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Abstract

This paper analyzes challenges in deploying generative Al in healthcare, examining inadequate
evaluation methods, vendor-provided use cases, and adaptation needs. We propose a hybrid
framework that uses vendor models for non-medical applications while implementing
hospital-managed infrastructure for clinical use cases. This approach balances innovation with
patient safety, providing control over adaptation while mitigating biases, ensuring regulatory
compliance, and maintaining long-term stability for sustainable healthcare integration.

1. Introduction

The rapid development of Artificial Intelligence (AI) along with the availability of large amounts of data in
healthcare, is driving a rapid growth of applications and research in applied Al for medicine [1]. The
impressive capabilities of Generative Al (GenAl) to process natural language along with the vast amounts of
free text available in EHRs were quickly recognized and appeared as a promising solution to the challenges
faced by healthcare to process this type of data. A major challenge with the introduction of EHRs is the
duplication of information through structured and unstructured data. Clinicians often rely on unstructured
data such as clinical notes found in the EHRs, partly due to the increased workload, which makes data sharing
and secondary use inefficient [2, 3]. Another challenge is the heavy reliance on large amounts of information
in various formats, particularly free text, and on multiple platforms, requiring clinicians to spend up to 50%
of their working time in the EHR or accessing external resources to assist with clinical decision [4].

The difficulty of leveraging unstructured natural language has motivated foundational model trainers to
investigate the capabilities of GenAl in healthcare, but these investigations were performed in a context of
heavy competition between technology companies, which led to limited evaluation methodologies often
without the implication of medical professionals [5, 6]. The focus on automated evaluation methodologies
and the lack of clinical studies to assess the relevance of Al models in clinical practice contribute to a
misinterpretation of the capabilities of Generative Al for healthcare, with studies demonstrating low
performance on more realistic scenarios [7]. Additionally, LLMs can exhibit extreme biases toward certain
ethnic groups or genders [8]. Previous work demonstrated that models are unable to appropriately represent
the demographic diversity in medical conditions and more concerning make incorrect recommendations
due to the patient’s demographic [9].

In this work, we first analyze current evaluation methods for GenAl in medicine, examine
vendor-provided use cases, highlight adaptation challenges, and then propose a hybrid framework that
balances innovation with patient safety.

© 2025 The Author(s). Published by IOP Publishing Ltd
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2. Challenges with Al vendors

2.1. Evaluation of generative Al in medicine

Benchmarks such as MedQA, based on multiple-choice medical exams, dominate Al evaluation but have
limited real-world validity [5, 10]. Model developers such as OpenAl, Microsoft or Google report the
medical performance of their models by evaluating the accuracy using these benchmarks with MedQA being
the most commonly reported benchmark [6, 11, 12]. These actors have greatly influenced the testing
methodologies for the medical domain and shaped what is now the standard reported metrics in the field
[13]. Furthermore, the widespread adoption of these benchmarks as the standard for evaluating GenAI in
medicine has had unintended consequences. Specifically, these benchmarks are increasingly being treated not
just as tools for evaluation but as goals in themselves, with leaderboards ranking model performance [13].
This phenomenon is exemplified by MedPrompt, which employs complex strategies to achieve higher scores
on medical benchmarks, reaching over 90% accuracy when combining all strategies [14]. While competition
fosters innovation, the availability of test data raises concerns about contamination, where models may have
been exposed to questions during training, undermining reliability. This overemphasis on benchmark scores
can mislead stakeholders, as high accuracy does not always translate to real-world clinical effectiveness.

