Published in Transactions on Machine Learning Research (MM/YYYY)

SeqLink: A Robust Neural-ODE Architecture for Modelling

Partially Observed Time Series

Futoon M.Abushaqra
School of Computing Technologies
RMIT University

Hao Xue
School of Computer Science Engineering
University of New South Wales

Yongli Ren
School of Computing Technologies
RMIT University

Flora D.Salim
School of Computer Science Engineering
University of New South Wales

futoon.abu.shaqra@student.rmit.edu.au

hao.zuel Qunsw.edu.au

yongli.ren@rmit. edu.au

flora.salim@unsw. edu.au

Reviewed on OpenReview: |https: //openreview. net/ forum? id=WCUT6leXKf

Abstract

Ordinary Differential Equations (ODEs) based models have become popular as foundation
models for solving many time series problems. Combining neural ODEs with traditional
RNN models has provided the best representation for irregular time series. However, ODE-
based models typically require the trajectory of hidden states to be defined based on either
the initial observed value or the most recent observation, raising questions about their effec-
tiveness when dealing with longer sequences and extended time intervals. In this article, we
explore the behaviour of the ODE-based models in the context of time series data with vary-
ing degrees of sparsity. We introduce SeqLink, an innovative neural architecture designed to
enhance the robustness of sequence representation. Unlike traditional approaches that solely
rely on the hidden state generated from the last observed value, SeqLink leverages ODE la-
tent representations derived from multiple data samples, enabling it to generate robust data
representations regardless of sequence length or data sparsity level. The core concept be-
hind our model is the definition of hidden states for the unobserved values based on the
relationships between samples (links between sequences). Through extensive experiments
on partially observed synthetic and real-world datasets, we demonstrate that SeqLink im-
proves the modelling of intermittent time series, consistently outperforming state-of-the-art
approaches.

1 Introduction

Time series analysis of a complex irregular system is regarded as one of the big problems in contemporary data
science (Weerakody et al., 2021)). Irregular time series occur in many fields, particularly for medical systems
where the data is only captured intermittently, leading to gaps in the sequences (Singh et al.| 2019). These
gaps may sometimes extend over long periods - for example, if a patient misses his/her appointments or fails
to use the medical devices at home regularly. However, irregular time series capture dynamic observations
without a constant time basis, which makes it hard to model them (Scarglel [1982). Recently, the advances in
neural ordinary differential equations (neural ODEs) ((Chen et all 2018), which can produce networks with

https://openreview.net/forum?id=WCUT6leXKf

Published in Transactions on Machine Learning Research (MM/YYYY)

037
Percentage of

Unobserved Values
B 10%

028
06 025 w20%
0.7z m30%
04 019
016 40%
02 013
0 =
0ol 1 1 100 Time point 500 Time point 1000 Time point
8 m 2 8 R A R

o8 0.34
- T "~ g Sequence Length

08
0.31

MSE Error

Observation value
Observation value

™

06

04

AWl

NI,III,'I AN

At . .

Time Time

10 ——

(a) (b) (c)

Figure 1: (a) Bumpy irregular time series (with unobserved data highlighted using a yellow-hatched). (b)
Intermittent, irregular time series (with unobserved data highlighted using a yellow-hatched). (c) Perfor-
mance of ODE-RNN model on synthetic intermittent trajectory data with different lengths (100, 500, and
1000 time points) and varying levels of sparseness. The results show that ODE-RNN model is influenced by
both the length of the sequence and the sparsity level (time lapse between observations).

continuous hidden states, have become fundamental models for handling irregular sequences. ODEs describe
the evolution in time of a process that depends on one variable (initial condition) (Chen et al., [2018)); hence,
for an ODE-based model, the continuous trajectories of the hidden state are described by just one variable
(either the initial value or the last observed value). Since this trajectory represents the data, having the
best possible representation of the hidden state is important. Thus neural ODEs are effective but may not
provide the optimal representation for the whole sequence, especially when using sequences with long time
lapses between observations (e.g. data from medical records). In such cases, the hidden states count on the
one initial value for a long time.

