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Abstract—Unrolled networks have emerged as one of the most
successful methods in imaging applications. Although they have
demonstrated remarkable efficacy in solving specific computer
vision and computational imaging tasks, their adaptation to other
applications presents considerable challenges. This is primarily
due to the multitude of design decisions that practitioners
working on new applications must navigate, each potentially
affecting the network’s overall performance. These decisions in-
clude selecting the optimization algorithm to unroll, defining the
loss function, deciding on the structure of residual connections,
and determining the number of convolutional layers, among
others. Compounding the issue, evaluating each design choice
requires time-consuming simulations to train the neural network.
As a result, the process of exploring multiple options and
identifying the optimal configuration becomes time-consuming
and computationally demanding. The main objectives of this
paper are (1) to unify some ideas and methodologies used in
unrolled networks to reduce the number of design choices a
user has to make, and (2) to report a comprehensive numerical
study to discover the optimal design choices. We anticipate that
this study will help scientists and engineers design unrolled
networks for their applications and diagnose problems within
their networks efficiently.

Index Terms—Compressed Sensing, Unrolled Networks, Com-
putational Imaging.

I. INTRODUCTION

A. Unrolled Networks for Imaging Linear Inverse Problems

In many imaging applications, ranging from magnetic reso-
nance imaging (MRI) to seismic imaging and nuclear magnetic
resonance (NMR), the measurement process can be modeled
in the following way:

y = Ax∗ + w,

where y ∈ Rm represents the collected measurements, x∗ ∈
Rn denotes the vectorized image that we aim to capture, A ∈
Rm×n represents the forward operator or measurement matrix
of the imaging system (either known exactly or with some
small error), and w represents the measurement noise, which is
not known, but some information about its statistical properties
(such as the approximate shape of the distribution) may be
available.

Recovering x∗ from y has been extensively studied in the
last 15 years since the emergence of compressed sensing, with
many successful algorithms proposed [1–10]. More recently,
unrolled networks have emerged as a successful direction
for solving inverse problems [11–14]. To motivate unrolled
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Fig. 1: Diagram of projected gradient descent. Starting with
x0 = 0, the ith loss reducer performs the operation x̃i = xi+
µAT (y−Axi), and the ith projection performs xi+1 = PC(x̃

i).

networks, consider the hypothetical situation in which images
of interest belong to a set C ⊂ Rn. Under this assumption,
one way to recover the image x∗ from y is to find

argmin
x∈C

∥y −Ax∥22.

One classical approach to solving this optimization problem is
projected gradient descent (PGD), which iteratively performs

x̃i = xi + µAT (y −Axi),

xi+1 = PC(x̃
i). (1)

Here xi is the estimate of x∗ in iteration i, µ is the step
size and PC denotes the projection onto the set C. Figure 1
shows the graph of the projected gradient descent algorithm.
Since the set C is not accessible in real-world applications, un-
rolled networks have been developed to replace the projection
operator PC with neural networks, allowing these projectors
to be learned directly from training data. Unrolled networks
can also be constructed using optimization algorithms other
than PGD, including the Alternating Direction Method of
Multipliers (ADMM) [15], Nesterov’s Accelerated First-Order
Method [16, 17], and Approximate Message Passing (AMP)
[18]. Many of these alternatives offer faster convergence for
convex optimization problems, raising the prospect of reducing
the number of neural networks projectors required. It should
be noted that, given the complex landscape of training loss in
neural networks, it remains unclear whether these alternatives
actually improve the performance of unrolled networks.

B. Challenges in Using Unrolled Networks

The adaptation of unrolled networks to new applications
presents considerable challenges. These difficulties stem pri-
marily from two factors: (1) the multitude of design choices
practitioners must navigate, and (2) the computational cost of
evaluating different configurations. Our main objective is to
significantly simplify the design process of unrolled networks.



Before introducing our approach, we highlight several key
design decisions that critically impact recovery performance,
which we study in this paper.

1) Choice of Optimization Algorithm: As mentioned above,
the first fundamental decision is selecting the optimization
algorithm to unroll. Although practitioners often default to
simpler algorithms like PGD, there exist many alternatives
including ADMM, Nesterov’s method, and AMP. Each al-
gorithm presents different trade-offs in terms of convergence
speed and computational complexity for convex optimization
problems. The relative benefits of these choices remain unclear
in the context of unrolled networks, leaving scientists and
engineers uncertain about which option is best.

