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Abstract
Developers have shifted from deploying applications on phys-
ical machines, to virtual machines and to containers. Such a
shift of abstractions has also changed the way applications
are structured. Today’s cloud-native applications are naturally
structured in a higher-level and more decomposed way. How-
ever, today’s cloud platforms are still layered on top of the
same inefficient legacy software infrastructure and abstrac-
tions as in the past. We argue that these legacy layers are now
redundant, and we explore a clean-slate cloud services run-
time targeted toward microservice-era JavaScript applications
we call Pyrosome.

Pyrosome provides simple programming interfaces for ex-
ecuting JavaScript code, storing and sharing data, and low-
overhead communication without worrying about resource
allocation and scheduling. It leverages the V8 JavaScript run-
time’s low-overhead language-based sandboxing that avoids
the full state and scheduling costs of operating system pro-
cesses or containers. This enables a holistic scheduler that
quickly redistributes load among cores and exploits paral-
lelism in applications. The scheduler also avoids tail latency
with execution-time-aware partitioning. Pyrosome speeds up
microservice applications by as much as 4× and improves
throughput by 10×, as demonstrated by the DeathStarBench
microservices benchmarks. Additionally, we show Pyrosome
balances load nearly instantly compared to standard microser-
vices platforms.

1 Introduction

Over the last decade, cloud computing platforms have evolved
from lower-level toward higher-level abstractions, from
machine-level (virtual machines), to operating system-level
(containers) [14, 23]. The evolution of cloud computing tech-
nologies, coupled with the need for efficient software devel-
opment and maintenance, has led to fundamental changes in
how cloud applications are designed and deployed. This has
resulted in new cloud application paradigms. There are two
dimensions of paradigm shift for cloud applications. First, ap-
plications are leveraging high-level cloud-native abstractions,
which frees developers from system-level resource manage-
ment, scheduling and orchestration. Second, applications are
being decomposed into finer granularity components. De-
composing applications into small services with well-defined

interfaces, as with the microservices architecture, allows
each service to be developed, maintained and scaled inde-
pendently while matching organizational structures, which
improves developer productivity especially for large-scale
applications [10]. Some organizations have further reduced
service size (e.g. the BBC’s nanoservices platform [9]) to
limit the impact of failures, enable more rapid iteration, and
support flexible resource sharing.

However, today’s cloud platforms, as the legacy from a
decade of evolution of cloud technologies, are comprised
of layers of software infrastructure and abstractions that are
redundant and inefficient for fine-grained microservices. For
example, the containerization layer, on top of which most
of today’s microservices platforms are built, adds additional
isolation and communication costs. Microservices isolated
in containers communicate with each other over the network,
which can cost as much as one third of the total execution
time [16]. The added overheads offset some of the benefits
of microservices architecture, which means the benefits of
microservices only outweigh the additional overheads for
large complex applications. Smaller applications (especially
ones composed of smaller microservices) are still better off
implemented as monoliths to avoid these overheads. The high
cost of cold starts (the process of creating and setting up new
containers when capacity is under-provisioned) slows down
resource reprovisioning and can impact the availability of
applications during scaling up.

A key mismatch stems from the strong isolation inherent
in virtual machines and containers. This level of isolation,
designed to mitigate risks between untrusted users, is unnec-
essary for services within a single application where only
basic inter-service fault-isolation is needed. Furthermore,
many microservice applications are adopting a cloud-native
approach, relying on cloud platforms to provide high-level
abstractions and hide the complexities of underlying infras-
tructure. Thus the virtualized operating system abstraction
provided by containerization is no longer needed.

Therefore, we propose Pyrosome, a clean-slate design for
a microservices deployment system. Recognizing that strong
security isolation is often unnecessary, we designed Pyrosome
as a proof-of-concept runtime with minimal isolation costs
between mutually trusted microservices and applications:

• Microservices of the same application should be mutu-
ally trusted, so there’s no need for strong security isola-
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tion between them.

• Many microservice applications are deployed in trusted
environments, such as private infrastructure or private
clouds, where security is less of a concern.

• On public cloud, mutually trusted applications (e.g.
those from the same client) can share the same sandbox
(e.g. a VM), eliminating unnecessary strong security iso-
lation between them. Pyrosome runtime can be deployed
within such a sandbox to support these applications.

Two key aspects of Pyrosome’s design lead to these benefits.
First, Pyrosome leverages lightweight language-level code
isolation using software (V8) sandboxes and an in-process
data cache. This lowers cross-sandbox/cross-service commu-
nication and data access costs. Furthermore, the low overhead
of isolation and communication enables Pyrosome to sup-
port much finer-grained microservices than today’s container-
based approach. This also allows Pyrosome to maintain a pool
of inexpensive sandboxes, eliminating costly cold starts and
enabling instant resource reprovisioning for handling sudden
load changes. Second, Pyrosome’s design demonstrates that
radically redesigning cloud software infrastructure can un-
lock opportunities for advanced optimizations in cloud-native
applications. With low-overhead isolation, each service oper-
ation on Pyrosome completes in microseconds or less. This
allows its scheduler to operate on a much finer timescale
than conventional microservice schedulers (e.g. Kubernetes).
Pyrosome’s scheduler supports several new optimizations in-
spired by recently fine-grained dispatch policies that minimize
tail latency in services like key-value stores [5, 11, 25, 38, 40].
Specifically, we propose: 1) an execution-time-aware schedul-
ing policy that exploits parallelism, avoids inter-service inter-
ference, and maintains high, balanced CPU utilization; and
2) execution-time-aware partitioning that isolates latency-
sensitive services from longer-running ones to prevent head-
of-line blocking.

In the following sections we describe the design and imple-
mentation of Pyrosome, and we evaluate Pyrosome against ex-
isting container systems. Our evaluation shows that Pyrosome
scales linearly and improves throughput by 10×, reduces me-
dian latency of a social media microservice application by
4×, and it can support services more than an order of magni-
tude more granular than today’s services. Pyrosome can also
handle substantial and sudden load increases with no impact
on client-perceived latency.