To illuminate the limitations of ODE-based models, we describe two distinctive irregular time series patterns:
(a) bumpy series (Figure [lla), which are characterised by frequent and short unobserved intervals, and (b)
intermittent series (Figurb), known for having long gaps with numerous unobserved values over extended
periods, as outlined in (Zhang et al., [2021)). Subsequently, we investigate the behaviour of the ODE-based
model under the influence of these irregular time series patterns by conducting a set of experiments on
synthetic intermittent datasets with varying levels of sparsity (sets of consecutive unobserved values) as
described below in Section 5.1} We study the ODE-based model’s performance on sequences of different
lengths -using ODE-RNN as an exemplar model. Specifically, we assessed the model forecasting accuracy
for sequence lengths of 100, 500, and 1000 time points, each with varying sparsity levels ranging from 10%
to 40%.

The results, illustrated in Figure[I]c, show that both sequence length and the degree of sparsity significantly
impact the prediction accuracy. However, the main challenge lies in having consecutive unobserved values for
along time. The ODE-based model shows a consistent pattern across different sequence lengths, indicating an
inverse relation between the percentage of unavailable observations and prediction accuracy. For example,
when 30% of the data is unavailable, the error rate increases by an average of 17.8%, 32%, and 14% for
sequence lengths of 100, 500, and 1000 time points respectively, compared to the results when only 10% of
the values are unavailable. These results indicate that the ODE representation of continuous unobserved
data may vary based on the amount of available data in relation to the sequence length. In the case of longer
gaps, the model may not effectively capture the underlying dynamics of irregular time series. This behaviour
might be related to the fact mentioned before that ODE-based models rely on a single initial state.

To overcome the limitation of ODE-based models on modelling long intermittent sequences, we present a
novel ODE-based architecture (SeqLink) that does not rely on one trajectory (generated by the last available
observation) to represent the data; it also produces more generalised hidden trajectories using information
learned from similar samples. Our architecture comprises three major parts: (1) an ODE auto-encoder to
learn a better representation of the data by employing an encoder to construct hidden trajectories based
on ODE; (2) an attention module to categorise the learned representations based on the relations between

Published in Transactions on Machine Learning Research (MM/YYYY)

samples; (3) a new ODE-based model (Link-ODE) designed and used to model time series by integrating
all the categorised learned hidden trajectories from various samples and providing a continuous effective
representation for the sequences. The contributions of this work are as follows:

o We have demonstrated how traditional ODE-based models may yield inaccurate predictions and less
effective hidden representation when applied to data with a high level of sparsity. Additionally, we
show how they are affected by the length of the time lapse between observations. These experiments
also serve as the motivation for this work.

e We have proposed a novel approach that utilises diverse ODE-based hidden trajectories to provide
an unrestricted representation for unobserved data, enabling us to maintain a good continuous
representation over a long period.

e Our proposed method, SeqLink, achieves improved performance over other recent models for time
series forecasting on both multivariate and univariate datasets. Additionally, our results demon-
strate that SeqLink enhances the latent space representation of unobserved time series and improves
prediction accuracy.

2 Related Work

Irregularity issues (also known as partially-observed time series) are related to non-uniform intervals between
observations (Kidger et al.,|[2020; Weerakody et al.,|2021)). In a regular time series, the data follows a specific
temporal sequence with a regular interval - for example, samples may always be observed daily. By contrast,
in an irregular time series, samples are observed at unevenly spaced intervals. This issue is common for data
captured from humans (such as medical data and data on human behaviour), where the system depends on
people’s commitment (Scarglel |1982;|Zhang et al.l 2021} [Lipton et al., |2016). Irregularity may also be caused
by capturing data from heterogeneous sources and sensors (Deldari et al., 2020; |Abushaqra et al., [2021}
Almaghrabi et all 2022). However, irregular sampling does not fit with standard machine learning models
that assume fixed-size features (Narayan Shukla & Marlin) [2021)). Up until the last few years, there were
a number of traditional techniques used to handle irregularity, including analysing fully observed samples,
performing a features analysis rather than a temporal analysis, or re-sampling and imputation (Zhang et al.,
2021} Singh et al., [2019); these methods can destroy temporal information and dependencies.

