
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DO LARGE LANGUAGE MODELS RESPECT CON-
TRACTS? EVALUATING AND ENFORCING CONTRACT-
ADHERENCE IN CODE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Prevailing code generation benchmarks, such as HumanEval+ and MBPP+, pri-
marily evaluate large language models (LLMs) with pass@k on functional correct-
ness using well-formed inputs. However, they ignore a crucial aspect of real-world
software: adherence to contracts—the preconditions and validity constraints that
dictate how ill-formed inputs must be rejected. This critical oversight means that
existing benchmarks fail to measure, and models consequently fail to generate,
truly robust and reliable code snippets. We introduce PACT, a program assessment
and contract-adherence evaluation framework, to bridge this gap. PACT is the first
framework designed to systematically evaluate and enhance contract-adherence
in LLM-generated code snippets alongside functional correctness. PACT’s contri-
butions are threefold: First, it provides a comprehensive test-suite corpus focused
on contract violations, extending HumanEval+ and MBPP+. Second, it enables a
systematic analysis of code generation under varied prompting conditions. This
analysis demonstrates that augmenting prompts with contract-violating test cases
significantly enhance a model’s ability to respect contracts compared to using con-
tract description alone. Finally, it introduces novel metrics to rigorously quantify
contract adherence in both test generation and code generation. By revealing criti-
cal errors that conventional benchmarks overlook, PACT provides the rigorous and
interpretable metrics to evaluate the robustness of LLM-generated code snippets
in both functionality and contract-adherence.

1 INTRODUCTION

Test case generation is particularly crucial since it validates correctness, reveals corner cases, and
supports automated evaluation. Traditional approaches such as random testing (Cha et al., 2015),
symbolic execution (King, 1976; Yoon & Cha, 2024; Cadar et al., 2008), and search-based software
testing (Harman & McMinn, 2010; Formica et al., 2024; Burnim & Sen, 2008) have laid the ground-
work. Then, various large language model (LLM)-driven methods have recently been investigated,
including zero-shot prompting (Chen et al., 2021a; Jaremko et al., 2025), coverage-guided test gen-
eration (Ryan et al., 2024; Lemieux et al., 2023; Sapozhnikov et al., 2024), mutation-informed gen-
eration (Dakhel et al., 2024; Cajica et al., 2021), slicing-based decomposition (Wang et al., 2024),
and satisfiability modulo theories (SMT) solver-based test generation (Peleska et al., 2011; Cadar
et al., 2008).

Yet current test case generation approaches (Srivastava & Payer, 2021; Yoon & Cha, 2024) and the
resulting benchmarks (Chen et al., 2021a) still judge the quality of both test cases and programs
exclusively through pass@k (Chen et al., 2021a). In practice, real-world software is governed by
contracts (Meyer, 1992)—the preconditions and input validation rules that restrict valid inputs and
define expected behavior for ill-formed ones. As a black-box metric, pass@k measures correct-
ness only via input-output correspondence on well-formed inputs, which are test cases that have
already been filtered to comply with these contracts. Consequently, evaluating code snippets solely
by well-formed input-output correspondence without considering contracts leads to an inaccurate
assessment, as it overlooks whether the generated code snippets enforce pre-conditions and input
validation checks explicitly stated or implicitly included in the specification (Liu et al., 2023).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Typically, most coding competitions such as International Collegiate Programming Contest 1 (ICPC)
or International Olympiad in Informatics 2 provide specifications that state the constraints to
consider when implementing the function for the task. This description includes not only the
functional goal—such as computing a sum or sorting a list—but also a set of explicit con-
tracts, such as input bounds, type restrictions, and required error-handling behaviors. These
contracts often phrased in natural language or implied via examples, act as contracts that de-
scribe the valid input space and define the expected behavior under edge or invalid con-
ditions. Figure 1 provides a clear illustration, showing how a simple functional task de-
scription contains hidden contracts that are often overlooked. For instance, a function de-
signed to find duplicate values in a list of numbers, has_dup(nums), has an implicit con-
tract that the input must be a list containing only integers. A correct implementation should
therefore include specific assertions—such as assert isinstance(nums, list) and
assert all(isinstance(x, int) for x in nums)—to verify the input’s type before
proceeding with the functional logic. If such checks are omitted, the program may appear correct
on well-formed inputs like [1, 2, 3]. However, it will fail to reject ill-formed inputs like 'a'
or ['2', 2], thus failing to reflect the intended specification. Ignoring these contracts in code
generation poses serious reliability and safety issues. For instance, a module might silently accept
an invalid input, such as a negative number where a positive one is expected. By doing so, it can
propagate a hidden fault by passing a nonsensical result to another part of the system. This chain
reaction often leads to logical errors that are extremely difficult to trace back to their original source.

Figure 1: PACT’s contract-violating test uncovers
an implicit constraint that conventional functional
tests miss, proving the need for contract-aware
evaluation.

Therefore, contracts are not optional safeguards
but integral parts of the specification that de-
fine the boundary of valid behavior. Without
them, even code snippets that appear func-
tionally correct cannot be trusted to operate
safely and reliably. Empirical studies reveal that
LLM-generated code snippets frequently over-
look these contracts and often fails to guard
against ill-formed inputs that violate them. As
a result, a generated code may incorrectly pass
tests that it should fail, creating the illusion of
correctness under default test cases. This shows
that many seemingly correct solutions in fact
ignore contractual requirements, underscoring
that contract adherence is a fundamental neces-
sity for trustworthy code generation.

We introduce PACT, a program assessment
and contract-adherence evaluation framework,
to bridge this gap. The main focus of PACT
is twofold: first, to construct high-quality
contract-violating test cases, and second, to
use them for a systematic analysis of contract-
aware code generation. For test case genera-
tion, our approach leverages an SMT solver to
systematically explore diverse combinations of
contract violations, moving beyond simplistic,
single-violation tests.

For example, for a function with the contracts
assert isinstance(r, float), assert r > 0, and assert h > 0, our method can
generate an input such as r = -2.5 and h = 5. This test case is guaranteed to satisfy the type
contract for r and the positivity contract for h, while precisely violating only the positivity contract
for r. By pruning logically inconsistent combinations in advance, the solver ensures that only feasi-
ble and semantically valid test cases are generated. For our analysis of code generation, we then use

1ICPC website: https://icpc.global/
2IOI website: https://ioinformatics.org/

2

https://icpc.global/
https://ioinformatics.org/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

these precisely targeted test cases to evaluate how different prompting strategies guide an LLM to
produce implementations that properly enforce the intended contracts.

In summary, current benchmarks overlook contract violations, thereby inflating the perception
of correctness. Addressing this limitation, we propose the PACT framework. PACT extends Hu-
manEval+ and MBPP+ to generate test cases focused on contract violations and introduces novel
metrics to quantify contract adherence.

