm for “absolutely love writ-

ing’) and 8.9s (voice modulation on *share these stories’), and gestural emphasis
at 13.8s. Selected segments align with passionate expression behavioural cues."

Figure 6: Visual comparison of video summarization methods on an example video. Each
method’s selected frames are shown with corresponding transcripts where applicable. Our behaviour-
aware approach closely aligns with the LLM pseudo-ground truth by detecting facial expressions and
prosodic patterns, while baseline methods show different selection patterns based on visual salience
or multi-modal features.
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Figure 7: Temporal score analysis for an example video. Top: Our method’s predicted importance
scores showing peaks aligned with behavioural cues. Middle: Pseudo-ground truth binary scores indi-
cating selected segments. Bottom: True positive/negative analysis showing our method’s alignment
with behaviourally significant moments. The high correlation demonstrates effective behavioural cue
integration.
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Our analysis reveals how behavioural cue detection supports the core transformer-based methodology
outlined in Section [3] and validates its effectiveness through the generated summary output. The
heuristic detection of facial movements at 2.1s and 13.8s provides temporal markers that enhance
the visual processing pipeline’s CLIP embeddings. These detected movements are concatenated
with visual features as described in Equation [T} creating behaviourally-enriched visual tokens that
inform the video encoder about moments of gestural emphasis. The prosodic variations detected at
4.2s and 8.9s serve as additional features in the audio processing pipeline, complementing HuBERT
embeddings as specified in Equation [2] During cross-modal attention, these enriched audio features
guide the attention mechanism to focus on temporally aligned visual and textual content, improving
the integration described in the methodology.

The transformer-based decoder, trained using the LLM-generated pseudo-ground truth references,
learned to identify and prioritize segments containing cross-modal behavioural emphasis. The output
summary captures key moments at 0.0-4.35s (emotional emphasis on "absolutely love writing") and
8.76-15.3s (prosodic emphasis on "really accessible"), demonstrating that the cross-modal attention
mechanism successfully integrated behavioural cues across modalities. Notably, the autoregressive
decoding strategy maintained temporal coherence while the enhanced multimodal features enabled
the model to distinguish between semantically relevant content and communicatively emphasized
moments, resulting in a summary that preserves both narrative flow and behavioural salience.

The convergence between heuristically detected behavioural cues, LLM-selected segments, and the
transformer-generated summary output validates our complete pipeline. This three-way alignment
(behavioural cues detection — LLM segments — transformer output) demonstrates that our pipeline
successfully identifies moments of genuine communicative intent, provides high-quality training
references, and enables the transformer to learn behaviour-aware summarization patterns rather than
spurious correlations.

A.6 FAILURE CASES

Our behaviour-aware multimodal summarization framework generally performs well but exhibits
specific failure cases worth noting. Since we rely on our decoder to determine summary length rather
than using a fixed percentage threshold, some summaries mismatch reference lengths. For example,
in shorter interview videos, our method sometimes generates summaries that are either too concise
(missing contextual information) or too detailed (including less significant segments). Cross-modal
attention occasionally over-prioritizes a single modality, particularly when visual features have
high confidence scores, leading to summaries that miss semantically important content with subtle
behavioural cues. Temporal misalignments between modalities also affect approximately 9% of cases
despite our forced alignment approach, creating unnatural breaks or transitions in the summary.

A.7 LIMITATIONS AND FUTURE WORK

Limitations. While our behaviour-aware multimodal framework significantly outperforms existing
approaches, several limitations warrant attention. First, the model is optimized for single-speaker
interview videos in controlled settings, such as those in the ChalL.earn First Impressions dataset,
limiting its applicability to multi-speaker scenarios or unstructured content. For instance, multi-
speaker interactions involve overlapping speech and complex visual dynamics, such as tracking
multiple faces or handling dynamic backgrounds, which our framework is not designed to address.
Second, reliance on LLM-generated pseudo-ground truth summaries introduces biases, such as LLMs
prioritizing semantically dense sentences over emotionally nuanced content with subtle behavioural
cues, which may misalign with human preferences, particularly for short videos (< 10 seconds)
where extractive summarization struggles. Additionally, the cross-modal attention mechanism
occasionally over-weights visual features, missing semantically significant speech content, while
temporal misalignments between modalities, due to transcription inaccuracies or alignment errors,
affect approximately 9% of generated summaries.

