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ABSTRACT

Prevailing code generation benchmarks, such as HumanEval+ and MBPP+, pri-
marily evaluate large language models (LLMs) with pass@k on functional correct-
ness using well-formed inputs. However, they ignore a crucial aspect of real-world
software: adherence to contracts—the preconditions and validity constraints that
dictate how ill-formed inputs must be rejected. This critical oversight means that
existing benchmarks fail to measure, and models consequently fail to generate,
truly robust and reliable code snippets. We introduce PACT, a program assessment
and contract-adherence evaluation framework, to bridge this gap. PACT is the first
framework designed to systematically evaluate and enhance contract-adherence
in LLM-generated code snippets alongside functional correctness. PACT’s contri-
butions are threefold: First, it provides a comprehensive test-suite corpus focused
on contract violations, extending HumanEval+ and MBPP+. Second, it enables a
systematic analysis of code generation under varied prompting conditions. This
analysis demonstrates that augmenting prompts with contract-violating test cases
significantly enhance a model’s ability to respect contracts compared to using con-
tract description alone. Finally, it introduces novel metrics to rigorously quantify
contract adherence in both test generation and code generation. By revealing criti-
cal errors that conventional benchmarks overlook, PACT provides the rigorous and
interpretable metrics to evaluate the robustness of LLM-generated code snippets
in both functionality and contract-adherence.

1 INTRODUCTION

Test case generation is particularly crucial since it validates correctness, reveals corner cases, and
supports automated evaluation. Traditional approaches such as random testing (Cha et al., 2015),
symbolic execution (King, 1976; Yoon & Cha, 2024; Cadar et al., 2008), and search-based software
testing (Harman & McMinn, 2010; Formica et al., 2024; Burnim & Sen, 2008) have laid the ground-
work. Then, various large language model (LLM)-driven methods have recently been investigated,
including zero-shot prompting (Chen et al., 2021a; Jaremko et al., 2025), coverage-guided test gen-
eration (Ryan et al., 2024; Lemieux et al., 2023; Sapozhnikov et al., 2024), mutation-informed gen-
eration (Dakhel et al., 2024; Cajica et al., 2021), slicing-based decomposition (Wang et al., 2024),
and satisfiability modulo theories (SMT) solver-based test generation (Peleska et al., 2011; Cadar
et al., 2008).

Yet current test case generation approaches (Srivastava & Payer, 2021; Yoon & Cha, 2024) and the
resulting benchmarks (Chen et al., 2021a) still judge the quality of both test cases and programs
exclusively through pass@k (Chen et al., 2021a). In practice, real-world software is governed by
contracts (Meyer, 1992)—the preconditions and input validation rules that restrict valid inputs and
define expected behavior for ill-formed ones. As a black-box metric, pass@k measures correct-
ness only via input-output correspondence on well-formed inputs, which are test cases that have
already been filtered to comply with these contracts. Consequently, evaluating code snippets solely
by well-formed input-output correspondence without considering contracts leads to an inaccurate
assessment, as it overlooks whether the generated code snippets enforce pre-conditions and input
validation checks explicitly stated or implicitly included in the specification (Liu et al., 2023).
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Typically, most coding competitions such as International Collegiate Programming Contest 1 (ICPC)
or International Olympiad in Informatics 2 provide specifications that state the constraints to
consider when implementing the function for the task. This description includes not only the
functional goal—such as computing a sum or sorting a list—but also a set of explicit con-
tracts, such as input bounds, type restrictions, and required error-handling behaviors. These
contracts often phrased in natural language or implied via examples, act as contracts that de-
scribe the valid input space and define the expected behavior under edge or invalid con-
ditions. Figure 1 provides a clear illustration, showing how a simple functional task de-
scription contains hidden contracts that are often overlooked. For instance, a function de-
signed to find duplicate values in a list of numbers, has_dup(nums), has an implicit con-
tract that the input must be a list containing only integers. A correct implementation should
therefore include specific assertions—such as assert isinstance(nums, list) and
assert all(isinstance(x, int) for x in nums)—to verify the input’s type before
proceeding with the functional logic. If such checks are omitted, the program may appear correct
on well-formed inputs like [1, 2, 3]. However, it will fail to reject ill-formed inputs like 'a'
or ['2', 2], thus failing to reflect the intended specification. Ignoring these contracts in code
generation poses serious reliability and safety issues. For instance, a module might silently accept
an invalid input, such as a negative number where a positive one is expected. By doing so, it can
propagate a hidden fault by passing a nonsensical result to another part of the system. This chain
reaction often leads to logical errors that are extremely difficult to trace back to their original source.

Figure 1: PACT’s contract-violating test uncovers
an implicit constraint that conventional functional
tests miss, proving the need for contract-aware
evaluation.

Therefore, contracts are not optional safeguards
but integral parts of the specification that de-
fine the boundary of valid behavior. Without
them, even code snippets that appear func-
tionally correct cannot be trusted to operate
safely and reliably. Empirical studies reveal that
LLM-generated code snippets frequently over-
look these contracts and often fails to guard
against ill-formed inputs that violate them. As
a result, a generated code may incorrectly pass
tests that it should fail, creating the illusion of
correctness under default test cases. This shows
that many seemingly correct solutions in fact
ignore contractual requirements, underscoring
that contract adherence is a fundamental neces-
sity for trustworthy code generation.

We introduce PACT, a program assessment
and contract-adherence evaluation framework,
to bridge this gap. The main focus of PACT
is twofold: first, to construct high-quality
contract-violating test cases, and second, to
use them for a systematic analysis of contract-
aware code generation. For test case genera-
tion, our approach leverages an SMT solver to
systematically explore diverse combinations of
contract violations, moving beyond simplistic,
single-violation tests.