The use of standardized questions allows for quick, automated tests but is based on two hypotheses. First,
that standardized tests are a reliable method to assess medical knowledge and capabilities, [15] and secondly,
GenAl models can be evaluated using similar modalities as humans [16]. Both hypotheses are often taken at
face value, and few studies attempt to validate them in practice. Existing literature on standardized testing
found no link between USMLE scores and the selection of the chief resident, but there was predictive value in
USMLE step 1 scores and board pass rates [17, 18]. While some studies do find associations with future
career steps in a physician’s career, a key limitation is assessing if this association is caused by knowledge of
the material or other characteristics that are good predictors of career development. For example, it has been
shown that IQ scores are good predictors of job performance, which could be the confounding factor
contributing to the identified correlations between USMLE scores and career advancement [19]. Similarly,
the second hypothesis that assumes models can be evaluated using the same tools as used for human
candidates lacks supporting evidence; there is, on the contrary, supporting evidence that these tools are not a
reliable methodology to assess these models [20]. For instance, an experiment showed that models achieved
high scores on multiple-choice questions about fictional medical scenarios, whereas medical experts
performed no better than random guessing [21].

Beyond these concerns, unexpected behaviors can appear in models such as major biases in terms of race
and gender. For instance, GPT-4 exhibits extreme biases when generating clinical vignettes of diseases such as
sarcoidosis or even COVID [8]. These biases could lead to real consequences and adverse outcomes for
patients, as models may diagnose and treat certain populations better than others—for example, by
prescribing advanced examinations at a higher rate [7]. Models can also be misleading, providing correct
answers for incorrect or spurious reasons, such as hallucinating findings in a CT image that were not
provided or misunderstanding a differential diagnosis [22].

GenAl applications for medicine are already available on the market without any supervision or
regulatory approval, often directly available to patients who lack the knowledge to critically analyze [23].
This demonstrates the disconnect between the careful medical approach of historical actors and the new
actors, who may not understand the requirements and best practices associated with healthcare.

2.2. Vendor-provided use cases and implementation challenges

The creation and validation of relevant use cases remain critical. External vendors, such as EHR providers,
have demonstrated agility in iterating on various applications, including chart summarization, patient
message responses, and note generation from transcriptions. The swift deployment of these use cases reflects
not only the vendors’ commitment to supporting GenAl, but also the substantial resources invested in this
ongoing effort. Additionally, vendors are prioritizing usability, striving for seamless integration with existing
tools. However, this rapid pace of innovation—driven by global excitement and aggressive competition—has
often come at the expense of thorough validation. Notably, only 1.9% of FDA-approved Al medical devices
are released with supporting scientific publications validating their use, and 43% lack published validation
data altogether [24, 25].

This development strategy raises several concerns. First, the proposed use cases may not align with the
needs of all healthcare providers. For example, in our institution, patients cannot message clinicians directly,
rendering this feature irrelevant. Second, the lack of prior validation places hospitals in a precarious position,
requiring them to commit resources to unvalidated products without robust evidence to justify these
investments. Lastly, this top-down development approach often results in a one-size-fits-all product that fails
to accommodate the diverse practices and requirements of different healthcare structures. For instance,

2



10P Publishing

Mach. Learn.: Health 1 (2025) 013001 M Griot et al

models may generate regionally inappropriate recommendations, such as providing U.S. helplines for
non-U.S. patients.

A major challenge with vendor-provided Al tools is their lack of transparency. These models operate as
‘black boxes, generating output without revealing their underlying decision-making processes. This opacity
makes it difficult for clinicians to trust or justify Al-assisted recommendations. Additionally, as models
evolve beyond the control of healthcare institutions, the inability to scrutinize updates further erodes
accountability and trust in Al-driven decisions.

The adoption of GenAl in healthcare also faces barriers in non-clinical applications due to the challenge
of delineating medical from non-medical use cases. Introducing GenAl for non-medical purposes, such as
administrative tasks like billing, scheduling, and resource planning holds significant promise for improving
operational efficiency. Yet, this approach is not without risks. Increased familiarity with these tools may
inadvertently encourage their use in borderline or unintended applications, potentially crossing into clinical
domains with clinicians using these tools for clinical decision support or clinical documentation [26]. Such
misuse could lead to data breaches, compromises of sensitive patient information, and even unintended
patient safety risks [27].