2 Background

Microservices. with each running in a set of independent
processes. This benefits software development and main-
tenance because each service can be developed and main-
tained independently reducing human communication costs.
Because of the many benefits of microservices architecture,

nowadays, many large web applications are implemented
as microservices. For example, the popular Netflix video
streaming platform is implemented as a cluster of more than
700 microservices [37], Uber’s backend has 4,000 microser-
vices [55], Meta’s customer applications such as Instagram
or Facebook mobile, also depend on its large-scale microser-
vice architecture [21]. Microservices applications are usually
deployed as a cluster of OS-level containers, and services
are packaged using easily deployable container images [46],
which can contain a service and its software dependencies.

VM and Container-based Isolation Virtual machines rely
on hypervisor-based [4, 27] isolation. With much smaller
attack surface than the OS kernel and the strong isolation
provided by the hardware virtualization features, VM-based
isolation is preferable in scenarios where strong security iso-
lation is needed. But in VM-based isolation, each sandbox
must have its own OS kernel and libraries, resulting in heavy
performance costs. Container-based virtualization emerged to
address this problem. In container-based virtualization sand-
boxes share the same OS kernel, and rely on OS-level virtual-
ization mechanisms, such as namespaces and cgroups in the
Linux kernel, for security and resource isolation. Docker [35]
is a popular container platform used by many of today’s appli-
cations. Kubernetes [3] is a popular container-orchestration
system used to deploy, maintain, and scale container clusters.
The security isolation of containers is weaker than VMs, as
the attack surface is much larger with the shared OS kernel.
As a result, containers are also often deployed on top of vir-
tual machines for stronger security isolation between groups
of containers.

Lightweight Language-based Isolation Safe high-level
programming languange and runtime mechanisms can be
leveraged as a lightweight alternative to heavyweight VM-
based and OS-level isolation. The V8 JavaScript runtime [49]
is widely used to run JavaScript code in isolation within the
same browser or server process. Cloudflare [50] has built
a serverless edge compute platform with the V8 JavaScript
runtime that is able to support massive multi-tenancy with low
overhead. Rust [48] is a safe systems programming language
that allows lightweight isolation, and is used to build exten-
sible multi-tenant, low latency storage systems [7, 29, 53].
A disadvantage of language-based isolation is that usually
it only supports a single language. A solution to this prob-
lem is offered by WebAssembly (Wasm) [17, 18], which is
a compilation target for programming languages. Untrusted
code of various languages can be compiled to Wasm and
run in Wasm’s default light-weight sandboxed environment.
Wasm is not only used in the web environments, but also
used to build cloud systems [12, 45, 51] and edge computing
systems [15,24] that achieve significant performance improve-
ment over container-based systems.
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Figure 1: Pyrosome overall design

3 Pyrosome Design

Figure 1 shows the basic design of Pyrosome. Pyrosome
works as a collective compute container for deployed services.
Applications deploy a set of logical services to a machine
running Pyrosome. Pyrosome as the software layer between
hardware resources and applications, provides simple inter-
faces for applications that hides the complexities of managing
hardware resources. It can fluidly reprovision hardware re-
sources on-demand, providing an automated resource pool for
applications. It also provides shared access to a local cached
state for instances of stateful services. Pyrosome achieves
efficiency and low-overhead by leveraging language-level
sandboxing. Each service is isolated in a very lightweight V8
context. Note that Pyrosome’s design is not limited to the V8
runtime and can be implemented using any language runtime
that provides light-weight isolation [20, 52].

3.1 Design Goals
Here, we elaborate on the core aspects of its design before
describing the details of its implementation.

Simple high-level abstractions. Pyrosome should provide
high-level programming abstractions that simplify cloud ap-
plication development. By hiding the complexities of the
underlying infrastructure, developers can focus solely on ap-
plication logic.

Low-overhead Deployment and Flexible Modularization.
While logically isolated, services in Pyrosome are not strictly
physically isolated, reducing communication costs and pro-
moting efficient resource utilization. This allows for finer-
grained services, which limit the impact of failures, enable
rapid iteration, and support flexible resource sharing.

Instant and Transparent Resource Reprovisioning. Un-
like Containers with slow cold start times, Pyrosome’s

lightweight sandboxes V8 Isolates are created almost instantly,
minimizing over-provisioning [39] and resource fragmenta-
tion. Each core requires only one V8 Isolate, with individual
services on that core utilizing even lighter-weight V8 Con-
texts. Idle sandboxes (V8 Isolates) only occupy 3 MB of
memory (compared to 35 MB for a container [8]). Hence,
Pyrosome can keep a V8 Context for each service on each
core, which avoids sandbox creation overheads altogether and
enables Pyrosome to dynamically shift service loads to any
core.

Low-overhead Runtime Level Scheduling and Optimiza-
tion Containers and virtual machines depend on operating-
system-level scheduling, which is problematic for inter-
dependent fine-grained computations due to costly thread
context switches and the kernel’s lack of request-level visi-
bility. Pyrosome’s runtime-level scheduler operates within
the same process as the services, granting it direct visibility
into request execution and enabling highly efficient schedul-
ing of thousands of functions with minimal overhead. This
allows services to utilize CPU cores effectively at much finer
timescales.

Moreover, Pyrosome’s runtime-level scheduler unlocks ad-
vanced optimizations exploiting information collected at run-
time for microservices workloads, which is beyond the capa-
bilities of OS-level scheduling. We demonstrate this with a
scheduling policy called execution-time-aware partitioning
that optimizes application tail latencies. Microservices appli-
cations vary in structure and per-invocation execution times.
Some applications are composed mostly of short-running
functions [16, 22], but some services (e.g. machine learning)
rely on long-running, compute-intensive services [26]. By
observing these differences, Pyrosome can mitigate issues
like head-of-line blocking, which can significantly impact
performance. This approach, inspired by the Minos key-value
store’s size-aware sharding [11], extends the concept to gen-
eralized, opaque functions with variable runtimes.

Low-overhead Access To State Microservices are typi-
cally stateful, requiring efficient access to data for optimal
performance. Traditional approaches often store service state
in external databases or separate database services, incurring
significant overhead due to cross-boundary data access. Pyro-
some addresses this by providing in-process data stores. Each
service has a dedicated data store, shared by all its instances,
residing within the same process. This minimizes latency and
maximizes efficiency. These data stores can hold ephemeral
data or act as a cache for persistent data stored in external
databases.