2) Choice of Loss Function: Conventionally, unrolled net-
works are trained using only the final output xT through the
mean squared error loss (called the last layer loss throughout
this paper):

ℓll(x
T , x∗) = ∥xT − x∗∥22

where xT is the network’s final output and x∗ is the ground
truth. While this approach seems intuitive since our primary
focus is on final reconstruction quality, the nonconvexity of the
training landscape raises uncertainty about whether optimizing
only the final output truly leads to the best possible reconstruc-
tion. Inspired by the successes in image classification [19], one
can also consider alternative loss functions that incorporate
intermediate supervision such as:

• Weighted Intermediate Loss with weight ω ∈ (0, 1]:

ℓi,ω(x
1, x2, . . . , xT , x∗) =

T∑
i=1

ωT−i∥xi − x∗∥22,

• Skip-L-Layer Loss (L is a factor of T ):

ℓs,L(x
1, x2, . . . , xT , x∗) =

T/L−1∑
i=0

∥xT−iL − x∗∥22.

While similar intermediate loss strategies have shown promise
in image restoration and super-resolution tasks [20, 21], their
benefits for solving inverse problems have not been explored.
Hence, the best choice of the loss function has remained
unclear for practitioners.

3) Number of Unrolled Steps: Practitioners also have to
pick the number of steps T to unroll an optimization algorithm.
Increasing T often comes with additional computational bur-
dens and may also lead to overfitting. A well-chosen value
of T can allow efficient training while maintaining strong
performance.

4) Complexity of the Neural Network: Similar to the above,
the choice of neural network for replacing PC also has a
significant impact on the performance of the network. The
options entail the number of layers or depth of the net-
work, whether or not to include residual connections, etc. If
the projector is designed to have only little complexity, the
unrolled network may have poor recovery. However, if the
projector has excessive complexity, the network may become
computationally expensive to train and prone to overfitting.

Again, practitioners have to make multiple decisions regarding
the choice of the projector.

II. OUR APPROACH AND DEEP MEMORY UNROLLED
NETWORKS

To address the multitude of design choices practitioners
face, we propose a two-stage approach. First, we develop
a novel neural network architecture termed Deep Memory
Unrolled Network (DeMUN). DeMUN includes various op-
timization algorithms such as PGD and AMP as special cases
and uses data to automatically learn the “optimal” algorithm
to unroll. This approach eliminates the need to manually select
an optimization algorithm to unroll. Second, through extensive
empirical studies, we investigate the impact of different loss
functions, residual connections, network depth, and network
complexity to provide practical guidelines for implementing
these networks.

A. Deep Memory Unrolled Network (DeMUN)

While traditional unrolled algorithms rely on a fixed opti-
mization algorithm such as PGD or AMP, we propose the Deep
Memory Unrolled Network (DeMUN), a general framework
that learns to adaptively combine the gradient information of
all previous iterations. At the i-th iteration in DeMUN, the
update of x̃i is given by:

x̃i = αixi +

i∑
j=0

βi
jA

T (y −Axj),

for i ∈ {0, . . . , T − 1} where x0 = 0. This update is
exhibited in Figure 2. Note that since the gradient information
was computed in the previous iteration, DeMUN does not
require any additional matrix vector multiplication compared
to, for instance, PGD. Unlike PGD in (1), DeMUN retains the
full optimization gradient history and discovers the optimal
combination by learning the weights {βi

j}j .

+

Fig. 2: The reconstructed image x̃i is updated by the weighted
sum of memory terms {AT (y − Axj)}ij=0 and image at i-th
iteration xi with learnable coefficients {βi

j}ij=0 and αi.

B. Simulation Setup

As previously mentioned, the rest of the paper presents
extensive simulation results evaluating key design choices,
such as the loss function, number of unrolled steps, and
network complexity. Due to space constraints, we present only
a subset of our simulations here. For more extensive results,
please refer to the extended version of our paper [22]. For



all simulations reported here, we consider only two sampling
rates m/n for the measurement matrix A: 20% and 40%.
Each entry in the measurement matrix is i.i.d. Gaussian, where
Aij ∼ N (0, 1/m). All training images have resolution 50×50.
In addition, we first consider two settings for the number of
unrolled steps T : 15 and 30. For all results below, we report
the Peak Signal-to-Noise Ratio (PSNR) on a test set of 2500
images. Please also see our extended paper [22] for further
details on data collection and processing, training of unrolled
networks, and their evaluation.