2.3. Local adaptation

Beyond the potential misalignment between use cases and local needs, there is a risk of misalignment
between the memorized clinical knowledge and local specificities. Healthcare is deeply influenced by regional
epidemiology, cultural practices, and healthcare infrastructure. LLMs, primarily trained on English-language
literature from high-income regions like the United States and Europe, may not adequately address regions
with different epidemiology, cultural practices, and resource availability. For instance, the antibiotic
resistance profile of pneumococcus differs significantly across regions and is influenced by local vaccination
practices [28]. A system trained predominantly on North American and European data might recommend
inappropriate treatments in such cases, potentially leading to suboptimal or harmful outcomes.

Even within the same healthcare system, hospital workflows, documentation styles, and EHR
configurations can differ significantly. A single Al model may not seamlessly integrate across diverse clinical
settings, leading to inefficiencies or inconsistencies. Additionally, individual physicians have unique
documentation preferences, which current models do not accommodate, requiring extra time for manual
corrections rather than improving efficiency.

Furthermore, the adaptation of AI models to local contexts is constrained by the opacity of commercial
Al development. Most vendor-provided models operate as proprietary systems, limiting the ability of
healthcare institutions to modify, retrain, or tailor them to their specific needs. Because models are typically
trained externally on datasets that may not reflect local patient populations, the ability to adjust them
post-deployment is often minimal. This lack of transparency makes it difficult to assess the appropriateness
of Al recommendations for local practice, further exacerbating concerns about safety and clinical relevance.

2.4. Lack of visibility

Medicine faces a new challenge due to the speed at which Al develops. Historically, medical sciences have
taken a slow, careful approach to novelty, with new drugs needing between 10 and 15 years to reach the
market [31]. These processes contribute to patient safety and ensure that new interventions have
demonstrated benefits for patients. However, generative Al models evolve at an unprecedented pace
compared to traditional medical devices, often undergoing major updates every few months, creating
uncertainty regarding their long-term viability and clinical reliability (table 1).

One of the most pressing concerns is the short lifespan of AI models and the frequency of updates, which
contrast sharply with the long-term nature of medical validation. In traditional medicine, once a drug or
treatment protocol is established, it remains relatively stable for years, allowing clinicians to build expertise
and trust in its use. In contrast, Al models undergo frequent modifications, retraining, and version changes,
often without clear documentation on how these updates impact medical performance. A model validated
for clinical use today may be significantly altered or even deprecated within a year, requiring constant
reevaluation and adaptation. This lack of stability raises concerns about the sustainability of AI-driven
workflows in healthcare, as hospitals may need to continuously assess and recalibrate their integration
strategies to keep up with evolving models.

Adding to this challenge is the uncertainty surrounding long-term support and model availability. Many
Al vendors, including large technology firms, operate on commercial strategies that prioritize newer models
over maintaining legacy versions. For instance, Azure OpenAl states that they will notify retirement of a
model at least 60 days before the date of retirement, [32] which is insufficient for hospitals to conduct the
necessary validation of candidate replacement models. If a healthcare institution invests significant time and
resources into integrating an Al model, there is no guarantee that the model will remain accessible in the
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Table 1. Comparison of key aspects of the development and support of the lifecycle between traditional medical devices and GenAl
models.

Aspect Traditional medical devices GenAl models
Development timeline 3-7 years from concept to market [29] Months between major model releases
Regulatory review Comprehensive pre-market approval Limited or non-existent for many
applications [30]
Version stability Post-market surveillance and compliance, Models may be retired from the market
clinical follow-up for entire lifecycle within 1-2 years
Update frequency Scheduled, with clear documentation Often continuous, with limited
transparency
Cost predictability Fixed licensing or per-unit costs Usage-based pricing subject to frequent
changes
Support commitments Long-term support guarantees for at least Limited guarantees (e.g. 60 days’ notice
10 years for Medical Device Regulation before retirement)
compliance
Backward compatibility Typically maintained across versions May require significant workflow
adjustments

long term. This raises questions about continuity of care and the risks of adopting tools that may be
discontinued or altered without sufficient notice. Unlike traditional medical devices or pharmaceuticals that
have well-defined regulatory post-market surveillance requirements, AI models exist in a more fluid and less
regulated space, making it difficult for hospitals to plan for long-term stability.