Although recurrent neural network (RNN) (Robinson & Fallside, [1987; |Werbos| [1988) shows outstanding
performance in modelling temporal data, it does, on the other hand, assume both fixed gaps between
observations and fully observed samples. Recently, with the development of neural ordinary differential
equations (neural ODEs) (Chen et al., 2018) in 2018, more effective models have been proposed for irregular
data. Neural ODEs is a continuous-time model that defines a latent variable h(i) as the solution for an
ODE initial value problem. Rather than specifying a discrete sequence of hidden layers, a continuous
representation became possible using the parameterisation of the derivative. To utilise this advantage of
the hidden state in neural ODESs, recent models like ODE-RNN and latent ODE (Rubanova et all [2019)
have presented a continuous-time latent state, where the formation of the dynamics between observations
is not predefined. These models define the state between observations to be the solution to an ODE, while
normal RNN hidden cells are used to update the hidden state at each observation. Therefore the trajectories
of the hidden state between observations are defined by the last observed value. As a particular case of
the ODE-RNN model, (De Brouwer et al., 2019) provided the GRU-ODE-Bayes model, which includes a
continuous-time version of the GRU (GRU-ODE) and a Bayesian update network to handle the sporadic
observations. The model combines GRU-ODE and GRU-Bayes, where the first one is used to update the
hidden state h(i) in continuous time between observations, and the second is responsible for transforming
the hidden state based on the new observation. In recent years, many models based on differential equations
(DE) have been presented. These models, including work by Kidger et al.| (2020); Morrill et al.| (2021);
Herrera et al.| (2021)); |Jia & Benson| (2019)) and others, have enriched our comprehension of DE behaviour
and demonstrated enhanced performance across various scales.

To tackle the challenge of modifying the hidden trajectories based on newly received data, the controlled
differential equation (CDE) and the neural rough differential equations (RDE) were introduced (Kidger et al.,

Published in Transactions on Machine Learning Research (MM/YYYY)

2020; Morrill et al., |2021). In contrast to ODE, which primarily relies on their initial states with limited
provisions for adjustments, CDE updates the driven value of the ODE equation, denoted as ds, by utilising
a matrix vector represented as dX. Therefore the solution of CDE depends continuously on the evolution
of z (driven by the control X). Neural RDE is an extended neural CDE where, in order to increase memory
efficiency, especially for long sequences, the data is modelled without embedding the interpolated path.
In recent work by [lakovlev et al.| (2023)), the authors also focused on faster modelling for long sequences;
they provided multiple shooting framework for latent ODE models that works by splitting trajectories of
neural ODEs into short segments, optimising them in parallel to facilitate efficient training. Another notable
contribution is the work by [Schirmer et al.[(2022), where they introduced continuous recurrent units (CRUS).
These units integrate a linear stochastic differential equation (SDE) within an encoder-decoder framework,
using the continuous-discrete Kalman filter to ensure smooth transitions between hidden states and an
effective gating mechanism. It is worth noting, however, that the focus of these improved models has
primarily been on either facilitating faster learning or enhancing the representation of long sequences. In
contrast, our focus is directed towards generating a stable representation for irregular data sets characterised
by longer gaps.

