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ABSTRACT

Large language models (LLMs) are typically scaled through billions of param-
eters and trillions of tokens, making progress largely restricted to organizations
with substantial resources. Recent work on Mixture-of-Experts (MoE) upcycling
shows that dense pretrained models can be transformed into sparse MoE vari-
ants, but prior studies have focused on large models and required extensive ad-
ditional training. In this work, we demonstrate that MoE upcycling is also ef-
fective for small language models (sub-billion parameters) using only a few hun-
dred thousand samples of supervised fine-tuning. Remarkably, upcycled mod-
els consistently outperform their dense base models and remain competitive with
dense counterparts of equivalent total size, despite activating fewer parameters
at inference. Our study highlights MoE upcycling as a lightweight and practical
scaling strategy, while providing empirical insights into its efficiency and lim-
itations. These results establish MoE upcycling as a reproducible pathway for
enhancing small models under realistic resource budgets, broadening access to
language model improvement.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable progress by scaling to ever-larger parame-
ter counts and training corpora. However, this trajectory relies on billions of parameters and trillions
of tokens, keeping such advances accessible only to organizations with substantial computational re-
sources. For smaller research groups and individuals, the question remains: can existing pretrained
models be scaled or improved meaningfully under realistic constraints of data and compute?

Recent studies on Mixture-of-Experts (MoE) upcycling suggest that dense pretrained models can be
transformed into sparse MoE variants, thereby increasing effective capacity with limited additional
training. Yet, these approaches have largely targeted billion-scale or larger models and assumed
access to billions of tokens for adaptation, leaving open whether such methods are viable in the
small-model regime.

In this work, we revisit MoE upcycling under an extremely resource-constrained setting. Starting
from publicly available instruction-tuned small language models (SLMs, sub-billion parameters), we
apply MoE transformation followed by fine-tuning on only a few hundred thousand tokens. Despite
this modest scale, we find that upcycled models consistently outperform their dense baselines of
comparable size, showing that meaningful improvements are achievable without massive retraining.

Our study makes three contributions:

* Scale shift: We show that MoE upcycling remains effective even when scaling down to
smaller models and training on only a fraction of the data typically used in prior work.

* Practicality: By leveraging open instruction-tuned checkpoints and lightweight fine-tuning,
our approach is feasible on consumer-grade GPUs and reproducible by individuals.

* Empirical insights: We provide systematic analysis of the impact of expert number, depth
scaling, and efficiency—performance trade-offs in the small-model regime.

Together, these findings establish that MoE upcycling is a practical and accessible strategy for en-
hancing smaller models under realistic budgets. By showing that even a few hundred thousand
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tokens of additional fine-tuning are sufficient to boost widely available SLMs, we demonstrate
a pathway by which individuals can meaningfully build stronger models with limited resources,
broadening participation in language model research.

2 RELATED WORK

2.1 MIXTURE-OF-EXPERTS (MOE) ARCHITECTURES

Mixture-of-Experts (MoE) increases capacity cost-efficiently by adding many feed-forward experts
while activating only a small subset per token (Shazeer et al., [2017). In Transformer LMs, large-
scale MoE-FFN was first operationalized in GShard (Lepikhin et al.,|2020), and subsequently pop-
ularized by Switch Transformers, which simplified training and adopted top-1 gating (Fedus et al.,
2022)). This line catalyzed variants including GLaM (Du et al., 2021), ST-MoE (Zoph et al., |2022),
and Expert-Choice routing (Jiang et al.} 2024), where experts select tokens under fixed capacity. Re-
cent sparse-MoE LLMs such as GLaM and Mixtral 8x7B (2024) demonstrate low active-parameter
counts at inference (= 13B active with ~ 475 accessible) while leveraging much larger total ca-
pacity. However, these approaches typically require substantial compute for both pretraining and
alignment, making them difficult to adopt in smaller-scale research or business settings.

2.2 POST-HOC MOE TRANSFORMATION (MOE UPCYCLING)

An alternative line of work has explored transforming pretrained dense models into MoE structures.
MokEfication (Zhang et al.l 2021) proposed splitting pretrained feed-forward neurons into expert
groups with a lightweight router, preserving most of the original knowledge while reducing infer-
ence cost. Sparse Upcycling (Komatsuzaki et al., 2023) extended this concept by duplicating entire
FFN blocks into experts, then continuing pretraining. While effective, this required substantial ad-
ditional training tokens (up to 1T), limiting accessibility. More recently, LLaMA-MoE (Zhu et al.,
2024)), LLaMA-MOoE v2 (Qu et al., [2024), Llama 3 Meets MoE (Vavre et al., 2024) applied simi-
lar ideas to the LLaMA family, and Camelidae/PESC (Wu et al.| [2024a), UpIT (Hui et al.| [2024)
proposed a parameter-efficient approach by inserting adapter-based experts during instruction tun-
ing, requiring only small-scale additional training. These studies highlight that MoE upcycling can
leverage pretrained knowledge to achieve substantial performance gains without full retraining, but
most work has focused on medium-to-large LLMs and still assumes non-trivial compute budgets.
Other directions have explored cost-efficient upcycling from dense models, such as refactored MoE
variants that restructure dense FFNs (Cai et al., [2024} [Pei et al.| 2025} (Gao et al., [2025) or MoE
approaches combined with LoRA (Wu et al., [2024b; |L1 et al., 2024), but these still require cluster-
level computational costs. More recently, fine-grained MoE (Yang et al.l 2024} [2025; DeepSeek-Al
et al.| 2024} 2025; He et al., [2025)) has emerged as a new line of work, offering strong performance
guarantees; however, because it partitions the hidden dimensions of FFNs into smaller expert units,
it typically demands extensive pretraining and post-training to be effective.