2 RELATED WORK

2.1 AUTOMATED TEST AND CODE GENERATION

Automated test and code generation have deep roots in traditional software engineering. Early
test case generation was typically categorized into black-box methods like random and mutational
fuzzing (Godefroid et al., 2005; Claessen & Hughes, 2000), white-box techniques such as symbolic
execution (He et al., 2021; Cha et al., 2022; Godefroid et al., 2008), and grey-box approaches like
coverage-guided fuzzing (Choi et al., 2019; Stephens et al., 2016; She et al., 2024; Qian et al.,
2022). Similarly, early code generation relied on methods like probabilistic grammar-based frame-
works (Bielik et al., 2016) and specialized language models (Feng et al., 2020). The advent of the
Transformer architecture marked a paradigm shift, establishing LLMs as the dominant approach in
both fields (Chen et al., 2021b). The development of modern Code LLMs now typically involves
pre-training on code corpora, followed by instruction tuning (Ouyang et al., 2022) and refinement
through more advanced techniques like reinforcement learning with execution feedback (Gehring
et al., 2025). However, despite these advancements, the primary goal has remained the enhancement
of functional correctness, typically measured by pass@k on benchmarks with well-formed inputs.

2.2 CONTRACTS

The Design by Contract (DbC) paradigm (Meyer, 1992) argues that software reliability depends on
explicitly stated preconditions, postconditions, and invariants, with run-time assertions as the en-
forcement mechanism. However, mainstream automated testing and existing test-generation bench-
marks (Wang et al., 2025; Jain et al., 2025) often overlook latent defects from missing contract
checks. While related work on failure-inducing test cases (Zhang et al., 2024; Zhong et al., 2025)
is effective at causing general exceptions, this is not the same as verifying adherence to the pre-
cise semantics of a given contract. For instance, for a function that requires a list of positive num-
bers, a generic failure-inducing test might use None to cause a TypeError, but this does not
verify the specific rule that all numbers must be positive. In contrast, a contract-aware test like
[10, 20, -5] is designed to be caught precisely by an assertion checking for positive values.
This distinction highlights the need for systematic methods that can precisely target formal contract
specifications rather than just triggering arbitrary errors.

2.3 SMT SOLVER

SMT (Satisfiability Modulo Theories) solvers are powerful engines for determining the satisfiabil-
ity of complex logical formulas across various theories, such as arithmetic and strings (Barrett &
Tinelli, 2018). They typically interface using SMT-LIB, a standardized formal language, with Z3
being a widely adopted implementation in automated testing (de Moura & Bjørner, 2008). Tradi-
tionally, techniques like symbolic execution have employed SMT solvers to find inputs that satisfy
path constraints, focusing on functional coverage over well-formed inputs. In this paradigm, con-
straints are used as admission checks to filter out invalid data rather than as explicit targets for
evaluation. In contrast, our framework leverages SMT solvers to systematically generate ill-formed
inputs that precisely violate formalized contracts, allowing us to rigorously test for robustness. A
detailed example of how we formulate contracts is provided in Appendix D.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 THE NEED FOR CONTRACT-AWARE EVALUATION

3.1 WHY CONTRACTS MATTER: BLIND SPOTS IN CURRENT BENCHMARKS

Recent studies on code and test case generation (Korraprolu et al., 2025; Sung et al., 2025; Li
et al., 2022) have dominantly relied on pass@k to evaluate functional correctness. While effective,
these metrics, along with approaches that target failure-inducing inputs (Peng et al., 2018), share a
common limitation: they primarily operate within the bounds of a program’s legal input space Dyck
et al. (2023). This practice has led to a critical blind spot in popular benchmarks such as HumanEval+
and MBPP+. By design, these benchmarks explicitly filter out and discard any test case that violates
a program’s pre-conditions (Austin et al., 2021). Consequently, the evaluation process certifies that
a program behaves correctly on well-formed inputs, but it fails entirely to assess the program’s
robustness against ill-formed ones. This results in an incomplete and often inflated assessment of
code quality, praising solutions that may be superficially correct but are fundamentally fragile.

This is where the software contracts become essential. As explained in Section 1, contracts are
the rules that define the boundary of valid behavior. They are not optional safeguards but a core
component of trustworthy software that specifies how a program must identify and reject invalid
data. By ignoring contract adherence, existing benchmarks overlook a crucial dimension of software
reliability.

3.2 CONTRACT-BASED TEST PARADIGM

Merely enlarging a single pool of valid inputs cannot reveal whether a model understands the bound-
ary of the specification it needs to satisfy. The main focus, therefore, lies in constructing contract-
violating test cases, which systematically explore the extent to which models enforce contract rules.
A contract-violating test case is an input that violates one or more predicates from a set of contracts
while satisfying the remaining specification. The reference implementation is augmented with run-
time assertions for every predicate in the contract set, and a candidate program passes such a test
only when it raises an error consistent with this augmented reference. Introducing contract-violating
inputs uncovers false negatives that purely functional tests overlook and provides a rigorous measure
of whether a program properly enforces contractual rules.

3.3 TASK SETUP

Each benchmark task consists of a natural language description, a set of contracts, and a functional
implementation. We use HumanEval+ and MBPP+, where contract predicates are stroed as assertion
literals outside the prompt and reference code. Our task concerns contract-violating test generation
and contract-aware code generation. For test generation, we automatically construct a compact set
of contract-violating test cases that target specific contract rules and remain feasible with respect
to the remaining rules for each benchmark task. These tests are used for evaluating whether LLM-
generated code appropriately follows contracts. For contract-aware code generation, we generate
code under two prompt conditions, where the first condition is a contract specification (CS) prompt,
which includes the functional description and a natural language paraphrase of the contracts. The
second condition is an example-augmented specification (EAS) prompt, which is augmented with
the contract-violating test cases.

4 METHODOLOGY

We propose PACT, a program assessment and contract-adherence evaluation framework designed to
systematically evaluate and enhance the ability of LLMs to generate contract-compliant code. This
framework consists of two main stages. First, we generate contract-violating test cases to rigorously
assess whether LLM-generated code snippets enforces both functional specifications and explicit
contracts. Second is the systematic analysis of code generation, where we use these test cases under
different prompting conditions to evaluate a model’s contract awareness in detail. Unlike prior ap-
proaches that rely solely on functionality-based evaluation, PACT extends the evaluation paradigm
with contract-violation tests, enabling a more precise and reliable analysis of contract adherence.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: Running example of PACT for code generation.

4.1 CONTRACT-VIOLATING TEST-CASE GENERATION

Direct LLM-based generation is inadequate for contract-aware test case construction. It must con-
sider all subsets of the contract set when producing violating inputs. If a task has n contracts, the
number of non empty violation combinations is 2n − 1. Direct prompting often misses required
combinations and yields contradictory inputs that violate unintended contracts and fails to ensure
feasibility under the specification. LLMs also lack a built in mechanism to verify that exactly the
targeted contracts are violated while all others hold. We design an SMT-based approach to make
these checks accurate and efficient. Our generation procedure is a two-step pipeline for contract-
aware test case generation. First, an inference model translates natural language contracts into an
Algebraic Data Type (ADT) program. This ADT format is the critical component: it provides a
rigid, formal schema for the complex and often nested constraints found in contracts. This ensures
that the subsequently generated rules for an SMT solver are syntactically valid and semantically
precise. Second, given the ADT, the SMT solver constructs contract violation test cases (CVTs) by
breaking one or more specified contracts while ensuring that all remaining contracts are satisfied.
The solver validates satisfiability for each candidate combination and extracts concrete models—
specific assignments of values that satisfy the constraints— to instantiate inputs for every valid case.
We provide a running example of this procedure in Appendix D.