Researchers have also explored irregular time series modelling by combining ODE-based models with atten-
tion mechanisms (Narayan Shukla & Marlin, [2021} [Jhin et al.l 2022} [Yuan et al., |2022) and long short-term
memory (LSTM) networks (Lechner & Hasani, 2020)). Furthermore, ODEs have recently been applied in
various fields, for instance, in (Yan et al., [2020), where the authors studied the robustness of the neural
ODEs and proposed the time-invariant steady neural ODE (TisODE). Their model was then applied to an
image classification task by removing the time dependence of the dynamics in an ODE (Garsdal et al., 2022)).
Additionally, efforts have been made to reduce the high computational overhead caused by the ODE-based
models. Habiba & Pearlmutter| (2020)) redesigned RNN architectures such as GRU and LSTM using ODE,
resulting in GRU-ODE and LSTM-ODE models that reduce the computation costs. The models leverage
ODE solvers to compute hidden states and cell states, thus substantially reducing the computational cost
of additional encoding and decoding used in the previous models (such as Latent-ODE and ODE-RNN).
In a recent development, |[Zhou et al.| (2023) introduced the LS4 generative model. LS4, short for latent
state space sequential sampler, is designed to capture and generate sequences of data by incorporating la-
tent variables that evolve according to a state space ODE. This model overcomes limitations in existing
ODE-based generative models, especially for sequences with sudden changes. LS4 demonstrates enhanced
performance and faster training. Another recent contribution |Chowdhury et al. (2023)) introduced a method
for self-supervised learning on irregular multivariate time series. This approach employs contrastive learning
and data reconstruction tasks, maintaining the native irregularity of the data. Additionally, it incorporates
a time-sensitive data reconstruction task, masking a fixed duration of data instead of a fixed number of
observations to ensure tractable reconstruction across regions with varying sampling densities.

As numerical integration, which is used to approximate the solutions of ODEs using numerical methods,
significantly influences the model performance, it remains a subject of ongoing investigation. [Zhu et al.
(2022)) explored neural ODEs and their interplay with numerical integration, revealing how neural ODEs
approximate certain equations during training. |Ott et al.| (2020) analysed the connection between differen-
tial equations and ResNet, highlighting the strong link between ODE-based models and numerical solvers.
Krishnapriyan et al.|(2022) conducted experiments to demonstrate the impact of numerical solvers on neural
ODEs and proposed a convergence test to select suitable solvers for continuous dynamics.

3 Preliminaries

In this section, we introduce the fundamental concepts of ODE-based models, along with the notion of ODE
solvers. These concepts serve as the foundation for our proposed methodology. The notations used in the
paper are summarised in Table

ODE: ODE is a mathematical equation that describes the rate of change of a function with respect to an
independent variable. In the context of time series data, ODEs capture the dynamics and relationships
between variables over time. A simple form of an ODE is given by: d“;(tt) = f(x(t),t), where x(t) represents

the state of a system at time ¢, and f(xz(t),t) defines the rate of change of x(¢) at a given time point.

Published in Transactions on Machine Learning Research (MM/YYYY)

Table 1: Symbols and Notations.

Notation Description

K A size of data of time series sequences.

k An individual time series sequence extracted from the dataset, denoting
a sample sequence within the dataset.

D The dimensionality of each time series, referring to the number of fea-
tures it encompasses.

t A time index indicating the chronological order of measurements within
a time series, starting from 1 to n.

n The final time point within a time series.

i A specific time point within the time index t.

t; A time point where t = 1.

X The actual observed values of a time series.

€T; The actual observed value at time 7 of a time series.

m A mask matrix indicating the availability of observations.

m; A mask value for a specific time point, with a value of either 0 or 1,

indicating the presence or absence of a measurement at time point i.

hi A hidden state representing the internal activation of a neural network
layer at time point 3.

ODE Solvers: Solving an ODE involves finding the solution z(t) that satisfies the given differential equation.
ODE solvers are numerical methods used to approximate the solution of an ODE over a specified time interval.
One common approach is the ODESolve method, which numerically integrates the ODE using discrete time
steps. Given an initial condition z(tg), an ODE solver approximates the values of z(t) at subsequent time
points.

Neural ODEs: Neural ODEs are an extension of traditional ODEs, where the function f(x(t),t) is param-
eterized by a neural network. Neural ODEs allow us to model complex and continuous-time dynamics in a
data-driven manner. The formulation of a neural ODE is given by:

%it) = fo(h(t),t), where h(tg) = ho "
ho, -+, hy = ODESolve(fq, ho, (to, -+ ,tn)), o

where fy is a neural network function with learnable parameters 6, and h(t) denotes the state of the system at
time ¢. Given a function fy and an initial condition hg the ODESolve function is used to solve the differential
equation and compute the values of h at sequence time points tg,- - , 5.