In our simulations, we adopt the DnCNN architecture out-
lined by Zhang et al. [23] as our neural network projectors
PC . DnCNN with L intermediate layers consists of an input
layer with 64 filters of size 3 × 3 × 1 followed by a ReLU
activation function to map the input image to 64 channels,
L layers consisting of 64 filters of size 3 × 3 × 64 followed
by Batch Normalization and ReLU, and a final reconstruction
layer with a single filter of size 3 × 3 × 64 to map to the
output dimension of 50× 50× 1. We use L = 5 in our initial
simulations, and discuss the impact of L in Section III-D.

III. IMPACT OF OUR DESIGN CHOICES

In this section, we first demonstrate that DeMUNs offer
superior recovery performance compared to other unrolled
algorithms. We then show that unrolled networks trained with
the intermediate loss function ℓi,1 consistently outperform
their counterparts trained with the other loss functions. Finally,
we examine the other design choices.

A. DeMUNs and Intermediate Loss

We first compare the performance of four unrolled al-
gorithms trained with the last-layer loss ℓll against their
counterparts trained with the intermediate loss ℓi,1.

1) Deep Memory Unrolled Network (DeMUN).
2) Projected Gradient Descent (PGD) as outlined in (1).
3) Nesterov’s First-Order Method (Nesterov): an optimiza-

tion method that uses memory to accelerate convergence
[16].

4) Approximate Message Passing (AMP): an iterative al-
gorithm tailored for Gaussian sensing matrices [6, 24].

m DeMUN PGD Nesterov AMP

0.2n 27.23 27.71 26.36 23.43
0.4n 30.20 30.53 26.47 24.71

Last Layer Loss ℓll

m DeMUN PGD Nesterov AMP

0.2n 29.97 28.97 28.39 29.11
0.4n 33.68 32.52 31.47 32.72

Intermediate Loss ℓi,1

TABLE I: Average Test PSNR (dB) Under 15 Projections

Tables I & II and Figures 3 & 4 reveal two key findings:
• Improved Performance with Intermediate Loss. Training

with the intermediate loss function consistently improves
reconstruction quality across all algorithms and sampling

m DeMUN PGD Nesterov AMP

0.2n 26.37 27.30 27.00 19.99
0.4n 31.31 30.33 29.95 22.66

Last Layer Loss ℓll

m DeMUN PGD Nesterov AMP

0.2n 29.86 29.07 28.35 29.12
0.4n 34.05 32.33 31.15 32.87

Intermediate Loss ℓi,1

TABLE II: Average Test PSNR (dB) Under 30 Projections

Fig. 3: DeMUN trained with loss ℓll and T = 30 projections.
The plot displays the PSNR after each intermediate projection.

rates. For instance, at 0.4n sampling rate with 15 projec-
tions, DeMUN improves from 30.20dB to 33.68dB when
switching from last layer to intermediate loss. Similar
improvements are observed with 30 projections from
31.31dB to 34.05dB. As shown in Figures 3 and 4, in-
termediate loss enables each projection step to contribute
meaningfully to reconstruction quality, whereas the last-
layer loss leads to stagnation in early iterations.

• Effectiveness of DeMUN. Among all algorithms tested,
DeMUN achieves the highest PSNR values when trained
with intermediate loss. At 0.4n sampling rate with 30
projections, DeMUN achieves 34.05dB, outperforming
all other unrolled algorithms. However, we note that this
advantage diminishes with the last layer loss. This might
be due to the fact that memory networks with their larger
parameter space may get stuck in local minima. Inter-
mediate loss mitigates this by optimizing reconstruction
performance across all steps, especially benefiting the
earlier layers.

• Other Loss Functions: Due to space constraints, we omit
results for other loss functions mentioned in Section I-B2,
but our extended paper [22] confirms that none of the loss

Fig. 4: DeMUN trained with loss ℓi,1 and T = 30 projections.
The plot displays the PSNR after each intermediate projection.



functions mentioned in Section I-B2 outperforms ℓi,1.