4.2 CONTRACT METRICS FOR TEST CASE

Unlike standard test cases for functional correctness, test cases for contracts should be the nega-
tive samples, violating the contracts and triggering the corresponding assertions. As the concept of
contract-violating test cases is different from the standard, we design metrics to analyze whether the
generated test cases appropriately correspond to input contracts.

Let A = {a1, . . . , an} be the set of all contract assertions and T = {t1, . . . , tm} be the generated
test cases. Ft ⊆ A is the set of violated assertions when executing a test case t ∈ T . Finally,
Tneg ⊆ T represents the set of test cases that successfully violated at least one contract.

Assert Violation Coverage (AVC) AVC quantifies the coverage of assert statements that are suc-
cessfully violated by all the test cases.

AV C =
|{ai | ∃t ∈ Tneg : ai ∈ Ft}|

n
.

The value of 1.0 for AVC ensures that all contract assertions are captured by the test cases. Lower
values expose the unexplored regions of the contracts from the test cases.

Target Specificity (TS) TS evaluates the precision of each test case by measuring how accurately
it violates its intended set of target contracts. To formalize this, we first define V ⊆ A as the set
of contracts that a given test case t ∈ Tneg is intended to violate. We then measure the alignment
between this intended set Vt and the actually violated set Ft using the Jaccard Index. The final TS

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

score is the average of these individual precision scores across all negative test cases:

TS =
1

|Tneg|
∑

t∈Tneg

|Ft ∩ Vt|
|Ft ∪ Vt|

.

A score of 1.0 indicates perfect precision, where every test case violates exactly the set of contracts it
was designed to. Lower scores reveal a discrepancy, indicating that test cases either failed to trigger
their intended violations or caused unintended, collateral violations.

4.3 CONTRACT-AWARE CODE GENERATION

This section details our methodology for systematically evaluating and enhancing the ability of
LLMs to generate code snippets that robustly enforces contracts. To achieve a fine-grained un-
derstanding of a model’s contract awareness, we investigate its performance under two distinct
prompting strategies. Frist, we establish a baseline condition, Contract Specification (CS). For
this strategy, we use a powerful Commercial LLM to naturally integrate the contract rules from
the HumanEval+ and MBPP+ datasets into the main text of the prompt. This creates a comprehen-
sive prompt that describes both the functional goal and its contractual constraints in natural lan-
guage. Second, we introduce an enhanced condition, which we term Example-Augmented Speci-
fication (EAS). This strategy builds upon the CS prompt by augmenting it with a single, precisely
targeted contract- violating test cases for each described contract. This provides a concrete example
of what constitutes a violation, intended to guide the model toward more robust code generation.

To measure the impact of these prompting strategies, we assess the generated code snippets using a
comprehensive suite of metrics for both functional correctness and contract adherence. Functional
correctness is measured using the standard pass@k metric over a set of valid test cases. Contract
adherence is evaluated from two perspectives: runtime enforcement using test cases and static align-
ment of the generated code snippets with the ground-truth contracts, as detailed in Section 4.4.

4.4 CONTRACT METRIC FOR CODE GENERATION

For the evaluation of the generated code snippets, we employ pass@k to measure functional correct-
ness on valid inputs and use AVC to measure the correctness of the generated contract assertions.
We also design two additional metrics to more precisely evaluate contract-aware code generation.

Let A = {a1, . . . , an} be the set of ground-truth contract assertions, and let Â = {â1, . . . , âm}
be the set of assertions extracted from the LLM-generated code. Let M ⊆ A × Â be the set of
pairs (ai, âj) where the ground-truth contract ai and the generated assertion âj are determined to be
semantically equivalent.

Assertion Alignment Recall (AAR) AAR measures the model’s ability to implement all required
contracts without omission. It is the proportion of ground-truth contracts that are successfully cov-
ered by at least one assertion in the generated code, functioning as a recall metric.

AAR =
|{ai ∈ A | ∃âj ∈ Â : (ai, âj) ∈ M}|

n
.

A high AAR score indicates that an output code ensures that all required contract specifications are
generated.

Assertion Alignment Precision (AAP) AAP measures the accuracy of the generated assertions,
penalizing irrelevant or hallucinated ones. It is the proportion of generated assertions that correspond
to a valid ground-truth contract, functioning as a precision metric.

AAP =
|{âj ∈ Â | ∃ai ∈ A : (ai, âj) ∈ M}|

m
.

A high AAP score indicates that the code does not contain assertions of unnecessary or incorrect
checks.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 EXPERIMENTAL SETTINGS

5.1 DATASETS

Our study utilizes HUMANEVAL+ and MBPP+ benchmarks (Liu et al., 2023), which are enriched
with assertion-level contracts. However, these benchmarks have a critical limitation for evaluat-
ing code robustness: the contract specifications are neither included in the model prompts, nor are
contract-violating inputs included in the official test suites. This evaluation setup exclusively tests
for functional correctness on well-formed inputs, leading to an inflated perception of code qual-
ity. We construct a supplementary dataset containing contract-violating test cases, as described in
Section 4.1.

5.2 CANDIDATE MODELS

We utilize o4-mini as our primary test case generator. For our code generation experiments, we
evaluate a set of open-source models including gemma-3-12B-it (gemma-3), Deepseek-R1-Distill-
Qwen-14B (DeepSeek-R1), Qwen3-14B (Qwen-3), and Phi-4-reasoning-plus (Phi-4-plus).

6 EMPIRICAL STUDIES

Our empirical study is structured over three research questions (RQs) designed to evaluate the PACT
framework from multiple perspectives. The evaluation is conducted on HumanEval+ and MBPP+.
We begin by assessing the quality and precision of the CVTs generated by PACT (RQ1). Next,
we investigate whether providing these concrete test cases is more effective for eliciting contract-
awareness than using abstract natural language descriptions alone (RQ2). Finally, we analyze the
resulting trade-off between the enforced contract adherence and the functional correctness of the
generated code snippets (RQ3).

Table 1: Evaluation results of the test case generation on HumanEval+ and MBPP+.

Benchmark Method AVC (↑) TS (↑) AVG (↑)

HumanEval+ o4-mini 97.14% 75.60% 86.37%
o4-mini + SMT Solver 95.53% 85.81% 90.67%

MBPP+ o4-mini 94.67% 69.11% 81.89%
o4-mini + SMT Solver 93.50% 84.54% 89.02%

6.1 RQ1: HOW EFFECTIVE IS PACT IN GENERATING HIGH-QUALITY CONTRACT-
VIOLATING TEST CASES?

Our first research question investigates the effectiveness of our proposed framework, PACT, in gen-
erating high-quality CVTs. A naive baseline approach, which we refer to as o4-mini in Table 1,
uses an LLM o4-mini for direct test case generation from given contracts. This method is of-
ten inadequate, as it disregards dependencies among contracts and produces logically inconsistent
violations, making it difficult to precisely verify individual contract predicates.

In contrast, PACT (o4-mini+ SMT Solver) employs a more robust two-stage approach. First an
LLM converts contracts into rules for an SMT solver. Subsequently, an SMT solver uses these rules
to generate test cases. This process guarantees the generation of logically sound test cases that are
precisely targeted to violate a specific subset of contracts while adhering to the rest.