ODE-RNN: is a model that combines the strengths of ODEs and RNNs to model irregular time series data.
In the ODE-RNN framework, the hidden state h; between observations is defined using solutions to an ODE.
While at observations, the hidden state is updated using an RNN cell, ensuring that both continuous-time
dynamics and observation-specific information are captured. The ODE-RNN formulation is given by:

v ODESOZ’U@(f@, hifl, (tifh R ,ti)) if m; = O,

where h; represents the hidden state at time ¢;, x; is the observation at time ¢;, m; is a mask value indicating
if the observation is available (m; = 1) or not (m; = 0), and ODESolve is an ODE solver that integrates the
ODE using the given function fp, an initial state h;_;, and a sequence of time points (¢;_1,...,t;).

Published in Transactions on Machine Learning Research (MM/YYYY)

4 Methodology

4.1 Problem Statement

We consider modelling K sporadically observed time series with D dimensions. For example, data from K
samples (e.g. patients) where D variables are potentially measured at a specific time point ¢;. Each time
series is measured at time points ¢ = (1,2, ..,n). The values of the observations are defined by a value matrix
x € R™*P and a mask matrix m of size (n x D): m € (0,1) to indicate if the variable is observed (m; = 1) or
not (m; = 0) at each time point 7. We assume a specific time series to be sporadically sampled when some
samples z have m equal to (0) at one or more time points. The goal is to model the sporadic time series
effectively by finding the best continuous latent representation h for the entire sequences.

4.2 Overview of SeqLink

In this article, we present a novel system for modelling irregular time series data, aiming to derive generalised
continuous hidden representations for unobserved values. As shown in Figure 2} our model comprises
three key components: (1) ODE Auto-Encoder: This component uses neural ODEs to learn optimal
hidden representations for each sample. It takes datasets as input, employing neural ODEs to capture
continuous hidden trajectories that best represent each sample. Subsequently, it returns the most suitable
representation for each sample. (2) Pyramidal Attention Mechanism: Designed to delineate correlations
between samples, this method maps data with each other. By leveraging the learned representations as
input, it discerns, for each sample, the most relevant representations of other samples. It then sorts these
representations based on their relationships to each sample. (3) Link-ODE: A generalised ODE-based
model tailored to modelling partially observed irregular time series. By utilising the best-hidden trajectories
to fill in gaps in the data, this model incorporates learned latent states from another related sample alongside
sample-specific latent states to represent each sample effectively. The remaining parts in this section will
address each module of SeqLink.

4.3 ODE auto-encoder

Inspired by the idea of the denoising auto-encoder (AE) (Vincent et al., [2010]), which utilises a corrupted
input to train the encoder in order to obtain a high-quality embedding, our ODE-based auto-encoder aims
to identify the optimal hidden representation (ODE hidden trajectory). The denoising AE is a type of neural
network that learns to denoise data by encoding corrupted inputs and then reconstructing the original data.
In a similar vein, our ODE-based AE seeks to minimise the reconstructing error between the original data
values x and the decoder output y through the identification of the ODE hidden trajectory. However, our
ODE AE deviates from the traditional denoising AE objective, as our primary goal is to obtain a robust and
effective latent representation of the data rather than focusing on explicitly denoising it. Therefore, the task
is reconstructing x’ (corrupted z) to the original data x and then obtaining the learned data representations
that yield the best result. The proposed ODE AE is presented on the left-hand side of Figure[2] and consists
of the following steps:

o Generate 2’ by corrupting observed x in a time series k using a cut__out function based on a specific
number of points to be removed from the timeline. The cut_ out function removes the data points
by setting them to zero in both the value and mask vectors.

o Each corrupted z’ is processed by the ODE-RNN encoder to learn the hidden representation h; at
each time point t = ¢. See Equations and . Where the RNN function is used to update the
hidden state u; at observation time i for observation x;. While ODE solver is to solve ODE and
get state u; at time t; when there are no observations (the time between ¢ — 1 and ¢, as Equations
4) as described in Section [3] In other words, Equation [4] is used to find the hidden state for the
observations, and Equation is used to find the hidden state between the observations (the gaps).