For example, for a function with the contracts
assert isinstance(r, float), assert r > 0, and assert h > 0, our method can
generate an input such as r = -2.5 and h = 5. This test case is guaranteed to satisfy the type
contract for r and the positivity contract for h, while precisely violating only the positivity contract
for r. By pruning logically inconsistent combinations in advance, the solver ensures that only feasi-
ble and semantically valid test cases are generated. For our analysis of code generation, we then use

1ICPC website: https://icpc.global/
2IOI website: https://ioinformatics.org/
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these precisely targeted test cases to evaluate how different prompting strategies guide an LLM to
produce implementations that properly enforce the intended contracts.

In summary, current benchmarks overlook contract violations, thereby inflating the perception
of correctness. Addressing this limitation, we propose the PACT framework. PACT extends Hu-
manEval+ and MBPP+ to generate test cases focused on contract violations and introduces novel
metrics to quantify contract adherence.

2 RELATED WORK

2.1 AUTOMATED TEST AND CODE GENERATION

Automated test and code generation have deep roots in traditional software engineering. Early
test case generation was typically categorized into black-box methods like random and mutational
fuzzing (Godefroid et al., 2005; Claessen & Hughes, 2000), white-box techniques such as symbolic
execution (He et al., 2021; Cha et al., 2022; Godefroid et al., 2008), and grey-box approaches like
coverage-guided fuzzing (Choi et al., 2019; Stephens et al., 2016; She et al., 2024; Qian et al.,
2022). Similarly, early code generation relied on methods like probabilistic grammar-based frame-
works (Bielik et al., 2016) and specialized language models (Feng et al., 2020). The advent of the
Transformer architecture marked a paradigm shift, establishing LLMs as the dominant approach in
both fields (Chen et al., 2021b). The development of modern Code LLMs now typically involves
pre-training on code corpora, followed by instruction tuning (Ouyang et al., 2022) and refinement
through more advanced techniques like reinforcement learning with execution feedback (Gehring
et al., 2025). However, despite these advancements, the primary goal has remained the enhancement
of functional correctness, typically measured by pass@k on benchmarks with well-formed inputs.

2.2 CONTRACTS

The Design by Contract (DbC) paradigm (Meyer, 1992) argues that software reliability depends on
explicitly stated preconditions, postconditions, and invariants, with run-time assertions as the en-
forcement mechanism. However, mainstream automated testing and existing test-generation bench-
marks (Wang et al., 2025; Jain et al., 2025) often overlook latent defects from missing contract
checks. While related work on failure-inducing test cases (Zhang et al., 2024; Zhong et al., 2025)
is effective at causing general exceptions, this is not the same as verifying adherence to the pre-
cise semantics of a given contract. For instance, for a function that requires a list of positive num-
bers, a generic failure-inducing test might use None to cause a TypeError, but this does not
verify the specific rule that all numbers must be positive. In contrast, a contract-aware test like
[10, 20, -5] is designed to be caught precisely by an assertion checking for positive values.
This distinction highlights the need for systematic methods that can precisely target formal contract
specifications rather than just triggering arbitrary errors.

2.3 SMT SOLVER

SMT (Satisfiability Modulo Theories) solvers are powerful engines for determining the satisfiabil-
ity of complex logical formulas across various theories, such as arithmetic and strings (Barrett &
Tinelli, 2018). They typically interface using SMT-LIB, a standardized formal language, with Z3
being a widely adopted implementation in automated testing (de Moura & Bjørner, 2008). Tradi-
tionally, techniques like symbolic execution have employed SMT solvers to find inputs that satisfy
path constraints, focusing on functional coverage over well-formed inputs. In this paradigm, con-
straints are used as admission checks to filter out invalid data rather than as explicit targets for
evaluation. In contrast, our framework leverages SMT solvers to systematically generate ill-formed
inputs that precisely violate formalized contracts, allowing us to rigorously test for robustness. A
detailed example of how we formulate contracts is provided in Appendix D.

3
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3 THE NEED FOR CONTRACT-AWARE EVALUATION

3.1 WHY CONTRACTS MATTER: BLIND SPOTS IN CURRENT BENCHMARKS

Recent studies on code and test case generation (Korraprolu et al., 2025; Sung et al., 2025; Li
et al., 2022) have dominantly relied on pass@k to evaluate functional correctness. While effective,
these metrics, along with approaches that target failure-inducing inputs (Peng et al., 2018), share a
common limitation: they primarily operate within the bounds of a program’s legal input space Dyck
et al. (2023). This practice has led to a critical blind spot in popular benchmarks such as HumanEval+
and MBPP+. By design, these benchmarks explicitly filter out and discard any test case that violates
a program’s pre-conditions (Austin et al., 2021). Consequently, the evaluation process certifies that
a program behaves correctly on well-formed inputs, but it fails entirely to assess the program’s
robustness against ill-formed ones. This results in an incomplete and often inflated assessment of
code quality, praising solutions that may be superficially correct but are fundamentally fragile.

This is where the software contracts become essential. As explained in Section 1, contracts are
the rules that define the boundary of valid behavior. They are not optional safeguards but a core
component of trustworthy software that specifies how a program must identify and reject invalid
data. By ignoring contract adherence, existing benchmarks overlook a crucial dimension of software
reliability.