The empirical results in Table 1 validate the superiority of PACT. While both methods achieve
high AVC scores, PACT significantly outperforms the direct generation in TS, achieving over 10%p
increases on both HumanEval+ and MBPP+. This demonstrates that our two-stage approach suc-
cessfully give test cases precisely for intended contracts. The baseline’s slightly higher AVC is an
expected outcome, as direct generation often triggers a wide range of assertion errors indiscrimi-
nately, artificially inflating coverage. PACT, on the other hand, focuses on valid, targeted violations.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

While PACT generates valid rules, providing a precise test for the input contracts, there are still
errors. A case-specific analysis of minor errors that occur even with well-formed rules is detailed in
Appendix A.

Table 2: Evaluation results of contract adherence in code generation on HumanEval+.

Model Mode pass@1 (↑) AVC (↑) AAR (↑) AAP (↑) AVG (↑)

gemma-3 CS 84.41% 24.85% 11.41% 14.04% 32.79%
EAS 82.94% 91.02% 28.07% 27.77% 57.45%

DeepSeek CS 73.78% 44.12% 15.65% 16.97% 37.63%
EAS 71.77% 79.29% 27.62% 28.01% 51.67%

Qwen3 CS 78.92% 28.04% 13.17% 22.55% 35.67%
EAS 77.83% 87.81% 31.53% 36.09% 58.31%

Phi-4-plus CS 72.23% 52.91% 18.78% 21.09% 41.25%
EAS 67.08% 69.50% 21.33% 20.06% 44.49%

Table 3: Evaluation results of contract adherence in code generation on MBPP+.

Model Mode pass@1 (↑) AVC (↑) AAR (↑) AAP (↑) AVG (↑)

gemma-3 CS 78.56% 57.99% 17.50% 17.93% 41.49%
EAS 78.60% 95.57% 32.29% 31.82% 59.57%

DeepSeek CS 62.53% 64.20% 17.59% 17.57% 40.47%
EAS 60.15% 86.70% 28.23% 27.94% 45.47%

Qwen3 CS 72.41% 70.86% 21.09% 22.99% 46.84%
EAS 72.63% 94.85% 31.54% 32.30% 57.83%

Phi-4-plus CS 64.89% 67.33% 24.26% 24.65% 45.28%
EAS 63.76% 74.88% 29.20% 28.95% 49.20%

6.2 RQ2: ARE CONCRETE TEST CASES MORE EFFECTIVE THAN ABSTRACT DESCRIPTIONS
FOR ELICITING CONTRACT-AWARENESS?

We compared two prompting methods across various models in Tables 2 and 3. CS, our baseline,
provides only an abstract natural language description of the contracts. In contrast, EAS augments
the CVTs, generated from Section 4.1, to the CS prompt.

The results demonstrate that for all of our base models, EAS is a more powerful method for eliciting
contract-aware code generation. EAS achieves 33.7%p, 11.3%p, and 9.4%p improvements for AVC,
AAR, and AAP, respectively, over CS. For models such as Qwen3, DeepSeek-R1, and Phi-4-plus,
switching from CS to EAS leads to a dramatic improvement across all contract adherence metrics.
This indicates that concrete examples of CVTs provide a clear and unambiguous signal that forces
the model to move beyond purely functional logic. The increase in AAR and AAP indicates that the
models are correctly generating test cases required for assertion checks, while the relatively huge
improvements in AVC show that the resulting codes are more robust against a wider range of invalid
inputs.

Concrete examples of contract violations provide a clear, unambiguous signal that forces the model
to move beyond purely functional logic and implement the explicit enforcement of contracts—the
predefined agreements on how ill-formed inputs must be rejected. For concrete examples of the code
snippets and their corresponding LLM-generated test cases, please refer to Appendix B. However,
this heightened focus on contract enforcement introduces a notable trade-off, as the model may
generate more complex code that impacts its performance on purely functional correctness metrics.
This trade-off is analyzed in further detail in the following section RQ3.

6.3 RQ3: HOW DOES ENFORCING CONTRACT ADHERENCE IMPACT THE FUNCTIONAL
CORRECTNESS OF GENERATED CODE?

While the RQ2 established that augmenting prompts with CVTs significantly enhances a model’s
contract adherence, this section investigates the resulting trade-off with respect to its functional

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

correctness. Our analysis reveals that a heightened focus on contract enforcement often comes at
the cost of a measurable decline in performance on standard functional correctness benchmarks.
This trade-off can be attributed to a shift in the model’s optimization focus. When provided with
only a functional description, the LLM’s sole objective is to produce code snippets that passes
functionality-focused tests. However, when the prompt is augmented with CVTs, the model must
simultaneously satisfy two competing objectives: generating functionally correct logic and enforc-
ing the specified contractual preconditions. This dual objective increases the complexity of the code
generation task. The model is compelled to allocate part of its reasoning capacity to interpreting and
implementing the contract rules, which can lead to subtle errors or oversights in the core functional
logic. A concrete example of this is presented in Appendix C. Consequently, while the resulting
code snippets is more robust and secure against invalid inputs, it may exhibit a lower pass@1 rate
on test suites composed entirely of valid, well-formed inputs.

In conclusion, our findings reveal an inherent tension between contract adherence and functional
correctness in LLM-based code generation. The pursuit of robustness through contract enforcement
comes at a tangible cost to functionality. This trade-off highlights the critical need for advanced
training paradigms—such as the reinforcement learning with multi-objective rewards proposed by
PACT—capable of optimizing for both objectives simultaneously.

7 CONCLUSION

We introduce PACT, the first framework to redefine code and test case correctness by evaluat-
ing adherence to task specifications through both functionality and contract-based behavior. While
prior benchmarks assess only pass@k on well-formed inputs, PACT introduces a comprehensive
paradigm with dual test suites—one for functionality and one for contract violations—along with
specific metrics to analyze contract awareness and uncover latent defects, enabling a more prin-
cipled evaluation of code robustness. Our empirical evaluation demonstrates the effectiveness of
PACT across multiple dimensions. We first show that PACT’s SMT-solver-based test case genera-
tion method ensures more accurate CVTs than direct generation with over 10%p better performance.
Furthermore, our results reveal that augmenting prompts with these CVTs is a highly effective strat-
egy for generating robust and contract-aware code, achieving 18.13%p increase in contract-specific
metrics and 12.8%p in total average. Our empirical studies on various LLMs demonstrate the ef-
fectiveness of PACT, achieving approximately , but also uncovers a critical trade-off between this
enhanced contract adherence and a model’s performance on functional correctness. These findings
confirm that PACT provides a more complete and realistic assessment of an LLM’s contract-aware
code generation capabilities, moving beyond the limitations of existing benchmarks.

8 FUTURE WORK DIRECTIONS

While this work focuses on evaluating contract adherence, a natural next step is to actively improve
it through advanced training methodologies. A promising direction is to leverage the novel met-
rics introduced in our PACT framework as direct training signals. The novel metrics introduced in
our PACT framework, such as the runtime metric Assert Violation Coverage (AVC) and the static
metrics Assertion Alignment Recall (AAR) and Precision (AAP), are particularly well-suited for
this purpose and could be integrated into a multi-objective reward function for RL. This approach
could enable models to learn to navigate the trade-off between functional correctness and contract
adherence more effectively, optimizing for both objectives simultaneously.