B. Residual Connections

Next, we examine the impact of including residual connec-
tions in the form xi+1 = PC(x̃i) + x̃i. Residual connections
are known to alleviate issues such as vanishing gradients and
facilitate the training of deeper networks by allowing gradients
to propagate more effectively through the intermediate layers
[25, 26]. Here, we focus our comparison between DeMUN
and PGD to evaluate this architectural choice.

m Algorithm 15 Steps 30 Steps

0.2n
DeMUN 29.46 29.39
PGD 29.33 29.27

0.4n
DeMUN 33.09 32.89
PGD 32.70 32.79

TABLE III: Average PSNR (dB) with Residuals and ℓll

m Algorithm 15 Steps 30 Steps

0.2n
DeMUN 30.33 30.74
PGD 29.74 30.07

0.4n
DeMUN 34.43 34.86
PGD 33.41 33.74

TABLE IV: Average PSNR (dB) with Residuals and ℓi,1

Tables III & IV show the performance of DeMUN and
PGD after incorporating residual connections. By comparing
the results of Tables I & II with Tables III & IV, we
see that including residual connection consistently improves
reconstruction quality. For instance, at 0.4 sampling rate
with intermediate loss, DeMUN’s performance improves from
33.68dB to 34.43dB with 15 projections, and from 34.05dB
to 34.86dB with 30 projections. Similar improvements are
observed for PGD across all sampling rates. Furthermore,
the combination of residual connections with intermediate
loss and DeMUN yields the best performance, demonstrating
these design choices are complementary rather than redundant.
Based on these results, we recommend including residual
connections in unrolled network architectures.

C. Number of Unrolled Steps

Another critical observation from our empirical results is
that increasing the number of unrolled steps consistently
improves reconstruction quality when using intermediate loss,
without signs of overfitting. As shown in Tables I & II, at 0.4n
sampling rate with intermediate loss, DeMUN’s performance
improves from 33.68dB with 15 projections to 34.05dB with
30 projections. This improvement pattern persists with residual
connections, where performance increases from 34.43dB to
34.86dB. Figures 3 & 4 provide further insight: under the
intermediate loss, each additional projection contributes mean-
ingfully to reconstruction quality, while performance plateaus
after a certain number of steps. This property simplifies
the design process of unrolled networks and suggests that
practitioners can safely increase the number of projections

within their computational constraints, as overfitting does not
appear to be a concern.

D. Projector Capacity

Finally, we examine the effect of varying the number of
intermediate layers L in the DnCNN projector architecture
while fixing our selected choices from above. Our experiments
with L ∈ {3, 5, 10, 15} layers reveal two key findings:

m L = 3 L = 5 L = 10 L = 15

0.2n 30.06 30.33 30.34 30.19
0.4n 34.49 34.43 34.44 34.30

TABLE V: Average PSNR (dB) Under 15 Projection Steps

m L = 3 L = 5 L = 10 L = 15

0.2n 30.32 30.74 30.71 30.60
0.4n 34.44 34.86 34.69 34.95

TABLE VI: Average PSNR (dB) Under 30 Projection Steps

• Increasing the number of layers from 5 to 15 results
in negligible changes in the performance of DeMUNs,
regardless of the number of projection steps.

• By comparing L = 3 and L = 5, we conclude that
reducing L ≤ 3 may impair performance. This suggests
that while the performance is insensitive to the choice of
L, some minimum network capacity, e.g. L = 5 is needed
to learn effective image representations [27].

While these findings are specific to DnCNN architectures,
we believe the general principle—that performance plateaus
beyond a certain architectural capacity but degrades below a
minimum threshold—likely extends to other projector designs.
The careful study of this issue for other projector architectures
is left for future research.

IV. CONCLUSION

In this paper, we conducted a comprehensive empirical
study on the design choices of unrolled networks to solve
linear inverse problems. We introduced the Deep Memory
Unrolled Network (DeMUN) that eliminates the need to
manually select an optimization algorithm by letting the data
decide on the optimal gradient combination. Through extensive
simulations, we demonstrated that training DeMUN with an
unweighted intermediate loss function and incorporating resid-
ual connections represents the best existing practice, delivering
superior performance compared to existing unrolled algo-
rithms. Our simulations provide clear guidelines for selecting
the number of convolutional layers in the projection step and
the required projections in the unrolled algorithm.
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