3.2 CONTRACT-BASED TEST PARADIGM

Merely enlarging a single pool of valid inputs cannot reveal whether a model understands the bound-
ary of the specification it needs to satisfy. The main focus, therefore, lies in constructing contract-
violating test cases, which systematically explore the extent to which models enforce contract rules.
A contract-violating test case is an input that violates one or more predicates from a set of contracts
while satisfying the remaining specification. The reference implementation is augmented with run-
time assertions for every predicate in the contract set, and a candidate program passes such a test
only when it raises an error consistent with this augmented reference. Introducing contract-violating
inputs uncovers false negatives that purely functional tests overlook and provides a rigorous measure
of whether a program properly enforces contractual rules.

3.3 TASK SETUP

Each benchmark task consists of a natural language description, a set of contracts, and a functional
implementation. We use HumanEval+ and MBPP+, where contract predicates are stroed as assertion
literals outside the prompt and reference code. Our task concerns contract-violating test generation
and contract-aware code generation. For test generation, we automatically construct a compact set
of contract-violating test cases that target specific contract rules and remain feasible with respect
to the remaining rules for each benchmark task. These tests are used for evaluating whether LLM-
generated code appropriately follows contracts. For contract-aware code generation, we generate
code under two prompt conditions, where the first condition is a contract specification (CS) prompt,
which includes the functional description and a natural language paraphrase of the contracts. The
second condition is an example-augmented specification (EAS) prompt, which is augmented with
the contract-violating test cases.

4 METHODOLOGY

We propose PACT, a program assessment and contract-adherence evaluation framework designed to
systematically evaluate and enhance the ability of LLMs to generate contract-compliant code. This
framework consists of two main stages. First, we generate contract-violating test cases to rigorously
assess whether LLM-generated code snippets enforces both functional specifications and explicit
contracts. Second is the systematic analysis of code generation, where we use these test cases under
different prompting conditions to evaluate a model’s contract awareness in detail. Unlike prior ap-
proaches that rely solely on functionality-based evaluation, PACT extends the evaluation paradigm
with contract-violation tests, enabling a more precise and reliable analysis of contract adherence.

4
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Figure 2: Running example of PACT for code generation.

4.1 CONTRACT-VIOLATING TEST-CASE GENERATION

Direct LLM-based generation is inadequate for contract-aware test case construction. It must con-
sider all subsets of the contract set when producing violating inputs. If a task has n contracts, the
number of non empty violation combinations is 2n − 1. Direct prompting often misses required
combinations and yields contradictory inputs that violate unintended contracts and fails to ensure
feasibility under the specification. LLMs also lack a built in mechanism to verify that exactly the
targeted contracts are violated while all others hold. We design an SMT-based approach to make
these checks accurate and efficient. Our generation procedure is a two-step pipeline for contract-
aware test case generation. First, an inference model translates natural language contracts into an
Algebraic Data Type (ADT) program. This ADT format is the critical component: it provides a
rigid, formal schema for the complex and often nested constraints found in contracts. This ensures
that the subsequently generated rules for an SMT solver are syntactically valid and semantically
precise. Second, given the ADT, the SMT solver constructs contract violation test cases (CVTs) by
breaking one or more specified contracts while ensuring that all remaining contracts are satisfied.
The solver validates satisfiability for each candidate combination and extracts concrete models—
specific assignments of values that satisfy the constraints— to instantiate inputs for every valid case.
We provide a running example of this procedure in Appendix D.

4.2 CONTRACT METRICS FOR TEST CASE

Unlike standard test cases for functional correctness, test cases for contracts should be the nega-
tive samples, violating the contracts and triggering the corresponding assertions. As the concept of
contract-violating test cases is different from the standard, we design metrics to analyze whether the
generated test cases appropriately correspond to input contracts.

Let A = {a1, . . . , an} be the set of all contract assertions and T = {t1, . . . , tm} be the generated
test cases. Ft ⊆ A is the set of violated assertions when executing a test case t ∈ T . Finally,
Tneg ⊆ T represents the set of test cases that successfully violated at least one contract.

Assert Violation Coverage (AVC) AVC quantifies the coverage of assert statements that are suc-
cessfully violated by all the test cases.

AV C =
|{ai | ∃t ∈ Tneg : ai ∈ Ft}|

n
.

The value of 1.0 for AVC ensures that all contract assertions are captured by the test cases. Lower
values expose the unexplored regions of the contracts from the test cases.

Target Specificity (TS) TS evaluates the precision of each test case by measuring how accurately
it violates its intended set of target contracts. To formalize this, we first define V ⊆ A as the set
of contracts that a given test case t ∈ Tneg is intended to violate. We then measure the alignment
between this intended set Vt and the actually violated set Ft using the Jaccard Index. The final TS

5
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score is the average of these individual precision scores across all negative test cases:

TS =
1

|Tneg|
∑

t∈Tneg

|Ft ∩ Vt|
|Ft ∪ Vt|

.

A score of 1.0 indicates perfect precision, where every test case violates exactly the set of contracts it
was designed to. Lower scores reveal a discrepancy, indicating that test cases either failed to trigger
their intended violations or caused unintended, collateral violations.

4.3 CONTRACT-AWARE CODE GENERATION

This section details our methodology for systematically evaluating and enhancing the ability of
LLMs to generate code snippets that robustly enforces contracts. To achieve a fine-grained un-
derstanding of a model’s contract awareness, we investigate its performance under two distinct
prompting strategies. Frist, we establish a baseline condition, Contract Specification (CS). For
this strategy, we use a powerful Commercial LLM to naturally integrate the contract rules from
the HumanEval+ and MBPP+ datasets into the main text of the prompt. This creates a comprehen-
sive prompt that describes both the functional goal and its contractual constraints in natural lan-
guage. Second, we introduce an enhanced condition, which we term Example-Augmented Speci-
fication (EAS). This strategy builds upon the CS prompt by augmenting it with a single, precisely
targeted contract- violating test cases for each described contract. This provides a concrete example
of what constitutes a violation, intended to guide the model toward more robust code generation.