Despite AT’s rapid evolution, regulatory frameworks struggle to keep pace, raising concerns about
oversight and long-term governance. In response, the European Union has introduced regulations such as
the Medical Device Regulation (MDR), which sets stringent requirements for AI-driven medical tools
classified as high-risk, including those used for diagnosis, treatment, or monitoring (Box 1) [33]. The
upcoming Al Act, which takes effect in 2026, will further reinforce these requirements [34]. Additionally, the
General Data Protection Regulation (GDPR) ensures appropriate handling of patient data, mandating
consent-based processing [35]. However, given the speed at which Al models evolve and retire, compliance
with these regulations remains a challenge, as frequent updates may require repeated validation cycles,
creating additional burdens for healthcare institutions.

Box 1: Excerpt from the MDR defining what qualifies as a Medical Device.

[system]...intended by the manufacturer to be used, alone or in combination, for human beings for one or
more of the following specific medical purposes:

o Diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of disease;

o Diagnosis, monitoring, treatment, alleviation of, or compensation for, an injury or disability;

o [nvestigation, replacement or modification of the anatomy or of a physiological or pathological process or
state;

o Providing information by means of in vitro examination of specimens derived from the human body,
including organ, blood and tissue donations.

Beyond the technical uncertainties, the cost of Al implementation remains unpredictable and highly
variable. Unlike fixed medical device costs, GenAl pricing is dynamic and often unpredictable, posing
budgeting challenges for hospitals. For instance, when GPT-4 was initially released, its cost was set at $60 per
million output tokens. However, with the introduction of GPT-4.5, pricing has increased to $150 per million
output tokens [36]. Given the high token consumption of complex Al tasks, such as reasoning-based models
or Retrieval-Augmented Generation systems, which require additional indexing, embedding, and input
token consumption, even short-term budget estimations become highly complex. The exponential growth in
Al capabilities leads to increased computational demands, which, in turn, drive higher operational costs.
Healthcare institutions face the challenge of managing these unpredictable expenses, making financial
planning for AT adoption increasingly difficult.

Moreover, the pricing structures of Al services are subject to frequent modifications, often dictated by
market dynamics rather than healthcare needs. Hospitals may find themselves locked into AI-driven
workflows, only to face sudden cost increases that make continued usage prohibitive. This lack of cost
stability is particularly concerning in public healthcare systems, where budgets are fixed on an annual or
multi-year basis, limiting flexibility to accommodate fluctuating Al expenses.
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Figure 1. Selected use cases illustrating a hybrid model for generative Al deployment in healthcare. The diagram outlines
examples of tasks suited to vendor-provided models versus those requiring hospital-managed models. Administrative,
educational and research-oriented tasks, knowledge management and cohort identification, can often be supported by external
solutions. In contrast, clinically sensitive applications, including diagnostic support, risk stratification (for example, anticipating
care load or identifying patients at risk of clinical deterioration), treatment recommendations and documentation, are better
suited to local deployment, where institutions can maintain control over clinical validity, data integrity and operational reliability.
This framework aims to guide institutions in balancing external innovation with appropriate levels of clinical oversight.

3. A case for a hybrid approach to generative Al in medicine

Considering the issues identified, we propose a hybrid approach to GenAl adoption in healthcare
organizations to benefit from the rapid advancements from vendors and the security provided by medical
validation protocols. This approach is based on the distinction between non-medical and medical
applications, as depicted in figure 1. However, some use cases exist in a gray area where it is difficult to clearly
categorize them as either medical or non-medical. Examples include Al-generated discharge summaries,
clinical documentation support, or language translation of patient instructions. In such borderline cases,
decisions should be guided by a combination of factors: the degree of clinical influence the tool exerts, the
presence and sensitivity of patient-identifiable data, applicable regulatory definitions, the potential
consequences of errors, and the level of localization required. For instance, if a tool influences patient
understanding or clinician decisions without formal review, it should be treated as a medical application and
deployed locally. Conversely, tasks that are always verified by clinicians and do not modify the clinical
workflow directly may be safely managed through vendor solutions. This framework helps ensure that
institutions maintain control over sensitive or high-risk functions while still benefiting from external
innovation where appropriate.