Published in Transactions on Machine Learning Research (MM/YYYY)

Input: ODE latent representations of

sequence data Pyramidal Attention
»
7777777777777777 I Mapping sample and learned
ODE auto-encoder 7 P representations
« “ee u, ' = “rca i

0 . o
ODE latent D D [:] [:] £2) L A (k.i.u)

representation Learned representations ' LoL.L.
Output: ODE latent representation R LR (ki)

. : z
Encoder: Decoder: (U = {ufle € k}.1) ¢
ODE-RNN Linear
network Attention
Output: importance rates @
Corrupted Reconstructed .
dats
data e ODE-RNN Decoder I 1 ¥
encoder l I¥ 4 Pyramid sorting
Cutout J {
time points minError(z,y) ODE denoisi d L Tiy Uik, Ol
£ denoising auto-encoder :
LU, ey

LTy Uil, Qi

Original data ©

Output: List of the learn
Inputs: z,m representations sorted
to diffrent levels (1) based
0o lololol0l0 i
\ [1] U

on the importance rates.

[EEEs

u [i Uy

L > Link— ODE(h) = (wouty)1)i ko)

Figure 2: The architecture of SeqLink model with auto-encoder that generates the learned representation
for each sequence, pyramidal attention module to sort the representation based on the correlations between
samples, and Link-ODE to provide a continuous effective representation for the sequence based on the
learned information, where U (generated by ODE auto-encoder) is a set of the best-learned representations

U= {{ugl)}?:l, {uz@) AR ,{ugk) ™, } for each sample k at all time points ¢;, o the importance weights

for each latent representation. I: a level from 1 to |L| used to sort the learn representations.

U; = ODEiRNN(tl) = ODESolve(fg, Ui—1, (tifl, tee ,ti)) (5)

o The latent representations are solved back and decoded to the data space (to undo the effect of the
corruption process), where a decoder model of linear sequence layers generates the predicted data y.

e The generated data y is compared to the original x with the goal of minimising the re-generating
error between y and x as argminLoss(X,Y), where arg min represents the argument (or value) of
P p

p that minimiSes the function Loss(X,Y), p = w,w’,b,b" is the set of learning parameters to be
optimised for the encoder and decoder, and Loss(+) is the loss function used to measure the similarity
between x and y. Finally, the learned hidden trajectories of each sample are saved for the next phase

as a set of U = {{ul}r_,, {ul ey, {ul)r)

4.4 Pyramidal Attention

We use the previously learned hidden states U to define a set of latent representations for each sequence
based on the correlation between samples. Hence, we find the attention score between the samples and the
learned representations from the auto-encoder. As shown in Figure 2| we first map the original data (x)
to the learned representations (u) by embedding both vectors as Equations |§| and m where ¢ refers to the
embedding layer and 6 represents the learning weights.

eik =Pz (va esoz) (6)
el = pu(uyf,0,,) (7)

© 0N O AW N -

H R R R e
AW N = O

Published in Transactions on Machine Learning Research (MM/YYYY)

Next, a concatenate layer combines both vectors as (S,) as Equation where 0 is a set of learning parameters.
This is followed by an attention layer that defines an attention score to find the importance rate «, between
each x and u using Softmax function as the following formula:

S, = (ekpeky. 0 (8)
_ exp(Sy) 9
T eap(S))

The assigned importance weights «, are used to generate a set of hierarchical levels of related latent repre-
sentations as {l1,l2,...,{1}, where each [; represents a subset of the hidden states from U, i.e., [; = {u C U}.
At this stage, we use pyramidal sorting for each sample and corresponding learned representations according
to the attention importance weights a, (as shown in Algorithm (|1))). The input consists of the importance
weights obtained through the attention layer, the learned representation for each sample, and the total num-
ber of levels L, which determines the pyramid height. The output is a list of sorted representations for each
sample, defining the categorisation of entities based on their importance scores.