To measure the impact of these prompting strategies, we assess the generated code snippets using a
comprehensive suite of metrics for both functional correctness and contract adherence. Functional
correctness is measured using the standard pass@k metric over a set of valid test cases. Contract
adherence is evaluated from two perspectives: runtime enforcement using test cases and static align-
ment of the generated code snippets with the ground-truth contracts, as detailed in Section 4.4.

4.4 CONTRACT METRIC FOR CODE GENERATION

For the evaluation of the generated code snippets, we employ pass@k to measure functional correct-
ness on valid inputs and use AVC to measure the correctness of the generated contract assertions.
We also design two additional metrics to more precisely evaluate contract-aware code generation.

Let A = {a1, . . . , an} be the set of ground-truth contract assertions, and let Â = {â1, . . . , âm}
be the set of assertions extracted from the LLM-generated code. Let M ⊆ A × Â be the set of
pairs (ai, âj) where the ground-truth contract ai and the generated assertion âj are determined to be
semantically equivalent.

Assertion Alignment Recall (AAR) AAR measures the model’s ability to implement all required
contracts without omission. It is the proportion of ground-truth contracts that are successfully cov-
ered by at least one assertion in the generated code, functioning as a recall metric.

AAR =
|{ai ∈ A | ∃âj ∈ Â : (ai, âj) ∈ M}|

n
.

A high AAR score indicates that an output code ensures that all required contract specifications are
generated.

Assertion Alignment Precision (AAP) AAP measures the accuracy of the generated assertions,
penalizing irrelevant or hallucinated ones. It is the proportion of generated assertions that correspond
to a valid ground-truth contract, functioning as a precision metric.

AAP =
|{âj ∈ Â | ∃ai ∈ A : (ai, âj) ∈ M}|

m
.

A high AAP score indicates that the code does not contain assertions of unnecessary or incorrect
checks.

6
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5 EXPERIMENTAL SETTINGS

5.1 DATASETS

Our study utilizes HUMANEVAL+ and MBPP+ benchmarks (Liu et al., 2023), which are enriched
with assertion-level contracts. However, these benchmarks have a critical limitation for evaluat-
ing code robustness: the contract specifications are neither included in the model prompts, nor are
contract-violating inputs included in the official test suites. This evaluation setup exclusively tests
for functional correctness on well-formed inputs, leading to an inflated perception of code qual-
ity. We construct a supplementary dataset containing contract-violating test cases, as described in
Section 4.1.

5.2 CANDIDATE MODELS

We utilize o4-mini as our primary test case generator. For our code generation experiments, we
evaluate a set of open-source models including gemma-3-12B-it (gemma-3), Deepseek-R1-Distill-
Qwen-14B (DeepSeek-R1), Qwen3-14B (Qwen-3), and Phi-4-reasoning-plus (Phi-4-plus).

6 EMPIRICAL STUDIES

Our empirical study is structured over three research questions (RQs) designed to evaluate the PACT
framework from multiple perspectives. The evaluation is conducted on HumanEval+ and MBPP+.
We begin by assessing the quality and precision of the CVTs generated by PACT (RQ1). Next,
we investigate whether providing these concrete test cases is more effective for eliciting contract-
awareness than using abstract natural language descriptions alone (RQ2). Finally, we analyze the
resulting trade-off between the enforced contract adherence and the functional correctness of the
generated code snippets (RQ3).

Table 1: Evaluation results of the test case generation on HumanEval+ and MBPP+.

Benchmark Method AVC (↑) TS (↑) AVG (↑)

HumanEval+ o4-mini 97.14% 75.60% 86.37%
o4-mini + SMT Solver 95.53% 85.81% 90.67%

MBPP+ o4-mini 94.67% 69.11% 81.89%
o4-mini + SMT Solver 93.50% 84.54% 89.02%

6.1 RQ1: HOW EFFECTIVE IS PACT IN GENERATING HIGH-QUALITY CONTRACT-
VIOLATING TEST CASES?

Our first research question investigates the effectiveness of our proposed framework, PACT, in gen-
erating high-quality CVTs. A naive baseline approach, which we refer to as o4-mini in Table 1,
uses an LLM o4-mini for direct test case generation from given contracts. This method is of-
ten inadequate, as it disregards dependencies among contracts and produces logically inconsistent
violations, making it difficult to precisely verify individual contract predicates.

In contrast, PACT (o4-mini+ SMT Solver) employs a more robust two-stage approach. First an
LLM converts contracts into rules for an SMT solver. Subsequently, an SMT solver uses these rules
to generate test cases. This process guarantees the generation of logically sound test cases that are
precisely targeted to violate a specific subset of contracts while adhering to the rest.

The empirical results in Table 1 validate the superiority of PACT. While both methods achieve
high AVC scores, PACT significantly outperforms the direct generation in TS, achieving over 10%p
increases on both HumanEval+ and MBPP+. This demonstrates that our two-stage approach suc-
cessfully give test cases precisely for intended contracts. The baseline’s slightly higher AVC is an
expected outcome, as direct generation often triggers a wide range of assertion errors indiscrimi-
nately, artificially inflating coverage. PACT, on the other hand, focuses on valid, targeted violations.