REFERENCES

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Do-
han, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis
with large language models. CoRR, abs/2108.07732, 2021.

Clark W. Barrett and Cesare Tinelli. Satisfiability modulo theories. In Edmund M. Clarke,
Thomas A. Henzinger, Helmut Veith, and Roderick Bloem (eds.), Handbook of Model Check-
ing, pp. 305–343. Springer, 2018.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Pavol Bielik, Veselin Raychev, and Martin T. Vechev. PHOG: probabilistic model for code. In
Maria-Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, vol-
ume 48 of JMLR Workshop and Conference Proceedings, pp. 2933–2942. JMLR.org, 2016. URL
http://proceedings.mlr.press/v48/bielik16.html.

Jacob Burnim and Koushik Sen. Heuristics for scalable dynamic test generation. In 23rd IEEE/ACM
International Conference on Automated Software Engineering (ASE 2008), 15-19 September
2008, L’Aquila, Italy, pp. 443–446. IEEE Computer Society, 2008.

Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In Richard Draves and Robbert van Re-
nesse (eds.), 8th USENIX Symposium on Operating Systems Design and Implementation, OSDI
2008, December 8-10, 2008, San Diego, California, USA, Proceedings, pp. 209–224. USENIX
Association, 2008.

Román Jaramillo Cajica, Raul Ernesto Gonzalez-Torres, and Pedro Mejı́a-Alvarez. Automatic gen-
eration of test cases from formal specifications using mutation testing. In 18th International
Conference on Electrical Engineering, Computing Science and Automatic Control, CCE 2021,
Mexico City, Mexico, November 10-12, 2021, pp. 1–6. IEEE, 2021.

Sang Kil Cha, Maverick Woo, and David Brumley. Program-adaptive mutational fuzzing. In 2015
IEEE Symposium on Security and Privacy, SP, pp. 725–741, 2015.

Sooyoung Cha, Seongjoon Hong, Jiseong Bak, Jingyoung Kim, Junhee Lee, and Hakjoo Oh. En-
hancing dynamic symbolic execution by automatically learning search heuristics. IEEE Trans.
Software Eng., 48(9):3640–3663, 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. Preprint, arXiv:2107.03374, 2021a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021b. URL https://arxiv.org/abs/2107.03374.

Jaeseung Choi, Joonun Jang, Choongwoo Han, and Sang Kil Cha. Grey-box concolic testing on
binary code. In Joanne M. Atlee, Tevfik Bultan, and Jon Whittle (eds.), Proceedings of the 41st
International Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-
31, 2019, pp. 736–747. IEEE / ACM, 2019.

Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random testing of haskell
programs. In Martin Odersky and Philip Wadler (eds.), Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00), Montreal, Canada, September
18-21, 2000, pp. 268–279. ACM, 2000. doi: 10.1145/351240.351266. URL https://doi.
org/10.1145/351240.351266.

10

http://proceedings.mlr.press/v48/bielik16.html
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Arghavan Moradi Dakhel, Amin Nikanjam, Vahid Majdinasab, Foutse Khomh, and Michel C. Des-
marais. Effective test generation using pre-trained large language models and mutation testing.
Information & Software Technology, 171:107468, 2024.

Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof (eds.), Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-
April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer Science, pp. 337–340.
Springer, 2008. doi: 10.1007/978-3-540-78800-3\ 24. URL https://doi.org/10.1007/
978-3-540-78800-3_24.

Florian Dyck, Cedric Richter, and Heike Wehrheim. Robustness testing of software verifiers. In
Carla Ferreira and Tim A. C. Willemse (eds.), Software Engineering and Formal Methods - 21st
International Conference, SEFM 2023, Eindhoven, The Netherlands, November 6-10, 2023, Pro-
ceedings, volume 14323 of Lecture Notes in Computer Science, pp. 66–84. Springer, 2023.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model for programming and
natural languages, 2020.

Federico Formica, Tony Fan, and Claudio Menghi. Search-based software testing driven by auto-
matically generated and manually defined fitness functions. ACM Trans. Softw. Eng. Methodol.,
33(2):40:1–40:37, 2024.

Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Quentin Carbonneaux, Taco Cohen, and
Gabriel Synnaeve. Rlef: Grounding code llms in execution feedback with reinforcement learning,
2025.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed automated random testing. In
Vivek Sarkar and Mary W. Hall (eds.), Proceedings of the ACM SIGPLAN 2005 Conference on
Programming Language Design and Implementation, Chicago, IL, USA, June 12-15, 2005, pp.
213–223. ACM, 2005.

Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. Grammar-based whitebox fuzzing. In Rajiv
Gupta and Saman P. Amarasinghe (eds.), Proceedings of the ACM SIGPLAN 2008 Conference on
Programming Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008, pp.
206–215. ACM, 2008.

Mark Harman and Phil McMinn. A theoretical and empirical study of search-based testing: Local,
global, and hybrid search. IEEE Transactions on Software Engineering, 36(2):226–247, 2010.

Jingxuan He, Gishor Sivanrupan, Petar Tsankov, and Martin T. Vechev. Learning to explore paths
for symbolic execution. In Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi (eds.), CCS
’21: 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event,
Republic of Korea, November 15 - 19, 2021, pp. 2526–2540. ACM, 2021.

Kush Jain, Gabriel Synnaeve, and Baptiste Rozière. Testgeneval: A real world unit test genera-
tion and test completion benchmark. In The Thirteenth International Conference on Learning
Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025.

Julia Jaremko, Dagmar Gromann, and Michael Wiegand. Revisiting implicitly abusive language
detection: Evaluating llms in zero-shot and few-shot settings. In Owen Rambow, Leo Wanner,
Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert (eds.), Pro-
ceedings of the 31st International Conference on Computational Linguistics, COLING 2025, Abu
Dhabi, UAE, January 19-24, 2025, pp. 3879–3898. Association for Computational Linguistics,
2025.

James C. King. Symbolic execution and program testing. Communications of the ACM, 19(7):
385–394, 1976.

11

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Brahma Reddy Korraprolu, Pavitra Pinninti, and Y. Raghu Reddy. Test case generation for re-
quirements in natural language - an LLM comparison study. In Jitendra Chhabra, Lov Kumar,
Sridhar Chimalakonda, Paddy Krishan, and Sangharatna Godboley (eds.), Proceedings of the
18th Innovations in Software Engineering Conference, ISEC 2025, Kurukshetra, India, Febru-
ary 20-22, 2025, pp. 9:1–9:5. ACM, 2025. doi: 10.1145/3717383.3717389. URL https:
//doi.org/10.1145/3717383.3717389.

Caroline Lemieux, Jeevana Priya Inala, Shuvendu K. Lahiri, and Siddhartha Sen. Codamosa: Es-
caping coverage plateaus in test generation with pre-trained large language models. In 45th
IEEE/ACM International Conference on Software Engineering, ICSE 2023, Melbourne, Aus-
tralia, May 14-20, 2023, pp. 919–931. IEEE, 2023. doi: 10.1109/ICSE48619.2023.00085. URL
https://doi.org/10.1109/ICSE48619.2023.00085.