3.2 Threat Model
While language-based isolation offers low-overhead, it sup-
ports weaker security isolation compared to virtualization
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and process-based isolation, especially after the discovery of
side-channel attacks such as Spectre [28] that exploits the
CPU’s speculative execution. Malicious code can leverage
such attacks to bypass language-based isolation and access
data outside its sandbox if that data resides within the same ad-
dress space. Spectre attack has already been proven effective
against JavaScript and WebAssembly [33, 43].

Consequently, Pyrosome is designed as a runtime for run-
ning mutually trusted services and is not suitable for running
untrusted code. All services within the same Pyrosome run-
time instance effectively share the same process and address
space, necessitating mutual trust. Pyrosome’s light-weight
isolation primarily focuses on fault isolation, preventing soft-
ware bugs in one service from impacting others.

It is reasonable to assume that services within the same
microservice application are typically mutually trusted. For
instance, services within the Netflix video streaming plat-
form [37] should be mutually trusted, as all service code is
developed and maintained by the same company. Multiple
mutually trusted microservice applications, such as those from
the same organization, can also share a Pyrosome runtime
instance. Meta presents a real world example of deploying
multiple mutually trusted microservices applications within a
shared infrastructure [21]. At Meta, multiple customer appli-
cations, such as Instagram or Facebook mobile, and internal
applications, such as dashboard or internal tools, share the
same infrastructure running across dozens of geographically-
distributed datacenters. In fact, the notion of an application
is ill-defined within Meta’s microservices topology, as in-
dividual service instances may process work on behalf of
multiple applications.

If running untrusted code within a service is necessary,
an approach similar to Chrome’s Site Isolation [41] can be
adopted. isolating the service in its own dedicated process.

4 Implementation

Pyrosome is built on the Seastar framework [44]. Seastar’s
shared-nothing execution model enables Pyrosome to scale
almost linearly across cores. Pyrosome leverages the V8
JavaScript runtime, which is directly embedded into the
Seastar framework, lightweight language level isolation for
services. Other runtimes such as Lucet and Wasmer, which
support WebAssembly, could be used instead to give develop-
ers more flexibility [20, 52].

In Pyrosome, each core processes incoming requests in a
single-threaded event loop. Each core also hosts a V8 isolate,
an instance of the V8 JavaScript runtime (Figure 2). Ser-
vices residing on the same core are isolated within separate
V8 Contexts, with fault isolation so errors in one service do
not cause other services to malfunction. A V8 Context also
provides an isolated execution environment with its own set
of global variables, built-in objects and functions. This pro-
motes independent development and maintenance of services.

Figure 2: Pyrosome basic architecture

Figure 3: Pyrosome application structure

Furthermore, each core features a scheduler to manager the
execution of services and a dedicated key-value store for each
service. This store holds states that must persist between invo-
cations, and also acts as a cache for external database accesses.
Instances of the same service running on different cores share
the same key-value store, ensuring data consistency.

4.1 Application Structure.

Figure 3 illustrates the structure of an example microser-
vice application in Pyrosome. This application comprises
a collection of services, each implements a logical compo-
nent. A service may encompass several related function-
alities, implemented as callable functions that can be in-
voked by other services. For instance, the user_timeline
service manages user timelines and includes two functions:
read_user_timeline() and write_user_timeline() ,
handling read and write operations respectively. Functions
within the same service on the same core share a V8 Context.
Note that the term "function" in subsequent chapters refers to
these callable functions.

4
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Figure 4: Programming interfaces.

4.2 Programming Interfaces.
Pyrosome provides a list of very simple programming inter-
faces. async_call() and reply() allow a service to invoke
and communicate with another service. The .then() call-
back of the caller service will be invoked to receive the replied
result. db_get() and db_set() are provided for stateful ser-
vices to read from and write to their key value stores.

Figure 4 shows the code structure of services on Pyrosome.
Each function in a service is addressed independently. For ex-
ample, if a client wants to invoke func_a2() in Service_A,
it can issue an HTTP request to address “/Service_A/func_a2”.
Services on Pyrosome can also call functions of other ser-
vices asynchronously, through the async_call() interface.
async_call() is implemented as a C++ binding that calls
the scheduler to schedule and run the callee function. The
caller can pass messages through async_call() to the callee
function as the argument via shared memory. Complex ob-
jects can be serialized JSON strings; the callee must parse the
JSON to retrieve the objects. This makes it possible to imple-
ment sophisticated APIs between services. Reply of a service
call is sent through the reply() interface to the caller service.
The .then() interface is used to implement the callback to
be invoked once the reply is received. A client-facing service
also uses reply() to return result to the requesting client via
an HTTP reply.

Stateful services can use db_get() and db_set() to read
from and write to their key value stores. When instances of
the same service are running on different cores, their writes
could cause consistency problems. To ensure consistency, we
implement compare and swap semantics for accesses to key
value stores. A version number is attached to each record;
when an instance of a service reads from and then writes
to its key value store, db_set() checks if the given version
number matches the record’s current version number to ensure
no other instance on some other core has updated the record
between the read and write. If the version numbers do not
match, the db_set() returns an Abort status to inform the
caller that the write has failed. Services should check the
return status of db_set(). If failed, they should read the
updated record, redo the operation on the record and then

Figure 5: Pyrosome networking architecture

retry db_set().

4.3 Networking
In Seastar, all incoming network connections are randomly
distributed among all cores by the network card. Pyrosome
modifies Seastar so that cores are divided into dispatcher
cores and worker cores (Figure 5); incoming network con-
nections are distributed to and processed by the dispatcher
cores. We use DPDK to bypass the kernel networking stack;
Pyrosome relies on Seastar’s user-level network stack on dis-
patcher cores rather than the standard Linux TCP stack. Dis-
patcher cores can also run services. The worker cores do not
receive client requests from the network; instead they only
run services scheduled to them from the dispatcher cores.
This design prevents long-running functions from blocking
network packet processing. It also enables execution-time
aware partitioning which we will detail later.