7
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While PACT generates valid rules, providing a precise test for the input contracts, there are still
errors. A case-specific analysis of minor errors that occur even with well-formed rules is detailed in
Appendix A.

Table 2: Evaluation results of contract adherence in code generation on HumanEval+.

Model Mode pass@1 (↑) AVC (↑) AAR (↑) AAP (↑) AVG (↑)

gemma-3 CS 84.41% 24.85% 11.41% 14.04% 32.79%
EAS 82.94% 91.02% 28.07% 27.77% 57.45%

DeepSeek CS 73.78% 44.12% 15.65% 16.97% 37.63%
EAS 71.77% 79.29% 27.62% 28.01% 51.67%

Qwen3 CS 78.92% 28.04% 13.17% 22.55% 35.67%
EAS 77.83% 87.81% 31.53% 36.09% 58.31%

Phi-4-plus CS 72.23% 52.91% 18.78% 21.09% 41.25%
EAS 67.08% 69.50% 21.33% 20.06% 44.49%

Table 3: Evaluation results of contract adherence in code generation on MBPP+.

Model Mode pass@1 (↑) AVC (↑) AAR (↑) AAP (↑) AVG (↑)

gemma-3 CS 78.56% 57.99% 17.50% 17.93% 41.49%
EAS 78.60% 95.57% 32.29% 31.82% 59.57%

DeepSeek CS 62.53% 64.20% 17.59% 17.57% 40.47%
EAS 60.15% 86.70% 28.23% 27.94% 45.47%

Qwen3 CS 72.41% 70.86% 21.09% 22.99% 46.84%
EAS 72.63% 94.85% 31.54% 32.30% 57.83%

Phi-4-plus CS 64.89% 67.33% 24.26% 24.65% 45.28%
EAS 63.76% 74.88% 29.20% 28.95% 49.20%

6.2 RQ2: ARE CONCRETE TEST CASES MORE EFFECTIVE THAN ABSTRACT DESCRIPTIONS
FOR ELICITING CONTRACT-AWARENESS?

We compared two prompting methods across various models in Tables 2 and 3. CS, our baseline,
provides only an abstract natural language description of the contracts. In contrast, EAS augments
the CVTs, generated from Section 4.1, to the CS prompt.

The results demonstrate that for all of our base models, EAS is a more powerful method for eliciting
contract-aware code generation. EAS achieves 33.7%p, 11.3%p, and 9.4%p improvements for AVC,
AAR, and AAP, respectively, over CS. For models such as Qwen3, DeepSeek-R1, and Phi-4-plus,
switching from CS to EAS leads to a dramatic improvement across all contract adherence metrics.
This indicates that concrete examples of CVTs provide a clear and unambiguous signal that forces
the model to move beyond purely functional logic. The increase in AAR and AAP indicates that the
models are correctly generating test cases required for assertion checks, while the relatively huge
improvements in AVC show that the resulting codes are more robust against a wider range of invalid
inputs.

Concrete examples of contract violations provide a clear, unambiguous signal that forces the model
to move beyond purely functional logic and implement the explicit enforcement of contracts—the
predefined agreements on how ill-formed inputs must be rejected. For concrete examples of the code
snippets and their corresponding LLM-generated test cases, please refer to Appendix B. However,
this heightened focus on contract enforcement introduces a notable trade-off, as the model may
generate more complex code that impacts its performance on purely functional correctness metrics.
This trade-off is analyzed in further detail in the following section RQ3.

6.3 RQ3: HOW DOES ENFORCING CONTRACT ADHERENCE IMPACT THE FUNCTIONAL
CORRECTNESS OF GENERATED CODE?

While the RQ2 established that augmenting prompts with CVTs significantly enhances a model’s
contract adherence, this section investigates the resulting trade-off with respect to its functional

8
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correctness. Our analysis reveals that a heightened focus on contract enforcement often comes at
the cost of a measurable decline in performance on standard functional correctness benchmarks.
This trade-off can be attributed to a shift in the model’s optimization focus. When provided with
only a functional description, the LLM’s sole objective is to produce code snippets that passes
functionality-focused tests. However, when the prompt is augmented with CVTs, the model must
simultaneously satisfy two competing objectives: generating functionally correct logic and enforc-
ing the specified contractual preconditions. This dual objective increases the complexity of the code
generation task. The model is compelled to allocate part of its reasoning capacity to interpreting and
implementing the contract rules, which can lead to subtle errors or oversights in the core functional
logic. A concrete example of this is presented in Appendix C. Consequently, while the resulting
code snippets is more robust and secure against invalid inputs, it may exhibit a lower pass@1 rate
on test suites composed entirely of valid, well-formed inputs.

In conclusion, our findings reveal an inherent tension between contract adherence and functional
correctness in LLM-based code generation. The pursuit of robustness through contract enforcement
comes at a tangible cost to functionality. This trade-off highlights the critical need for advanced
training paradigms—such as the reinforcement learning with multi-objective rewards proposed by
PACT—capable of optimizing for both objectives simultaneously.