Yujia Li, David H. Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cy-
prien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Push-
meet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. CoRR, abs/2203.07814, 2022. doi: 10.48550/ARXIV.2203.07814.
URL https://doi.org/10.48550/arXiv.2203.07814.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. In Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS, 2023.

Bertrand Meyer. Applying ”design by contract”. Computer, 25(10):40–51, 1992.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
URL https://arxiv.org/abs/2203.02155.

Jan Peleska, Elena Vorobev, and Florian Lapschies. Automated test case generation with smt-solving
and abstract interpretation. In Mihaela Gheorghiu Bobaru, Klaus Havelund, Gerard J. Holzmann,
and Rajeev Joshi (eds.), NASA Formal Methods - Third International Symposium, NFM 2011,
Pasadena, CA, USA, April 18-20, 2011. Proceedings, volume 6617 of Lecture Notes in Computer
Science, pp. 298–312. Springer, 2011.

Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-fuzz: Fuzzing by program transformation. In
2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San
Francisco, California, USA, pp. 697–710. IEEE Computer Society, 2018.

Ruixiang Qian, Quanjun Zhang, Chunrong Fang, and Lihua Guo. Investigating coverage guided
fuzzing with mutation testing. In Internetware 2022: 13th Asia-Pacific Symposium on Internet-
ware, Hohhot, China, June 11 - 12, 2022, pp. 272–281. ACM, 2022.

Gabriel Ryan, Siddhartha Jain, Mingyue Shang, Shiqi Wang, Xiaofei Ma, Murali Krishna Ra-
manathan, and Baishakhi Ray. Code-aware prompting: A study of coverage-guided test gen-
eration in regression setting using LLM. Proceedings of the ACM on Software Engineering, 1
(FSE):951–971, 2024.

Arkadii Sapozhnikov, Mitchell Olsthoorn, Annibale Panichella, Vladimir Kovalenko, and Pouria
Derakhshanfar. Testspark: Intellij idea’s ultimate test generation companion. In Proceedings of
the 2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Pro-
ceedings, ICSE Companion 2024, Lisbon, Portugal, April 14-20, 2024, pp. 30–34. ACM, 2024.

Dongdong She, Adam Storek, Yuchong Xie, Seoyoung Kweon, Prashast Srivastava, and Suman
Jana. FOX: coverage-guided fuzzing as online stochastic control. In Bo Luo, Xiaojing Liao, Jun
Xu, Engin Kirda, and David Lie (eds.), Proceedings of the 2024 on ACM SIGSAC Conference
on Computer and Communications Security, CCS 2024, Salt Lake City, UT, USA, October 14-18,
2024, pp. 765–779. ACM, 2024.

12

https://doi.org/10.1145/3717383.3717389
https://doi.org/10.1145/3717383.3717389
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.48550/arXiv.2203.07814
https://arxiv.org/abs/2203.02155

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Prashast Srivastava and Mathias Payer. Gramatron: effective grammar-aware fuzzing. In Cristian
Cadar and Xiangyu Zhang (eds.), ISSTA ’21: 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis, Virtual Event, Denmark, July 11-17, 2021, pp. 244–256. ACM,
2021.

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang, Jacopo Corbetta,
Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna. Driller: Augmenting fuzzing
through selective symbolic execution. In 23rd Annual Network and Distributed System Secu-
rity Symposium, NDSS 2016, San Diego, California, USA, February 21-24, 2016. The Internet
Society, 2016.

Sicheol Sung, Aditi, Dogyu kim, Yo-Sub Han, and Sang-Ki Ko. Logicase: Effective test case genera-
tion from logical description in competitive programming. CoRR, abs/2505.15039, 2025. doi: 10.
48550/ARXIV.2505.15039. URL https://doi.org/10.48550/arXiv.2505.15039.

Wenhan Wang, Chenyuan Yang, Zhijie Wang, Yuheng Huang, Zhaoyang Chu, Da Song, Lingming
Zhang, An Ran Chen, and Lei Ma. TESTEVAL: benchmarking large language models for test
case generation. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Findings of the Association
for Computational Linguistics: NAACL 2025, Albuquerque, New Mexico, USA, April 29 - May 4,
2025, pp. 3547–3562. Association for Computational Linguistics, 2025.

Zejun Wang, Kaibo Liu, Ge Li, and Zhi Jin. HITS: high-coverage llm-based unit test generation via
method slicing. In Proceedings of the 39th IEEE/ACM International Conference on Automated
Software Engineering, ASE, pp. 1258–1268, 2024.

Jaehan Yoon and Sooyoung Cha. Featmaker: Automated feature engineering for search strategy of
symbolic execution. Proc. ACM Softw. Eng., 1(FSE):2447–2468, 2024. doi: 10.1145/3660815.
URL https://doi.org/10.1145/3660815.

Jiyang Zhang, Yu Liu, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric. exlong: Generating excep-
tional behavior tests with large language models, 2024.

Linghan Zhong, Samuel Yuan, Jiyang Zhang, Yu Liu, Pengyu Nie, Junyi Jessy Li, and Milos Glig-
oric. A tool for generating exceptional behavior tests with large language models. In Proceed-
ings of the 33rd ACM International Conference on the Foundations of Software Engineering,
FSE Companion ’25, pp. 1193–1197. ACM, June 2025. doi: 10.1145/3696630.3728608. URL
http://dx.doi.org/10.1145/3696630.3728608.

A CASE STUDY: LOGICAL CONTRADICTIONS IN DIRECT LLM TEST CASE
GENERATION

HumanEval In Figure 3 shown in the code snippet, this task includes three sequential contracts:
assert 0 checks if the input is a list, assert 1 verifies that all elements in the list are strings,
and assert 2 ensures that all strings consist only of digits. A critical dependency exists between
these contracts. Specifically, assert 2 can only be evaluated if assert 1 is satisfied, because the
isdigit() method is only valid for string types. A test case designed to violate assert 1 while
satisfying assert 0 and assert 2 would therefore be a logically contradictory combination, as
a non-string element would cause a TypeError before assert 2 could be checked. Despite this,
a direct LLM generation approach often produces such invalid combinations. For instance, when
tasked to generate test cases, the LLM produces inputs such as [123, "456"], ["789", [0]],
and ["456", false]. These examples fail to isolate a specific contract violation. This highlights
a fundamental weakness of the approach, as the LLM tends to generate simplistic contract-violation
test cases that fail to respect the logical relationships among contracts.

Mbpp In Figure 4 shown in the code snippet, this task includes four main contracts, which can be
grouped by their dependency. The initial contracts, assert 0 and assert 1, perform type check-
ing to verify that both inputs are of a numeric type, such as an integer or a floating-point number.
The subsequent contracts, assert 2 and assert 3, check numeric properties, such as ensuring
the numbers are positive or fall within a specific range. A critical dependency exists between these

13

https://doi.org/10.48550/arXiv.2505.15039
https://doi.org/10.1145/3660815
http://dx.doi.org/10.1145/3696630.3728608

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

groups of contracts. Specifically, the numeric property checks in assert 2 and assert 3 can
only be evaluated if the type checks in assert 0 and assert 1 are satisfied. For example, a
non-numeric type like a string or null cannot be evaluated for properties like being positive.
Therefore, creating a contract-violation test case that violates the initial type contracts (assert 0
or assert 1) while simultaneously satisfying the subsequent property contracts (assert 2 and
assert 3) is a logical impossibility. Despite this, a direct LLM generation approach often pro-
duces such logically flawed combinations. For instance, when tasked to generate test cases, the
LLM produces inputs such as ["abc", null], [null, "abc"], [[1], {"x":1}], and
[{"r":1}, [2]]. Crucially, while these examples successfully violate the initial type contracts,
they all inherently fail to satisfy assert 2 and assert 3, yet they are generated as if such a
combination were possible. This highlights a fundamental weakness of the approach, as the LLM
tends to generate simplistic contract-violation test cases that fail to respect the logical relationships
among contracts.