There are two levels of load balancing in Pyrosome. First,
incoming HTTP requests are randomly distributed to the dis-
patcher cores (Figure 5). The second level of load balancing
is done by the scheduler on each core, which we describe
next.

4.4 Execution-Time-Aware Scheduling
As shown in Figure 6, in Pyrosome each core has its own
scheduler, and all local schedulers share one scheduler table.
The scheduler table tracks all cores’ task queues and states,
including whether the core is busy or idle and the expected
time that the core will become idle if it is busy.

Functions are the basic scheduling unit of the Pyrosome
scheduler. When a function is called (whether by a client
request or by another service), the local scheduler is invoked.
The scheduler first attempts to locate an idle core within the
scheduler table. If no idle core is available, it selects the
core with the earliest expected idle time. The function is
then added to the task queue of that target core. To maintain
accurate scheduling information, the scheduler updates the
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Figure 6: Scheduler workflow

Figure 7: Execution-time-aware partitioning

target core’s status. This involves querying shared statistics to
estimate the function’s expected execution time and adjusting
the expected idle time of the target core accordingly. The
task queues and core states are protected by a mutex for safe
concurrent access. The scheduler on each core constantly
pulls tasks from its own task queue and runs them.

Pyrosome’s approach is simple and avoids the cost and
complexities of preemption while working well for the work-
loads we measure (e.g. ZygOS must expose a virtualized
APIC interface to userspace in order to efficiently trigger
inter-processor interrupts [40], making it vulnerable to denial-
of-service attacks).

With both network-level and scheduler-level load balancing,
Pyrosome can balance load among all cores, avoid hot spots
and accommodate bursty workloads well. In addition, the
design exploits the internal parallelism of applications well.
When a function issues concurrent calls to multiple services,
these functions are automatically spanned to different cores.

Pyrosome also implements a new approach to scheduling

different service functions called execution-time-aware parti-
tioning (Figure 7); the idea is similar to size-aware sharding,
which has been used to improve tail latency in key-value
stores [11]. The key idea is that by isolating the short-running
functions (which are likely to be latency sensitive) from
longer-running functions, tail latency is improved since it
reduces head-of-line blocking. The scheduler collects func-
tion execution times and use the average execution time for
future scheduling decisions, under the assumption that func-
tion execution times are mostly stable across invocations.

The scheduler uses a threshold to determine if a function
is a short-running function or a long-running function. Long-
running functions are scheduled on worker cores only, while
short-running ones can be scheduled on any core. Limit-
ing long-running functions to worker cores prevents them
from blocking network packets processing on the dispatcher
cores, and improves latencies of the short-running functions
by avoiding head-of-line blocking. The threshold can be
adjusted for different workloads and SLA requirements.

One issue is the potential for inteference between concur-
rent requests. When a function utilizes async_call() to
invoke another function, the called function asynchronously
returns its result via a callback. However, the execution of
this callback can be delayed by functions from another con-
current requests, leading to increased latency. The severity
of this issue is influenced by both CPU load and workflow
structure, with complex workflows comprising numerous in-
terdependent functions being more susceptible. To mitigate
this, we’ve introduced an optimization called fused-execution
mode. Activated by the scheduler upon detecting high request
latency, this mode executes the entire workflow of a request
in a run-to-completion sequence, minimizing interference and
ensuring smoother processing.

Our scheduler serves as a proof-of-concept, showcasing the
potential of low-overhead runtime level scheduling. It is not
intended as a full-fledged implementation, and we make sim-
plifying assumptions, such as stable and predictable function
execution times. In reality, execution times can vary signifi-
cantly. While this work does not address all such real-world
challenges, we believe they can be overcome with further en-
gineering effort. For instance, more sophisticated algorithms
could predict execution time, potentially by learning from
function inputs. Analyzing production microservice traces
[21, 30, 32, 55] could also yield valuable insights for improv-
ing the scheduler’s design and implementation, offering a
promising direction for future work.

5 Evaluation

We evaluate Pyrosome with a series of microbenchmarks
and a Social Network application ported from DeathStar-
Bench [16], seeking to answer five key questions:
Does Pyrosome improve service throughput and effi-
ciency over conventional microservice platforms? Pyro-
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some scales linearly to 16 cores, and it handles 10× the
requests per second than a containerized microservice de-
ployment.
What are the limits of service granularities that Pyro-
some can support? On conventional containers, decompos-
ing a service that runs for 4 ms per invocation into 4 services
will reduce the efficiency to about 50%. Our measurements
suggest that Pyrosome can decompose a 4 ms computation
into as many as 80 services before the efficiency drops be-
low 50%, so Pyrosome can support more than an order of
magnitude of granularity.
Does Pyrosome help on complex microservices? Our re-
sults show, Pyrosome reduces median latency of a social
media microservice application by 4×.
Does Pyrosome handle load shifts well? Pyrosome can han-
dle substantial and sudden load increases with no impact on
client-perceived latency. Similar load increases will cause
latency spikes that renders services unavailable when using
Kubernetes’ autoscaling.

5.1 Hardware Setup
We run our experiments on the CloudLab testbed [42]. In all
experiments, each physical node is a Dell PowerEdge R430
server with two 2.4 GHz Intel Xeon E5-2630v3 8-core CPUs
(16 hardware threads) and 64 GB RAM interconnected by
1 Gbps Ethernet.

5.2 Comparison to Kubernetes & Containers
In this section, we compare performance of microservice
applications deployed on Pyrosome versus deployed in con-
tainers. To make a fair comparison, in this section we run
Pyrosome without DPDK or its user-level network stack so
that the Pyrosome deployment and container deployment are
both running with the same default Linux kernel network
stack.

5.2.1 Throughput and Scalability

To demonstrate the advantages of Pyrosome’s reduced com-
munication and isolation overhead, we begin by comparing
the throughput and scalability of a small service deployed on
Pyrosome against its conventional, containerized counterpart.