7 CONCLUSION

We introduce PACT, the first framework to redefine code and test case correctness by evaluat-
ing adherence to task specifications through both functionality and contract-based behavior. While
prior benchmarks assess only pass@k on well-formed inputs, PACT introduces a comprehensive
paradigm with dual test suites—one for functionality and one for contract violations—along with
specific metrics to analyze contract awareness and uncover latent defects, enabling a more prin-
cipled evaluation of code robustness. Our empirical evaluation demonstrates the effectiveness of
PACT across multiple dimensions. We first show that PACT’s SMT-solver-based test case genera-
tion method ensures more accurate CVTs than direct generation with over 10%p better performance.
Furthermore, our results reveal that augmenting prompts with these CVTs is a highly effective strat-
egy for generating robust and contract-aware code, achieving 18.13%p increase in contract-specific
metrics and 12.8%p in total average. Our empirical studies on various LLMs demonstrate the ef-
fectiveness of PACT, achieving approximately , but also uncovers a critical trade-off between this
enhanced contract adherence and a model’s performance on functional correctness. These findings
confirm that PACT provides a more complete and realistic assessment of an LLM’s contract-aware
code generation capabilities, moving beyond the limitations of existing benchmarks.

8 FUTURE WORK DIRECTIONS

While this work focuses on evaluating contract adherence, a natural next step is to actively improve
it through advanced training methodologies. A promising direction is to leverage the novel met-
rics introduced in our PACT framework as direct training signals. The novel metrics introduced in
our PACT framework, such as the runtime metric Assert Violation Coverage (AVC) and the static
metrics Assertion Alignment Recall (AAR) and Precision (AAP), are particularly well-suited for
this purpose and could be integrated into a multi-objective reward function for RL. This approach
could enable models to learn to navigate the trade-off between functional correctness and contract
adherence more effectively, optimizing for both objectives simultaneously.
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A CASE STUDY: LOGICAL CONTRADICTIONS IN DIRECT LLM TEST CASE
GENERATION

HumanEval In Figure 3 shown in the code snippet, this task includes three sequential contracts:
assert 0 checks if the input is a list, assert 1 verifies that all elements in the list are strings,
and assert 2 ensures that all strings consist only of digits. A critical dependency exists between
these contracts. Specifically, assert 2 can only be evaluated if assert 1 is satisfied, because the
isdigit() method is only valid for string types. A test case designed to violate assert 1 while
satisfying assert 0 and assert 2 would therefore be a logically contradictory combination, as
a non-string element would cause a TypeError before assert 2 could be checked. Despite this,
a direct LLM generation approach often produces such invalid combinations. For instance, when
tasked to generate test cases, the LLM produces inputs such as [123, "456"], ["789", [0]],
and ["456", false]. These examples fail to isolate a specific contract violation. This highlights
a fundamental weakness of the approach, as the LLM tends to generate simplistic contract-violation
test cases that fail to respect the logical relationships among contracts.

Mbpp In Figure 4 shown in the code snippet, this task includes four main contracts, which can be
grouped by their dependency. The initial contracts, assert 0 and assert 1, perform type check-
ing to verify that both inputs are of a numeric type, such as an integer or a floating-point number.
The subsequent contracts, assert 2 and assert 3, check numeric properties, such as ensuring
the numbers are positive or fall within a specific range. A critical dependency exists between these
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groups of contracts. Specifically, the numeric property checks in assert 2 and assert 3 can
only be evaluated if the type checks in assert 0 and assert 1 are satisfied. For example, a
non-numeric type like a string or null cannot be evaluated for properties like being positive.
Therefore, creating a contract-violation test case that violates the initial type contracts (assert 0
or assert 1) while simultaneously satisfying the subsequent property contracts (assert 2 and
assert 3) is a logical impossibility. Despite this, a direct LLM generation approach often pro-
duces such logically flawed combinations. For instance, when tasked to generate test cases, the
LLM produces inputs such as ["abc", null], [null, "abc"], [[1], {"x":1}], and
[{"r":1}, [2]]. Crucially, while these examples successfully violate the initial type contracts,
they all inherently fail to satisfy assert 2 and assert 3, yet they are generated as if such a
combination were possible. This highlights a fundamental weakness of the approach, as the LLM
tends to generate simplistic contract-violation test cases that fail to respect the logical relationships
among contracts.

HumanEval/113

def odd count(lst):
assert type(lst) == list, "invalid inputs" # $ CONTRACT $
assert all(isinstance(s, str) for s in lst), "invalid inputs" # $

CONTRACT $
assert all(s.isdigit() for s in lst), "invalid inputs" # $

CONTRACT $

ans, template = [], "the number of odd elements in the string i of
the input."

for s in lst:
odd cnt = len(list(filter(lambda ch: int(ch) % 2 == 1, s)))
ans.append(template.replace("i", str(odd cnt)))

return ans

"""
Contract List:
assert 0: assert type(lst) == list, "invalid inputs
assert 1: assert all(isinstance(s, str) for s in lst), "invalid inputs
assert 2: assert all(s.isdigit() for s in lst), "invalid inputs
"""

Figure 3: Code and contracts for HumanEval.

B CASE STUDY: CONTRACT ENFORCEMENT UNDER DIFFERENT
PROMPTING CONDITIONS

We present a direct comparison of code snippets that the DeepSeek model generated for the
MBPP/11 task under two prompting conditions. This comparison illustrates why providing CVTCs
is more effective than relying on natural language descriptions alone.

Figure 5 shows the code snippets produced when the model received only the natural language
prompt. The prompt contains enough information to infer all necessary contracts. It specifies two
explicit contracts, namely that the first input must be a non empty string and that the second in-
put must be a string of length one.It also implies two type contracts that both inputs must be
strings. The generated code snippet correctly implements the explicit length based contracts with
assert len(s) > 0 and assert len(char) == 1. However, it omits the implicit type
checks and treats the word “string” as descriptive context rather than a strict precondition. As a
result, the function fails to enforce the contracts under non string inputs.