For non-medical applications, we propose the use of state-of-the-art models and integrated solutions
that enable the rapid deployment of new features benefiting end users. Access to these tools provides valuable
insights into which developments are practically useful in production, ensuring that innovation aligns with
operational needs.

3.1. Local models
For medical use cases, we propose that hospitals manage their own infrastructure and models. This approach
addresses many issues found in vendor solutions—such as local adaptation, stable versioning, and
transparent updates—but it also entails higher internal development costs and, at times, slightly lower
performance relative to cutting-edge vendor LLMs. Hospital-managed Al models provide greater control
over adaptation, ensuring alignment with local needs while mitigating vendor-induced biases or frequent
deprecations [37].

Leveraging internal data allows hospitals to develop relevant benchmarks and refine evaluations based on
real-world usage [38]. This approach enables finetuning for local populations and clinician preferences,
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improving practical integration into workflows [39]. Additionally, the ability to continuously refine models
based on open clinician feedback enhances both reliability and long-term sustainability [40]. With efficient
parameter adaptation techniques, hospitals can deploy models on commercially available hardware without
extensive computational costs [41], offering a more predictable and scalable alternative to vendor-dependent
Al solutions.

Managing Al infrastructure internally also provides long-term cost visibility with predictable expenses
and scalable capacity. Unlike vendor models, where costs can fluctuate based on usage, token consumption,
or licensing changes, an in-house solution allows hospitals to control expenses and plan for sustainable Al
adoption. Additionally, a hospital-managed approach enables deliberate and structured change management,
ensuring that Al tools are thoroughly validated before deployment. By maintaining control over their
models, hospitals are not exposed to the risk of model retirement, unexpected updates, or sudden shifts in
vendor pricing structures. This stability is crucial for medical applications, where reliability, compliance, and
continuity are essential for patient safety and operational efficiency.

3.2. Feasibility

Deploying an Al infrastructure in hospitals is increasingly feasible, provided that five core engineering
elements are addressed: selecting safe and high-performing algorithms, assembling governed big data
corpora, ensuring adequate computing capacity, operating within a secure deployment context, and
maintaining reliable energy and operational support [42]. Implementing and maintaining Al systems
demands expertise in computing resources, software integration, and regulatory compliance. However, we
argue that such an infrastructure is now accessible, given recent advancements in model efficiency and the
increasing availability of open-source alternatives.

Modern open-weight models can achieve performance comparable to commercial LLMs and run
effectively on commercially available hardware. For instance, quantized versions of models like Llama 3 70B
[43] or Mixtral 8x7B [44] can now run on consumer-grade hardware. Hospitals could invest either in a cloud
or local machine with GPU capabilities. Compared to the costs of commercial API usage, this represents a
predictable and potentially more economical long-term approach for high-volume usage scenarios.
Hardware capable of running these models in production starts at $20 000 but can cost up to $500 000 for a
server powerful enough to train or run the largest models. Most hospitals do not need training capabilities or
the largest models and can therefore purchase hardware for under $100 000 to meet their inference needs.

A significant challenge for hospital-managed GenAl is the required technical expertise. We estimate that
a 0.5 FTE DevOps profile is required to set up the basic infrastructure and install the required software stack
needed to run a pilot in a medium-sized hospital with an EHR supporting SMART on FHIR launch.
However, this gap can be addressed through partnerships with academic computer science departments,
targeted hiring of Al specialists with healthcare experience, training programs for existing IT staff,
participation in healthcare-specific Al consortia, and utilization of increasingly user-friendly open-source
tools that reduce technical barriers. While building this expertise requires investment, it creates long-term
capabilities that extend beyond any single GenAl implementation. Furthermore, as these models become
increasingly integrated into healthcare operations, developing internal expertise becomes less a luxury and
more a necessity for effective governance, regardless of whether models are developed internally or externally.