In this experiment, we use 4 physical nodes with each node
running Ubuntu 20.04 with Linux 5.4 kernel. We deploy
a container orchestration platform using Kubernetes. One
node runs the Kubernetes controller and another node is
used as the server node either running Pyrosome or, for the
baseline, the container cluster. Another node hosts the ex-
ternal (MongoDB) database that the service access. The last
node runs a wrk client which generates load in a closed-loop
(for 10 seconds per run with results averaged over 10 runs for
each data point).

Figure 8: Throughput with increasing number of cores. Num-
ber of containers is equal to number of cores, with each con-
tainer pinned to it’s own core.

The user service has a login() function that validates the
password of a user login request. Clients send requests via
HTTP to call login(); the login() function then fetches
the user’s credentials before checking them against the func-
tion’s arguments. On Pyrosome, the login() function is
implemented in JavaScript; the container-based service is im-
plemented in Go. By default in Pyrosome, after the HTTP re-
quest triggers login(), the request is handled entirely within
Pyrosome. The user’s credentials are cached in Pyrosome’s
local KVStore cache. When login() is deployed as a conven-
tional microservice, the user’s credentials must be accessed
from the external MongoDB node. This simple function is
fairly representative of many of functions in microservices,
and it lets us compare Pyrosome against a baseline, conven-
tional container-based approach.

Figure 8 shows the results of running the service on an in-
creasing number of CPU cores. If user credentials are cached
in Pyrosome’s local KVStore (“pyrosome w/o db”), through-
put is improved by 10× over a container-based deployment
(“container w/ db”). When user credentials are not cached in
Pyrosome (“pyrosome w/ db”), its throughput immediately
collapses to match the performance of the container-based ap-
proach. So, eliminating costly, synchronous remote accesses
for data is crucial to Pyrosome’s performance. When running
Pyrosome, these remote accesses to MongoDB cause CPU
utilization to drop to 50% as threads block waiting on the
database and experience costly context switches. Of course, a
container-based solution can perform local caching as well,
but even when we eliminated the remote database access
from the container-based service (“container w/o db”), its
performance only improved by 2×.

Together these results show that improving runtime over-
heads only helps if other bottlenecks in remote communica-
tion are also eliminated, demonstrating the importance of Py-
rosome’s holistic approach, which not only eliminates costly
inter-service communications but also eliminates data access
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Figure 9: Decomposing a service into finer services

costs via in-process caching. Containers could have a shared
data cache running via another container on the local ma-
chine, but data accesses will still suffer costly cross-container
boundary crossings.

Finally, Pyrosome also improves scalability. Container-
based services can be scaled by adding additional cores to
a container, or by adding additional containers with each
running on its own core. Here, login() scales better when
adding a container per core, which is also common practice
for most microservice deployment. Even so, the container-
based service scales less efficiently and flattens entirely after
12 hardware threads. Pyrosome scales nearly linearly to 16
hardware threads (2 hardware threads for each of the 8 physi-
cal cores).

5.2.2 Service Decomposition Costs

Here we microbenchmark performance as we progressively
decompose a service into finer and finer-grained services both
with Pyrosome and using containers. The experiment runs on
two physical nodes; one to run the service within Pyrosome
or within Docker containers. We compare Pyrosome with two
different implementations of the container version. One uses
the conventional HTTP protocol for communications between
containers, the other uses the Apache Thrift protocol [13]
which is faster than HTTP. In both container implementations
the service is implemented in JavaScript running on Node.js.
The other node is used as the client, and it runs wrk2 in an
open loop at a low request rate to measure the latency. Each
run averages many samples, and each data point is the average
over 10 runs.

In this experiment we emulate the decomposition of a ser-
vice and measure the costs. Figure 9 shows an example of
decomposition. First, we split a service that implements 8ms
of computation into two services, each of which runs for 4 ms
and chained together to complete the total 8ms computation.
Then we split it further into 4 services each running for 2 ms.
In all these cases, the total computation time is the same
(8ms), but as the computation is decomposed into more ser-
vices, more context switching and communication costs are
added in between the services. We measure the total time to

Figure 10: Efficiency of decomposition

complete the service chain, and then calculate the efficiency
as:

Efficiency = Total Service Computation Time
Service Chain End-to-End Completion Time

Figure 10 shows the results. We vary the time length to
emulate the decomposition of short and long running services.
The upper left is the decomposition of a 4 ms service, the
upper right is a 8 ms service, the lower left is a 16 ms service,
and the lower right is a 32 ms service. From the results,
we can see that with containers decomposition lowers the
efficiency significantly. For Pyrosome, decomposition cost
is low, and the efficiency almost remains the same when a
service is decomposed into a chain of smaller services. Also,
the gap between containers and Pyrosome is much bigger
when short running services are decomposed into even smaller
services, demonstrating that the low decomposition cost on
Pyrosome allows much finer-grained microservices. From the
measured numbers we can calculate the cost of a round-trip
call between two services, which is about 44 μs on Pyrosome.
So if we decompose a 4ms computation into 80 services
on Pyrosome, which means each service runs for 50 μs, the
efficiency will drop below 50%. This is an estimation of the
limit of decomposition on Pyrosome, which is more than an
order of magnitude finer granularity compared to what can be
achieved using containers.

5.2.3 Social Network Application

To evaluate how reduced decomposition costs can improve
the performance of real world applications, we implemented
the Social Network application from the DeathStarBench [16]
on Pyrosome, and then we compare the latency of the
compose-post request. We chose the Social Network ap-
plication for our evaluation as it exemplifies typical microser-
vice applications, featuring a cluster of interacting services
and utilizing databases for caching and storage. While other
microservice benchmark applications exist, such as the Hotel
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Reservation and Media Microservices applications from the
Deathstarbench and the TrainTicket application [56], they
share similar structures and service counts with the Social
Network application. Although some minor distinctions ex-
ist, like TrainTicket’s use of synchronous and asynchronous
invocations alongside message queues, these are not our pri-
mary focus. The Social Network application should suffice to
evaluate the performance impact of reduced decomposition
costs on typical microservice applications.