In contrast, Figure 6 displays the output when the prompt was augmented with concrete CVTCs such
as remove_Occ(2.0, 3.0). These test cases provide an unambiguous and executable signal
that non string inputs are invalid and must be rejected. The model generates a more robust implemen-
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MBPP/731

import math
def lateralsurface cone(r,h):

assert isinstance(r, (int, float)), "invalid inputs" # $ CONTRACT $
assert isinstance(h, (int, float)), "invalid inputs" # $ CONTRACT $
assert r > 0, "invalid inputs" # $ CONTRACT $
assert h > 0, "invalid inputs" # $ CONTRACT $
l = math.sqrt(r * r + h * h)
return math.pi * r * l

"""
Contract List:
assert 0: assert isinstance(r, (int, float)), "invalid inputs
assert 1: assert isinstance(h, (int, float)), "invalid inputs
assert 2: assert r > 0, "invalid inputs
assert 3: assert h > 0, "invalid inputs
"""

Figure 4: Code and contracts for MBPP.

tation that now includes the crucial isinstance(s, str) and isinstance(char, str)
assertions.

This comparison shows that natural language descriptions may contain all required information, yet
their inherent ambiguity can prevent the model from adhering to the contract. CVTCs make these
implicit contracts explicit and enforceable. They compel the model to produce code snippet that is
more comprehensive and adheres to the intended contracts.

MBPP/11

"""
Write a python function that removes the first and last occurrence of

a given character from the string; the first input must be a non-
empty string and the second input must be a string of length one.

"""

def remove Occ(s, char):
assert len(s) > 0, "First input must be a non-empty string."
assert len(char) == 1, "Second input must be a string of length

one."

first = s.find(char)
last = s.rfind(char)

if first == -1:
return s

return s[:first] + s[first+1:last] + s[last+1:]

Figure 5: Code generated by DeepSeek with the contract specification (CS) prompt.
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MBPP/11

"""
Write a python function that removes the first and last occurrence of

a given character from the string; the first input must be a non-
empty string and the second input must be a string of length one.

# Contract Test Cases:
>>> remove Occ(2.0, 3.0)
"AssertionError: invalid input"
>>> remove Occ(5.0, 4.0)
"AssertionError: invalid input"
>>> remove Occ('', 2.0)
"AssertionError: invalid input"
>>> remove Occ(2.0, '')
"AssertionError: invalid input"
"""

def remove Occ(s, char):
assert isinstance(s, str) and len(s) > 0, "invalid input"
assert isinstance(char, str) and len(char) == 1, "invalid input"

first occ = s.find(char)
last occ = s.rfind(char)

if first occ == -1:
return s

return s[:first occ] + s[first occ+1:last occ] + s[last occ+1:]

Figure 6: Code generated by DeepSeek with the example-augmented specification (EAS) prompt.

C CASE STUDY: CONTRACT ADHERENCE VS. FUNCTIONAL CORRECTNESS

A case study from the HumanEval/142 task provides a concrete example of the trade-off between
contract adherence and functional correctness. The figures 7–9 compare the ground-truth implemen-
tation (golden label), the code generated from a contract natural language prompt (CS), and the code
generated from a prompt augmented with contract-violating test cases (CVTs).

Figure 8 displays the code generated from the NL-only prompt, which describes both functional re-
quirements and contractual constraints. It fails to translate the natural language contract descriptions
into the necessary assertions, it successfully generates code snippets that passes all standard func-
tionality tests. This outcome suggests the model prioritized achieving functional correctness—even
developing a logic for handling multiples of 12—at the complete expense of implementing the re-
quired robustness checks, leaving the code snippets vulnerable to invalid inputs.

In contrast, Figure 9 shows the code generated when the prompt was augmented with CVTCs. Here,
the model successfully implements the necessary assertions, demonstrating strong contract adher-
ence. However, this heightened focus on contract enforcement directly compromises its functional
correctness. The model generates a flawed conditional logic that explicitly excludes common multi-
ples of 3 and 4. For an index like 0 or 12, the code incorrectly defaults to the else block, failing to
square the number as required by the specification in the Golden Label (Figure 7).

This example clearly illustrates the trade-off. When compelled to handle the dual objectives of im-
plementing contracts and functional logic, the model’s reasoning capacity is divided. The added
complexity of enforcing contracts leads to a critical oversight in the core functional logic, result-
ing in code snippet that is robust but functionally incorrect. This underscores the inherent tension
between these two competing objectives in LLM-based code generation.
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HumanEval/142

def sum squares(lst):
assert type(lst) == list, "invalid inputs" # $ CONTRACT $
assert all(type(x) == int for x in lst), "invalid inputs" # $

CONTRACT $

ans = 0
for i, num in enumerate(lst):

if i % 3 == 0:
ans += num ** 2

elif i % 4 == 0:
ans += num ** 3

else:
ans += num

return ans

Figure 7: The ground-truth implementation, correct in both functionality and contracts.

HumanEval/142

def sum squares(lst):
total = 0
for i in range(len(lst)):

num = lst[i]
if i % 3 == 0 and i % 4 == 0:

total += num ** 2
elif i % 3 == 0:

total += num ** 2
elif i % 4 == 0:

total += num ** 3
else:

total += num
return total

Figure 8: A functionally correct implementation that fails to enforce contracts.

D FORMALIZING CONTRACTS INTO SMT-LIB: TEMPLATE AND A CASE
STUDY

This section details the structure of the SMT-LIB template used by our PACT framework. SMT-
LIB is a standardized, text-based language used to interface with SMT solvers. It provides a formal
syntax for declaring variables, defining functions, and asserting logical formulas, allowing complex
problems to be translated into a format that a solver can systematically analyze for satisfiability. Our
framework leverages this language to translate nuanced, natural language contracts into a formal
representation that can be reasoned about with logical precision.