HumanEval/113

def odd count(lst):
assert type(lst) == list, "invalid inputs" # $ CONTRACT $
assert all(isinstance(s, str) for s in lst), "invalid inputs" # $

CONTRACT $
assert all(s.isdigit() for s in lst), "invalid inputs" # $

CONTRACT $

ans, template = [], "the number of odd elements in the string i of
the input."

for s in lst:
odd cnt = len(list(filter(lambda ch: int(ch) % 2 == 1, s)))
ans.append(template.replace("i", str(odd cnt)))

return ans

"""
Contract List:
assert 0: assert type(lst) == list, "invalid inputs
assert 1: assert all(isinstance(s, str) for s in lst), "invalid inputs
assert 2: assert all(s.isdigit() for s in lst), "invalid inputs
"""

Figure 3: Code and contracts for HumanEval.

B CASE STUDY: CONTRACT ENFORCEMENT UNDER DIFFERENT
PROMPTING CONDITIONS

We present a direct comparison of code snippets that the DeepSeek model generated for the
MBPP/11 task under two prompting conditions. This comparison illustrates why providing CVTCs
is more effective than relying on natural language descriptions alone.

Figure 5 shows the code snippets produced when the model received only the natural language
prompt. The prompt contains enough information to infer all necessary contracts. It specifies two
explicit contracts, namely that the first input must be a non empty string and that the second in-
put must be a string of length one.It also implies two type contracts that both inputs must be
strings. The generated code snippet correctly implements the explicit length based contracts with
assert len(s) > 0 and assert len(char) == 1. However, it omits the implicit type
checks and treats the word “string” as descriptive context rather than a strict precondition. As a
result, the function fails to enforce the contracts under non string inputs.

In contrast, Figure 6 displays the output when the prompt was augmented with concrete CVTCs such
as remove_Occ(2.0, 3.0). These test cases provide an unambiguous and executable signal
that non string inputs are invalid and must be rejected. The model generates a more robust implemen-

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

MBPP/731

import math
def lateralsurface cone(r,h):

assert isinstance(r, (int, float)), "invalid inputs" # $ CONTRACT $
assert isinstance(h, (int, float)), "invalid inputs" # $ CONTRACT $
assert r > 0, "invalid inputs" # $ CONTRACT $
assert h > 0, "invalid inputs" # $ CONTRACT $
l = math.sqrt(r * r + h * h)
return math.pi * r * l

"""
Contract List:
assert 0: assert isinstance(r, (int, float)), "invalid inputs
assert 1: assert isinstance(h, (int, float)), "invalid inputs
assert 2: assert r > 0, "invalid inputs
assert 3: assert h > 0, "invalid inputs
"""

Figure 4: Code and contracts for MBPP.

tation that now includes the crucial isinstance(s, str) and isinstance(char, str)
assertions.

This comparison shows that natural language descriptions may contain all required information, yet
their inherent ambiguity can prevent the model from adhering to the contract. CVTCs make these
implicit contracts explicit and enforceable. They compel the model to produce code snippet that is
more comprehensive and adheres to the intended contracts.

MBPP/11

"""
Write a python function that removes the first and last occurrence of

a given character from the string; the first input must be a non-
empty string and the second input must be a string of length one.

"""

def remove Occ(s, char):
assert len(s) > 0, "First input must be a non-empty string."
assert len(char) == 1, "Second input must be a string of length

one."

first = s.find(char)
last = s.rfind(char)

if first == -1:
return s

return s[:first] + s[first+1:last] + s[last+1:]

Figure 5: Code generated by DeepSeek with the contract specification (CS) prompt.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

MBPP/11

"""
Write a python function that removes the first and last occurrence of

a given character from the string; the first input must be a non-
empty string and the second input must be a string of length one.

Contract Test Cases:
>>> remove Occ(2.0, 3.0)
"AssertionError: invalid input"
>>> remove Occ(5.0, 4.0)
"AssertionError: invalid input"
>>> remove Occ('', 2.0)
"AssertionError: invalid input"
>>> remove Occ(2.0, '')
"AssertionError: invalid input"
"""

def remove Occ(s, char):
assert isinstance(s, str) and len(s) > 0, "invalid input"
assert isinstance(char, str) and len(char) == 1, "invalid input"

first occ = s.find(char)
last occ = s.rfind(char)

if first occ == -1:
return s

return s[:first occ] + s[first occ+1:last occ] + s[last occ+1:]

Figure 6: Code generated by DeepSeek with the example-augmented specification (EAS) prompt.

C CASE STUDY: CONTRACT ADHERENCE VS. FUNCTIONAL CORRECTNESS

A case study from the HumanEval/142 task provides a concrete example of the trade-off between
contract adherence and functional correctness. The figures 7–9 compare the ground-truth implemen-
tation (golden label), the code generated from a contract natural language prompt (CS), and the code
generated from a prompt augmented with contract-violating test cases (CVTs).

Figure 8 displays the code generated from the NL-only prompt, which describes both functional re-
quirements and contractual constraints. It fails to translate the natural language contract descriptions
into the necessary assertions, it successfully generates code snippets that passes all standard func-
tionality tests. This outcome suggests the model prioritized achieving functional correctness—even
developing a logic for handling multiples of 12—at the complete expense of implementing the re-
quired robustness checks, leaving the code snippets vulnerable to invalid inputs.

In contrast, Figure 9 shows the code generated when the prompt was augmented with CVTCs. Here,
the model successfully implements the necessary assertions, demonstrating strong contract adher-
ence. However, this heightened focus on contract enforcement directly compromises its functional
correctness. The model generates a flawed conditional logic that explicitly excludes common multi-
ples of 3 and 4. For an index like 0 or 12, the code incorrectly defaults to the else block, failing to
square the number as required by the specification in the Golden Label (Figure 7).

This example clearly illustrates the trade-off. When compelled to handle the dual objectives of im-
plementing contracts and functional logic, the model’s reasoning capacity is divided. The added
complexity of enforcing contracts leads to a critical oversight in the core functional logic, result-
ing in code snippet that is robust but functionally incorrect. This underscores the inherent tension
between these two competing objectives in LLM-based code generation.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

HumanEval/142

def sum squares(lst):
assert type(lst) == list, "invalid inputs" # $ CONTRACT $
assert all(type(x) == int for x in lst), "invalid inputs" # $

CONTRACT $

ans = 0
for i, num in enumerate(lst):

if i % 3 == 0:
ans += num ** 2

elif i % 4 == 0:
ans += num ** 3

else:
ans += num

return ans

Figure 7: The ground-truth implementation, correct in both functionality and contracts.