We use 2 physical nodes. One is used as the server to run
Pyrosome or the DeathStarBench. Another node is used as
the client, and it runs wrk2 to average latency across many
requests under a low request rate using an open loop; each
data point is the average value of 10 runs.
compose-post is one of the client-facing APIs provided

by the social network application. Its function is to upload
a new post from a user. Similar to Twitter posts, a post can
include text, media, user mentions and URLs. Figure 11a
shows the graph of services invoked by a compose-post re-
quest. A compose-post HTTP request from a client first
arrives at the Nginx server, which acts as the front-end of the
application. The Nginx server then parses the HTTP request
and invokes other services. In the case of compose-post
request, the Nginx invokes 4 backend services to process the
request. The text service is invoked to process and upload
the text of the post, it then invokes the user_mention service
to process user mentions and the url_shorten service to
shorten URLs in the post. The user service processes the
username and id of the author of the post. The unique-id ser-
vice creates a unique post id for the post. The media service
processes the media references of the post. The outputs of all
the services mentioned above are sent to the compose_post
service to be assembled into the final version of the post.
compose_post then invokes the post_storage service to
store the post into MongoDB. A memcached server is also
used by the post_storage service to cache posts for faster
access. compose_post also invokes the user_timeline ser-
vice and write_home_timeline service to update timelines.
write_home_timeline invokes the social_graph service
to get followers of the user and update their timelines. Users’
timelines are stored in MongoDB with Redis as cache. In
DeathStarBench all these services are implemented in C++
and isolated in containers with the Apache Thrift communi-
cation protocol.

Figure 11b shows the structure of the Social Network ap-
plication ported to Pyrosome, which is very similar to the
DeathStarBench version, except that these services are imple-
mented as JS functions in V8 sandboxes, with user posts and
timelines stored in the underlying data store.

Figure 11c shows the median and 99 percentile latencies of
the compose-post request measured under low request rate.
The median latency is 2.17 ms for Pyrosome versus 8.51 ms
for DeathStarBench. The 99 percentile latency is 3.53 ms for
Pyrosome versus 10.00 ms for DeathStarBench. The results

show that with low decomposition costs, Pyrosome can reduce
the median latency of a complicated microservice application
by 3/4 and the 99 percentile latency by 2/3 compared to the
containerized version of the application.

5.2.4 Resource Elasticity

In this experiment we compare the scaling capabilities of
Kubernetes [3] and Pyrosome in reaction to changing
workloads. For Kubernetes, we use a cluster of 3 physi-
cal nodes, one runs the Kubernetes controller, another runs
the Kubernetes cluster to host microservice containers, the
remaining one is used to run the wrk2 clients. wrk2 can gen-
erate open loop load with specified request rate, we use it to
control the offered load. For Pyrosome we use two physical
nodes, one for Pyrosome server and the other for wrk2 clients.
We use the default settings for the Kubernetes autoscaler and
set 90% CPU utilization as the trigger metric for scaling.

We use the same workload as in §5.2.1 that uses the login
function in the User service, and we run the User service
without an external database accesses to eliminate the its im-
pact. We run two scripts on the client node at the same time,
one runs wrk2 to generate workload, the other runs wrk2 un-
der low load to measure latency. The workload generation
script starts with very low load at 100 reqs/s, then later in-
creases to a much higher request rate. For Kubernetes the
request rate increases to 16k reqs/s and for Pyrosome it in-
creases to 150k reqs/s. From the throughput experiment of
§5.2.1, that represents about 20% of the maximum throughput
of Kubernetes and about 65% of the maximum throughput
of Pyrosome.

Figure 12 shows the measured median latencies of
Kubernetes and Pyrosome during the workload. It shows
that the median latency is greatly increased during the scale
up period of Kubernetes. For Pyrosome is not impacted
after the sudden large load increase. We observe that the
Kubernetes autoscaler struggles to meet this load; after the
load increase, the autoscaler is triggered 3 times, and each
time it starts 3 or 4 more containers. This shows two prob-
lems with scaling via Kubernetes. First, the cost of starting
new containers is high. Second, it does not know how many
new containers need to be provisioned to meet the increased
load. The autoscaler makes the speculation that starting 3 or
4 containers may be able to handle the load increase. How-
ever, when the load increase is too high, the autoscaler will be
triggered multiple times to allocate enough resource, which
slows the scaling up process further. From Figure 12, we can
see that the scaling up phase of Kubernetes is more than 2
minutes, and during that time the User service is effectively
unavailable because the service is saturated and all requests
experience very high latency. On the contrary, Pyrosome is
able to immediate pivot resources to whichever service within
its runtime, even at fine-grained timescales. As a result, it han-
dles bigger load increases with no impact on client-perceived
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(a) compose-post request in DeathStar-
Bench. (b) compose-post request in Pyrosome. (c) Latency of compose-post request.

Figure 11: Compare compose-post request in DeathStarBench and Pyrosome

Figure 12: Kubernetes and Pyrosome react to sudden load
increase.

latency.

5.3 Scheduler Evaluation

In this section, we evaluate the design of Pyrosome scheduler.
In all of the experiments in this section we run Pyrosome on
16 cores, 8 of which are dispatcher cores. Each dispatcher
core is allocated a hardware NIC queue and runs its own user
level network stack and DPDK driver. In these experiments,
Pyrosome’s user-level networking stack adds increased pres-
sure on scheduling; since the reduced overheads and response
times mean that scheduling and inter-service interference are
the primary factors that determine client-observed response
times, especially for short-running functions.

5.3.1 Execution-Time-Aware Scheduling

In this microbenchmark we demonstrate that Pyrosome’s
execution-time-aware scheduling allows better use of CPU
resources than baseline approaches that have no visibility
into service runtimes. To show this, we construct a “fanout”
application (Figure 13) that invokes 10 functions each runs
for 10 ms in parallel. As a baseline, we implement a “simple

Figure 13: Fanout application.

Figure 14: Latency of fanout application.

scheduler” that does not leverage the knowledge of function
execution times; instead, it simply tries to distribute work
randomly to under-loaded cores.