The pyramidal attention mechanism in our model sorts learned representations based on correlations for each
sample, offering advantages over selecting a single best representation. This sorting ensures that the final
representation for an unobserved value incorporates information from multiple related latent representations,
reducing reliance on a single sample and enhancing the model’s generalisability. By constructing a relevance
pyramid, higher levels contain representations with higher importance rates, while lower levels contain repre-
sentations with lower rates, allowing comprehensive consideration of information from all samples, avoiding
over-reliance on individual samples and reducing the influence of outliers or noise. Moreover, the pyramidal
mechanism introduces a negligible additional computational cost compared to using only attention, as it
involves the same standard operations.

Algorithm 1: Pyramidal sorting

Input: Attention_weights (rates) « , Learned_ representations U, number_of level L
sorted__uy =[] // sorted weights for one sample
sorted_u = || // sorted weights for all sample
for k in 1,2, .., K do:
rates = alk, |
for [in 1,2,.., L:
MeanV =" rates/K
Current__L = [rates <= MeanV|
Current_U = U[Current__L].mean()
rates = [rates > MeanV]
sorted__uy.append(Current__U)
end for
sorted__u.append(sorted__uy)
Output: sorted_u

4.5 Link-ODE

Using the learned hidden representations, we define a Link-ODE network (shown in Figure |3) that in gen-
erating a continuous representation for the unobserved part not only considers the last observed value but
also uses the ODE trajectories learned from different samples. The implementation of the Link-ODE is
represented in Algorithm 2] An ODE solver is used to define the hidden state at time ¢ 4+ 1 based on the
last observed value (initial value), while another ODE solver is used to define a hidden state trajectory for
i+ 1 for other samples (ODE solver from the ODE AE discussed in section [4.3)). Finally, an RNN cell is
used to find the hidden state when there is an observation based on hidden states from the ODE solver for
the current sample, the hidden states of other samples, and the current value of x;. In other words, when
m; = 1 the hidden state is defined based on the last hidden state and the current value of x; for each x;, and

W N -

%]

Published in Transactions on Machine Learning Research (MM/YYYY)

Link-ODE

Hidden state learned by ODE for
other samples

Figure 3: Architecture of Link-ODE model (the green part in Figure . Continuous-time modelling for
irregular samples, where hg is the initial state of a time point ¢;, f(-) is an ODE cell (update function) to
solve the ODE for h, and u{ is the previously learned trajectories from other samples zj at the same time
point.

when m; = 0 the hidden state is defined based on the ODE solver for the last hidden state and the hidden
states learned from other samples. The previously learned states are combined and multiplied by a specific
weight based on their level of correlation to the sample (p), as expressed in the following Equations (10)11)):

p=w-ly,w-lg,-+ ,w-lg (10)
hi+1 = RNNCell(hi+1,p, $i+1) (11)

p is a matrix encompassing all levels, where each [corresponds to latent representations assigned to that
specific level. The weight values, denoted by w, are established according to the levels, wherein latent
representations at a given level [receive higher weights when positioned at the pyramid’s apex. This apex
placement signifies a heightened relevance to the current value of z, as determined by the attention layer.
After obtaining a continuous representation that encapsulates the learned relationships and dynamics within
the data, a conventional output dense layer is employed, where the representations are then fed to generate
the final output.

Algorithm 2: Link-ODE
Input: Data points x
Output: hy
for i in 1,2,...,n do:
}'LZ—H = ODESolve(fg, hy,, (tiytiy1)) // Solve ODE to get state at ;41 based on last hidden
state of x;.
hiy1 = ODESolve(fg, hyr, (ti,tiy1)) // Solve ODE of h;y; of other sample in K.
hi+1 = RNNCell(fLi+1, iLi+1, l‘i+1)
end for Pass;

5 Experiments

5.1 Datasets

Synthetic data (Gaussian trajectories): To evaluate the performance of our proposed model and analyse
the model’s robustness, we generated three synthetic datasets with 1000 samples of periodic trajectories and
varying sequence lengths using the standard Gaussian function. The standard Gaussian f