Future work. To enhance our framework, we plan to incorporate more comprehensive behavioural
representations beyond facial, prosodic, and textual features, potentially including eye gaze patterns
and body posture analysis. We will explore integration with larger-scale pretrained vision-language
models and audio foundation models to enhance feature representation quality. Developing adaptive
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modality balancing techniques, such as dynamic attention weighting based on modality confidence
scores, modality dropout to prevent overfitting to dominant modalities, or learnable modality fusion
layers could optimize cross-modal integration. Additionally, expanding our framework to diverse
video genres (e.g., multi-speaker discussions, vlogs) and datasets such as MultiSum (Qiu et al.
2023)) would improve generalizability. Human evaluation studies, including subjective quality
assessments and A/B testing, would provide insights into perceptual quality compared to LLM-
generated references, guiding human-aligned optimization. Finally, we aim to address synchronization
challenges by investigating robust temporal alignment methods, such as end-to-end audio-visual
synchronization models, and advanced decoder architectures, such as memory-augmented or external
knowledge-based transformers (Feng et al., 2018 [Xie et al.| [2022; |He et al.| 2024) to capture
long-range dependencies or graph-based decoders to model inter-segment relationships, to improve
summary coherence across varying video durations.

A.8 BROADER IMPACT

Our behaviour-aware multimodal video summarization framework is designed for single-speaker
interview videos and delivers significant positive societal impact by enabling efficient and contextually
relevant video analysis that reduces the time needed to watch and review lengthy content. This
reduction in viewing time supports well-being by lowering cognitive load and freeing users to
focus on more meaningful tasks. In educational settings, the framework enhances accessibility
and inclusiveness by providing concise summaries of lectures and interviews, thereby improving
learning efficiency. In professional and media environments, it streamlines content curation and
boosts productivity by saving hours of manual review, contributing to better work-life balance and
employee satisfaction. By advancing human-centric Al with multimodal behavioural understanding,
our work aligns with several United Nations Sustainable Development Goals (SDGs): SDG 4
(Quality Education) through enhanced accessibility to educational content; SDG 8 (Decent Work
and Economic Growth) by improving workplace productivity and well-being; SDG 9 (Industry,
Innovation and Infrastructure) through technological advancement in media analysis; and SDG 12
(Responsible Consumption and Production) by optimizing digital content consumption and reducing
unnecessary resource expenditure.

We acknowledge potential challenges, such as biases from limited dataset diversity, privacy concerns
related to sensitive audiovisual data, and risks of misuse through manipulated summaries. To mitigate
these, we recommend fairness-aware training with diverse data, privacy-preserving techniques, and
responsible development practices. While foundational in nature, this work highlights the importance
of developing behaviour-aware video summarization technologies that maximize societal benefits,
especially time savings and improved well-being, while carefully addressing associated risks.

A.9 THE USE OF LARGE LANGUAGE MODELS (LLMS)

This research utilized LLMs, specifically GPT-4.5, GPT-3.5, and LLaMA-3.2 3B, to generate pseudo-
ground truth summaries for evaluating our multimodal video summarization framework and to
enhance the clarity of the manuscript. All LLM-generated outputs were rigorously evaluated and
extensively revised by the authors to ensure alignment with academic standards and research ob-
jectives. LLMs did not contribute to research ideation, experimental design, or scientific analysis.
The conceptual framework, experimental methodology, and conclusions are the original work of the
authors. The authors assume full responsibility for all content, ensuring ethical use of LLMs and
adherence to academic integrity standards.
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