We vary the load to test the schedulers’ ability to optimize
parallelizable functions under different CPU loads. From
Figure 14 we can see that under low load, both schedulers
can use available CPU resources to run functions in parallel
to reduce latency. When CPU load increases, it becomes
harder to find available CPU resources to run the functions
in parallel, as a result more of the functions are run sequen-
tially causing latencies to increase. Under higher CPU load,
our execution-time-aware scheduler is better than the simple
scheduler at finding CPU resources to parallelize execution.
The execution-time-aware scheduler efficiently parallelizes
execution even under more than 70% CPU utilization, while
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Figure 15: Mixed workload with/without partitioning.

response times with simple scheduler spike.

5.3.2 Execution-Time-Aware Partitioning

In this microbenchmark, we evaluate Pyrosome’s ability to
handle a mixture of long-running and short-running functions
with its execution-time-aware partitioning. A short-running
function runs for 10 ms and a long running function runs for
100 ms. The workload is held constant to use 70% of all CPU
resources and the ratio of short-running functions and long-
running functions is varied. The ratio is calculated by total
CPU time occupied by short-running functions versus CPU
time occupied by long-running functions. The upper graph
of Figure 15 shows the latencies of short-running functions
with and without partitioning (the green line and the red line
respectively), and the lower graph shows the latencies of long-
running functions.

In this microbenchmark, the scheduler uses execution-time-
aware partitioning to limit long-running functions on work
cores while short-running functions can be scheduled on both
the dispatcher cores and worker cores. This is called soft par-
titioning and it is the default partitioning policy of execution-
time-aware partitioning. From the graph we can see that
with partitioning, latencies of both the short-running and
long-running functions are much lower, especially for the
short-running functions. When the ratio is 1:6, the latencies
of long-running functions increase greatly, this is because
long-running functions are limited to the 8 worker cores and
the load of long-running functions at this ratio has exceeded
the CPU capacity of the 8 worker cores.

We also compared soft partitioning with hard partitioning
where the scheduler only schedules short running functions
on dispatcher cores. Figure 16 shows that with hard par-
titioning when the ratio of short-running functions is high
the dispatcher cores will be overloaded. Overloading dis-
patcher cores not only results in much higher latencies for
short-running functions, but also worsens the latencies of

Figure 16: Soft partitioning versus hard partitioning.

Figure 17: Different application structures.

long-running functions as the dispatching of long-running
functions is also impacted. In the middle, when the load is
about evenly split between short-running and long-running
functions and none of the cores is overloaded, the perfor-
mance of soft partitioning is similar to that of hard partition-
ing. Overall, soft partitioning is a better partitioning policy
that achieves similar performance of avoiding head-of-line
blocking as hard partitioning, while allowing more flexibility
for scheduling short-running functions.

5.3.3 Scheduling Complex Applications

Microservices applications are naturally comprised of work-
flows of inter-dependent functions. User perceived end-to-
end latency for these applications depends on the completion
of the execution of the whole workflow. The structure of
a workflow dictates how its execution can be optimized by
the scheduler. Fanouts of functions in a workflow provide
opportunities for parallel execution to optimize end-to-end
latency of the workflow. Previous microbenchmarks showed
that Pyrosome’s execution-time-aware scheduler can leverage
the parallelism within a workflow to optimize the latency.
However, this leads to a challenge: it is also possible for con-
current workflows to block each other’s execution, resulting
in worse latencies.

To evaluate the scheduler’s performance with different ap-
plication structures, in this microbenchmark we construct
three example applications as shown in Figure 17. The left
side shows an application of a sequential chain of functions,
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Figure 18: Latencies of applications with different structures.

the right side shows an application of fanout of functions,
and the middle shows an application of mixed sequential and
fanout stages. The three applications have the same total
serialized execution time (100 ms).

Figure 18 shows the latencies of running the three appli-
cations on Pyrosome. From the result we can see that for
high-fanout applications the scheduler can optimize latency
even under relatively high CPU load. For complete sequential
chain application the scheduler cannot optimize latency at
all, and its latency worsens with increased CPU load because
of more interferences between concurrent workflows under
higher CPU load. For complex applications with both fanout
and sequential stages, the scheduler can optimize its latency
under low CPU load, but with increased CPU load its latency
becomes worse than sequential execution due to interference.

This benchmark shows that application-level information,
such as the structure of the application workflow, can be lever-
aged to optimize the end-to-end latency of complex microser-
vice applications. Extracting this information automatically
to optimize application execution is an interesting future di-
rection; for now, we implement a fused-execution mode for
applications. Requests from applications marked as fused are
executed in run-to-completion model with the entire workflow
running on the same core (as if it is a single function). One
heuristic that may make sense for triggering fused-execution
is to use a similar execution-time aware approach where if the
latency of a workflow is greater than its serialized execution
time, it is fused. With such a heuristic, the scheduler could
leverage applications’ internal parallelism to optimize latency
under low CPU load, and when load increases, interference
from concurrent workflows could be mitigated.

5.3.4 Mixed Workloads

In this experiment we evaluate the scheduler’s performance
with a mixture of heterogeneous applications. The mixture
consists of the Social Network application, the fanout appli-
cation and the long-running 100 ms function from previous
experiments. We keep Pyrosome at about 60% CPU utiliza-
tion with each application contributing to about 1/3 of the

Figure 19: Latencies of mixed applications

load. The results (Figure 19) not only show that Pyrosome’s
scheduler can accommodate a mixture of very different appli-
cations, but also show that different scheduler parameters can
prioritize different applications. The upper-left graph shows
the latencies with 50 ms as the scheduler’s partitioning thresh-
old. The scheduler is able to optimize the latency of the fanout
application, but the latency of Social Network application is
high. The bottom-left graph turns on fused-execution mode
for the social network application; this improves latency, but it
still experiences some head-of-line blocking from the fanout
application. In the bottom-right graph we set the threshold
for partitioning to 5 ms, which forces the fanout application
to be scheduled on the worker cores with the long-running
functions. This greatly reduces the latency for social network
application because head-of-line blocking is avoided, but at
the cost of increased latency for the fanout application because
it is limited on worker cores with fewer CPU resources for
parallel optimization. These parameters can be mechanisms
for higher-level policies for mixed workloads.