Despite the growing feasibility of local deployment, hospitals must navigate significant trade-offs. Talent
scarcity remains a critical barrier, as institutions compete with the private sector to recruit and retain Al
specialists. Resource constraints further limit the capacity to invest in infrastructure without diverting funds
from core clinical services. Moreover, while internal governance processes enhance safety and accountability,
they may also slow the pace of innovation relative to vendor platforms, which benefit from rapid iteration
cycles. A credible deployment strategy must therefore reconcile the imperative for control and transparency
with the realities of operational capacity, financial stewardship, and institutional agility. Collaborative
models—such as hospital consortia or regional networks—may offer a viable path forward by pooling
resources, expertise, and infrastructure to overcome these limitations.

3.3. Governance

Local deployment of LLMs in hospital environments demands a distinct governance model. Unlike
vendor-hosted tools, which externalize much of the compliance and oversight burden, local LLMs place
operational, ethical, and regulatory responsibility on the institution itself. To address this, we review
governance recommendations for local deployments [45].

First, institutions should establish a digital committee responsible for evaluating proposed LLM use cases
prior to deployment. This committee, ideally composed of clinicians, informaticians, patient representatives,
and legal or ethical advisors, should assess both the intended functionality and the risk class of each
application. Evaluation should consider the potential for direct clinical impact, exposure to protected health
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information, and the appropriateness of the model and proposed training for end users. Retrospective and
prospective studies on patients must also be reviewed by the ethics committee in addition to the data
protection Office. This process aligns with existing review mechanisms used for decision support tools and
embedded algorithms in EHRs [46].

Second, before any local LLM is released into clinical workflows, it should undergo a shadow deployment
phase, when possible, in which the system generates outputs in real-time but remains hidden from end users.
During this period, output quality, factual consistency, and task suitability can be audited retrospectively
against clinician-authored notes, established gold standards, or previous iterations of the LLM application.
Shadow deployments provide empirical grounding for safety and performance claims while reducing the
likelihood of patient-facing harm during early-stage testing. Existing frameworks such as DECIDE-AI can be
used to implement this phase [47].

Once in active use, local deployments must incorporate continuous monitoring [48]. This includes
automated logging of model outputs, real-time error or anomaly detection, and audit trails for prompt
modifications or system overrides. Metrics such as user correction frequency, response latency, and
escalation rates should be collected and reviewed regularly, preferably on a monthly or quarterly cycle, by the
digital committee. In parallel, frontline users should be provided with clear channels for feedback and error
reporting, including low-friction interfaces for flagging unsafe or irrelevant outputs and defined timelines
for follow-up action.

Governance also requires strict model versioning controls [49]. Every modification, whether a new
model checkpoint, prompt reconfiguration, or software patch, should be recorded in a local update registry
with rollback capability. This ensures traceability in the event of adverse events and supports compliance
with post-market surveillance requirements under frameworks such as the EU MDR or forthcoming
Al-specific regulations.

4, Conclusion

Generative Al is advancing rapidly, offering both enormous potential and significant challenges for
healthcare. Our proposed hybrid framework—using vendor-based solutions for non-clinical tasks and
hospital-managed Al for patient care—provides a practical blueprint to harness innovation without
compromising safety or sustainability. By selectively adopting vendor offerings for lower-risk applications
while building local infrastructure and expertise for clinical use cases, hospitals can retain greater control
over data, adapt models to local conditions, and maintain compliance with evolving regulations. This dual
approach is not only feasible but increasingly vital, ensuring that Al-driven progress remains aligned with
patient well-being, clinical standards, and institutional priorities. The care providers are in the loop, interact
with the models, and monitor the results. Hospitals should consider embracing this strategy as they chart a
path forward in integrating generative Al responsibly.
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