Figure 10 shows the base template we designed for this purpose. It is composed of several key
components, each serving a distinct role in the test generation process. The placeholders within this
template are populated as follows:

• CANONICAL PYTHON-LIKE ADT: This fixed block defines a universal data structure
for representing common Python types. This allows the SMT solver to reason about various
input types in a standardized way.
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HumanEval/142

def sum squares(lst):
assert isinstance(lst, list), "AssertionError: invalid input"
for elem in lst:

assert isinstance(elem, int), "AssertionError: invalid input"

total = 0
for index, num in enumerate(lst):

if index % 3 == 0 and index % 4 != 0:
total += num ** 2

elif index % 4 == 0 and index % 3 != 0:
total += num ** 3

else:
total += num

return total

Figure 9: A robust implementation that enforces contracts but fails on functionality.

• HELPER FUNCTIONS: This section is populated with custom functions needed to define
the contracts for a specific task. For example, a function to check if a string contains only
digits would be defined here.

• INPUT: The input variables for the function under test are declared here.
• BASIC STRUCTURE: This section defines fundamental structural constraints on the in-

puts, such as ensuring a variable is a list composed of integer values.
• CONTRACT DEFS: The specific logical rules of each contract are translated into formal

predicates in this section.
• COMBINATION: This is the core logic for generating a test case. It contains assertions

stating which contracts must be satisfied and which must be violated. The SMT solver then
attempts to find a concrete model that satisfies this exact combination of constraints.

Figure 12 shows the ground-truth Python implementation for the HumanEval/11 task, which re-
quires a function that takes two binary strings of equal length. The SMT-LIB formalization of these
requirements is shown in Figure 11. The three assert statements in the Python code directly corre-
spond to the three formal contracts defined in SMT-LIB:

• C0 verifies that both inputs are strings, corresponding to the assertion assert
isinstance(a, str) and isinstance(b, str).

• C1 ensures their lengths are equal, corresponding to assert len(a) == len(b).
• C2 checks that they are valid binary strings using a custom isBinaryString

helper function, corresponding to assert set(a).issubset("0", "1") and
set(b).issubset("0", "1").

The COMBINATION block determines the goal of the test case generation. By choosing to as-
sert either the contract itself, such as (assert (C0)), or its negation, such as (assert (not
C0)), for each rule, this block can instruct the SMT solver to find a test case for any desired com-
bination of contract satisfactions and violations. The specific instance in the figure 11, for example,
asserts the negation of all three contracts to generate a test case that violates every precondition
simultaneously.
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The SMT-LIB template

ADT BASE TEMPLATE = """
(set-logic ALL)

; ==== CANONICAL PYTHON-LIKE ADT (DO NOT MODIFY) ====
(declare-datatypes ((Value 0)) (
((IntVal (ival Int))
(FloatVal (fval Real))
(StrVal (sval String))
(BoolVal (bval Bool))
(Nil)
(Cons (head Value) (tail Value)))

))

; === ADD HELPER FUNCTIONS HERE ===
<<HELPER FUNCTIONS>>

; === Inputs ===
<<INPUT>>

; === BASIC STRUCTURE ===
<<BASIC STRUCTURE>>

; === Contract predicates ===
<<CONTRACT DEFS>>

; === COMBINATION ===
<<COMBINATION>>

(check-sat)
(get-model)
"""

Figure 10: The SMT-LIB template used for formalizing contracts.
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The SMT-LIB template

ADT BASE TEMPLATE = """
(set-logic ALL)

; ==== CANONICAL PYTHON-LIKE ADT (DO NOT MODIFY) ====
(declare-datatypes ((Value 0)) (
((IntVal (ival Int))
(FloatVal (fval Real))
(StrVal (sval String))
(BoolVal (bval Bool))
(Nil)
(Cons (head Value) (tail Value)))

))

; === ADD HELPER FUNCTIONS HERE ===
(define-fun Safe Sval ((x Value)) String
(ite (is-StrVal x) (sval x) ""))

(define-fun isBinaryString ((s Value)) Bool
(and (is-StrVal s)

(str.in.re (Safe Sval s) (re.* (re.union (str.to.re "0") (str.
to.re "1"))))))

; === Inputs ===
(declare-const a Value)
(declare-const b Value)

; === BASIC STRUCTURE ===

; === Contract predicates ===
(define-fun C0 () Bool (and (is-StrVal a) (is-StrVal b)))
(define-fun C1 () Bool (= (str.len (Safe Sval a)) (str.len (Safe Sval

b))))
(define-fun C2 () Bool (and (isBinaryString a) (isBinaryString b)))

; === COMBINATION ===
(assert (not C0)
(assert (not C1)
(assert (not C2)

(check-sat)
(get-model)
"""

Figure 11: An example of the SMT-LIB template populated for HumanEval/11
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HumanEval/11

from typing import List

def string xor(a: str, b: str) -> str:

assert isinstance(a, str) and isinstance(b, str), "invalid inputs"
# $ CONTRACT $

assert len(a) == len(b), "invalid inputs" # $ CONTRACT $
assert set(a).issubset({"0", "1"}) and set(b).issubset({"0", "1"})

, "invalid inputs" # $ CONTRACT $

return "".join(str(int(a[i]) ˆ int(b[i])) for i in range(len(a)))

Figure 12: The ground-truth implementation in HumanEval/11
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