6 Related Work

Lighter-weight Sandboxes. There are many efforts trying
to address the performance and scaling challenges by reduc-
ing the overhead of containers or adopting lightweight sand-
boxes. SAND [2] addresses the issues by running functions
of the same application as processes in the same container
to reduce isolation costs, and providing fast local messaging
bus for functions on the same host. Firecracker [1] is a new
Virtual Machine Monitor (VMM) built by Amazon that runs
serverless functions in lightweight MicroVMs with a mini-
mized Linux kernel. Nightcore [22] is a serverless function
runtime for latency-sensitive interactive microservices that
implements fast internal function calls and other optimiza-
tions to achieve high performance with container-based isola-
tion. All these solutions still rely on heavy weight sandboxes
such as processes, containers and VMs, so their overheads
and cold start latencies are still high compared to Pyrosome.
They also rely on OS-level scheduling which is costly and
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lacks request-level visibility. There are also solutions from
the academia and the industry [15, 20, 24, 45, 50, 52, 54] that
leverage lightweight language level isolation such as the V8
JavaScript or WebAssembly runtime to build fast serverless
frameworks. But these frameworks do not consider the mi-
croservices scenario of complicated inter-dependencies and
communications between a large number of services.

Actor systems. Pyrosome’s approach to containing several
logical services within a single process runtime bears simi-
larity to actors systems. Actors are small logical agents that
communicate and trigger computation and concurrency via
messages. Frequently many actors are multiplexed on a single
machine or within a single runtime allowing similar optimiza-
tions to Pyrosome. For example, Scala’s original actor system
implements some inter-actor messaging as direct procedure
call [19]. There are some popular actor systems used in pro-
duction [6, 31, 47], and some recent efforts seek to improve
inter-host messaging efficiency in actor systems [34]. Ray is
a recent actor-based approach for executing distributed analyt-
ics tasks [36]. Pyrosome differs from these systems since it is
focused on microservice-oriented architectures and leverages
low-overhead language based isolation. Instances of the same
service of a microservice application often need to share the
same underlying database, whereas actors do not share state.
In Ray, workers and actors on the same node are running
in separate processes, whereas in Pyrosome all services are
running within the same process to aggressively reduce con-
text swithing and communication costs. Compared to Ray,
Pyrosome is pushing the limit of performance optimization
even further with language-based isolation.

7 Discussion

In this section we discuss the contributions and limitations of
the paper, and possible future work directions.

7.1 Contributions

This paper makes a key contribution by evaluating the po-
tential benefits microservices can reap from a clean-slate
redesign of the cloud stack with light-weight, language-based
isolation. Given the prevalence of container-based deploy-
ments, we choose container and kubernetes as our baseline
for comparison. While both academia and industry have
explored language-based isolation for cloud systems, these
efforts primarily focus on serverless applications with limited
number of functions, overlooking the unique challenges of
microservices, such as their numerous services and intricate
inter-service communication patterns. Our work addresses
this gap by implementing a complex application from Death-
StarBench and designing a scheduler specifically tailored to
the demands of complex microservice deployments.

7.2 Limitations

The paper aims to evaluate the potential benefits of
lightweight language-based isolation for microservice appli-
cations through a minimal proof-of-concept implementation.
Consequently, it lacks many features required for produc-
tion readiness, such as cluster management, orchestration,
autoscaling, monitoring and package management etc. Fur-
thermore, production-critical aspects like fault tolerance, re-
liability and consistency guarantees fall outside the scope of
this work.

As previously discussed, Pyrosome’s security isolation is
weaker, requiring mutual trust between services within the
same instance. This makes Pyrosome better suited for trusted
internal infrastucture or private cloud platforms. However,
many large-scale microservice applications, such as those
at Netflix and Uber, Meta [21], operate within such trusted
environments, suggesting significant potential value for Py-
rosome in these contexts. Stronger security isolation can be
achieved by isolating some services in their own Pyrosome
instances, akin to Chrome’s Site Isolation [41], but with the
trade-off of increased performance overhead.

Furthermore, this work is limited to a single node. We fo-
cus on this scenario because the performance differences be-
tween heavyweight container-based isolation and lightweight
language-based isolation are most pronounced within a sin-
gle node. While Pyrosome can be scaled to multiple nodes
using techniques like a cluster-wide scheduler, exploring this
is beyond the scope of this paper.

7.3 Future Works

A natural extension of this work is to scale Pyrosome across
a cluster of nodes. A cluster-wide scheduler must account for
the significantly higher communication cost between nodes
compared to within a single Pyrosome runtime. A design
similar to the bottom-up two-level hierarchical scheduler in
Ray [36], could be utilized to prioritize co-locating interde-
pendent services on the same node. Furthurmore, the global
scheduler could leverage application-level information, such
as service dependencies, call graphs, data access patterns and
runtime statistics, to optimize service placement across the
cluster.

While the Social Network application used in our evalu-
ation comprises roughly two dozens of services, many pop-
ular real-world microservice applications operate at a far
larger scale, encompassing hundreds or even thousands of ser-
vices [37,55]. Evaluating the performance gains achievable by
deploying such large-scale applications on Pyrosome presents
a compelling avenue for future investigation. As shown in our
evaluation, the structure of the application workflow is found
to be valuable information for optimizing the end-to-end la-
tency of complex microservice applications. How to analyze
and leverage such information to optimize microservice ap-
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plications at large scale is also an interesting question.
While our current Pyrosome implementation utilizes

the V8 JavaScript runtime, the underlying design is not
language-specific. Exploring Pyrosome’s implementation
on WASM [17] runtimes [20, 52] presents an intriguing direc-
tion for future work, potentially expanding support to a wider
range of programming languages.

8 Conclusion

Today’s cloud-native applications are naturally structured in
a higher-level and more decomposed way than classic mono-
lithic applications run on the abstraction of a full machine.
However, today’s inefficient legacy cloud software infrastruc-
ture and abstractions hinder the performance and scalability of
these applications. Pyrosome shows that a clean-slate design
of cloud services runtime targeted toward microservice-era
applications can greatly improve performance, enable more
granular decomposition of services, and scale up/down better
than today’s container-based platforms. Additionally, Pyro-
some shows that we can implement smart scheduling opti-
mization that leverages information collected at runtime to
utilize cores efficiently and minimize application tail latency.
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