HumanEval/142

def sum squares(lst):
total = 0
for i in range(len(lst)):

num = lst[i]
if i % 3 == 0 and i % 4 == 0:

total += num ** 2
elif i % 3 == 0:

total += num ** 2
elif i % 4 == 0:

total += num ** 3
else:

total += num
return total

Figure 8: A functionally correct implementation that fails to enforce contracts.

D FORMALIZING CONTRACTS INTO SMT-LIB: TEMPLATE AND A CASE
STUDY

This section details the structure of the SMT-LIB template used by our PACT framework. SMT-
LIB is a standardized, text-based language used to interface with SMT solvers. It provides a formal
syntax for declaring variables, defining functions, and asserting logical formulas, allowing complex
problems to be translated into a format that a solver can systematically analyze for satisfiability. Our
framework leverages this language to translate nuanced, natural language contracts into a formal
representation that can be reasoned about with logical precision.

Figure 10 shows the base template we designed for this purpose. It is composed of several key
components, each serving a distinct role in the test generation process. The placeholders within this
template are populated as follows:

• CANONICAL PYTHON-LIKE ADT: This fixed block defines a universal data structure
for representing common Python types. This allows the SMT solver to reason about various
input types in a standardized way.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

HumanEval/142

def sum squares(lst):
assert isinstance(lst, list), "AssertionError: invalid input"
for elem in lst:

assert isinstance(elem, int), "AssertionError: invalid input"

total = 0
for index, num in enumerate(lst):

if index % 3 == 0 and index % 4 != 0:
total += num ** 2

elif index % 4 == 0 and index % 3 != 0:
total += num ** 3

else:
total += num

return total

Figure 9: A robust implementation that enforces contracts but fails on functionality.

• HELPER FUNCTIONS: This section is populated with custom functions needed to define
the contracts for a specific task. For example, a function to check if a string contains only
digits would be defined here.

• INPUT: The input variables for the function under test are declared here.
• BASIC STRUCTURE: This section defines fundamental structural constraints on the in-

puts, such as ensuring a variable is a list composed of integer values.
• CONTRACT DEFS: The specific logical rules of each contract are translated into formal

predicates in this section.
• COMBINATION: This is the core logic for generating a test case. It contains assertions

stating which contracts must be satisfied and which must be violated. The SMT solver then
attempts to find a concrete model that satisfies this exact combination of constraints.

Figure 12 shows the ground-truth Python implementation for the HumanEval/11 task, which re-
quires a function that takes two binary strings of equal length. The SMT-LIB formalization of these
requirements is shown in Figure 11. The three assert statements in the Python code directly corre-
spond to the three formal contracts defined in SMT-LIB:

• C0 verifies that both inputs are strings, corresponding to the assertion assert
isinstance(a, str) and isinstance(b, str).

• C1 ensures their lengths are equal, corresponding to assert len(a) == len(b).
• C2 checks that they are valid binary strings using a custom isBinaryString

helper function, corresponding to assert set(a).issubset("0", "1") and
set(b).issubset("0", "1").

The COMBINATION block determines the goal of the test case generation. By choosing to as-
sert either the contract itself, such as (assert (C0)), or its negation, such as (assert (not
C0)), for each rule, this block can instruct the SMT solver to find a test case for any desired com-
bination of contract satisfactions and violations. The specific instance in the figure 11, for example,
asserts the negation of all three contracts to generate a test case that violates every precondition
simultaneously.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

The SMT-LIB template

ADT BASE TEMPLATE = """
(set-logic ALL)

; ==== CANONICAL PYTHON-LIKE ADT (DO NOT MODIFY) ====
(declare-datatypes ((Value 0)) (
((IntVal (ival Int))
(FloatVal (fval Real))
(StrVal (sval String))
(BoolVal (bval Bool))
(Nil)
(Cons (head Value) (tail Value)))

))

; === ADD HELPER FUNCTIONS HERE ===
<<HELPER FUNCTIONS>>

; === Inputs ===
<<INPUT>>

; === BASIC STRUCTURE ===
<<BASIC STRUCTURE>>

; === Contract predicates ===
<<CONTRACT DEFS>>

; === COMBINATION ===
<<COMBINATION>>

(check-sat)
(get-model)
"""

Figure 10: The SMT-LIB template used for formalizing contracts.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The SMT-LIB template

ADT BASE TEMPLATE = """
(set-logic ALL)

; ==== CANONICAL PYTHON-LIKE ADT (DO NOT MODIFY) ====
(declare-datatypes ((Value 0)) (
((IntVal (ival Int))
(FloatVal (fval Real))
(StrVal (sval String))
(BoolVal (bval Bool))
(Nil)
(Cons (head Value) (tail Value)))

))

; === ADD HELPER FUNCTIONS HERE ===
(define-fun Safe Sval ((x Value)) String
(ite (is-StrVal x) (sval x) ""))

(define-fun isBinaryString ((s Value)) Bool
(and (is-StrVal s)

(str.in.re (Safe Sval s) (re.* (re.union (str.to.re "0") (str.
to.re "1"))))))

; === Inputs ===
(declare-const a Value)
(declare-const b Value)

; === BASIC STRUCTURE ===

; === Contract predicates ===
(define-fun C0 () Bool (and (is-StrVal a) (is-StrVal b)))
(define-fun C1 () Bool (= (str.len (Safe Sval a)) (str.len (Safe Sval

b))))
(define-fun C2 () Bool (and (isBinaryString a) (isBinaryString b)))

; === COMBINATION ===
(assert (not C0)
(assert (not C1)
(assert (not C2)

(check-sat)
(get-model)
"""

Figure 11: An example of the SMT-LIB template populated for HumanEval/11

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

HumanEval/11

from typing import List

def string xor(a: str, b: str) -> str:

assert isinstance(a, str) and isinstance(b, str), "invalid inputs"
$ CONTRACT $

assert len(a) == len(b), "invalid inputs" # $ CONTRACT $
assert set(a).issubset({"0", "1"}) and set(b).issubset({"0", "1"})

, "invalid inputs" # $ CONTRACT $

return "".join(str(int(a[i]) ˆ int(b[i])) for i in range(len(a)))

Figure 12: The ground-truth implementation in HumanEval/11

21

	Introduction
	Related work
	Automated Test and Code Generation
	Contracts
	SMT Solver

	The Need for Contract-Aware Evaluation
	Why Contracts Matter: Blind Spots in Current Benchmarks
	Contract-Based Test Paradigm
	Task Setup

	Methodology
	Contract-Violating Test-Case Generation
	Contract Metrics for Test Case
	Contract-Aware Code Generation
	Contract Metric for Code Generation

	Experimental settings
	Datasets
	Candidate Models

	Empirical Studies
	RQ1: How Effective is PACT in Generating High-Quality Contract- Violating Test Cases?
	RQ2: Are Concrete Test Cases More Effective than Abstract Descriptions for Eliciting Contract-Awareness?
	RQ3: How Does Enforcing Contract Adherence Impact the Functional Correctness of Generated Code?

	Conclusion
	Future work directions
	Case Study: Logical Contradictions in Direct LLM Test Case Generation
	Case Study: Contract Enforcement under Different Prompting Conditions
	Case Study: Contract Adherence vs. Functional Correctness
	Formalizing Contracts into SMT-LIB: Template and a Case Study