3 METHODOLOGY

3.1 OVERVIEW

Our objective is to upscale pretrained small language models (SLMs) into stronger generative mod-
els using minimal additional resources. To this end, we propose MoE upcycling, where the feed-
forward networks (FFNs) in a dense model are transformed into sparse Mixture-of-Experts (MoE)
modules. Figure[T]illustrates the overall methodology, contrasting the baseline dense model with the
MoE-upcycled variant.

3.2 BASE MODEL

We start from a publicly available instruction-tuned SLM with fewer than 1B parameters. The base
transformer architecture follows the standard decoder-only design, where each block consists of a
multi-head self-attention (MHSA) layer and a feed-forward network (FFN/MLP), repeated across
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Figure 1: Comparison of three strategies: (left) Base dense model, (middle) MoE upcycling, (right)
our proposed hybrid DUS+MoE approach (MoEsturizer).

N layers:
RU+D = FFN(MHSA (h(!)), W

where h()) denotes the hidden representation at layer [. These pretrained dense models serve as the
foundation for our upcycling framework.

3.3 MOE UPCYCLING

The core component of our method is MoE upcycling. Each dense FEN block is replaced with a
sparse Mixture-of-Experts (MoE) module:

y—ZG - FFN;(z), )

G(z) = TopK(softmaX(Wac)), (3)

where k is the number of experts, FFN, denotes an expert initialized as a copy of the pretrained FFN,
and G(z) is a router function selecting the top-k experts per token. This transformation preserves
pretrained knowledge while expanding the model’s effective capacity, with only a fraction of experts
activated per input.

3.4 LIGHTWEIGHT FINE-TUNING

To ensure accessibility, we avoid full retraining. Instead, we apply fine-tuning using approximately
150K supervised samples:

* Training can be performed on consumer-grade GPUs.
* Upcycled models consistently outperform their dense base counterparts.
 Despite activating fewer parameters at inference, they remain competitive with dense mod-

els of equivalent total size, making them resource-efficient and faster at inference.

This demonstrates that meaningful improvements can be achieved under realistic computational
budgets.

Practical Footprint (Lightweight). All fine-tuning experiments were conducted on a single
consumer-grade GPU: NVIDIA RTX PRO 6000 Max-Q (96 GB VRAM). End-to-end wall-clock
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time was ~1.5 hours for the shortest runs and under 8 hours even for the longest setting, making
the entire pipeline reproducible within a single day on a personal workstation. On the data side,
unlike common SFT post-training setups that typically rely on 500k—1M+ samples, we filtered and
preprocessed only ~150k publicly available samples, yet still observed consistent gains. Taken
together—short time, small data, and modest resources—this evidences the practical lightweight
nature of METHOD

Item Value

GPU NVIDIA RTX PRO 6000 Max-Q (96 GB VRAM)
#GPUs 1

Total SFT samples ~150k (filtered & preprocessed from public datasets)
Wall-clock training time | ~1.5h (shortest) — <8h (longest)

Reproducibility Single-day (within 24h) on a personal workstation

Table 1: Fine-tuning footprint of METHOD. All results reproduced on a single workstation.

4 EXPERIMENTS

4.1 TRAINING DATA

Training corpora and sampling. We assemble a small, domain-aligned post-training corpus that
mirrors our evaluation tasks by combining the following datasets: Tiilu 3 SFT mixture manually
filtered by us to English-only and STEM-only; (Lambert et al., 2024)); ARC-Challenge and ARC-
Easy train (Clark et al., 2018); MMLU train (Hendrycks et al.,[2021bza); MMLU-Pro train
(Zheng, [2024); GSM8K train (Cobbe et al.,[2021); and HellaSwag t rain (Zellers et al.,|2019).
For each dataset D with pool size | D|, we set a sampling weight wp o |D| and draw i.i.d. examples
uniformly within D until reaching a global budget of 150k examples. This keeps the post-training
budget intentionally small while matching evaluation domains.

4.2 EVALUATION DATASETS

We evaluate on nine public benchmarks spanning commonsense reasoning, domain knowledge, and
STEM problem solving: ARC-Challenge and ARC-Easy (Clark et al.,|2018), GPQA-Diamond and
GPQA-Main (Rein & et al., [2023), GSM8K (Cobbe et al., |2021), HellaSwag (Zellers et al.,|2019),
MATH-500 (a subset of the PRM800K math splits; (Lightman et al., 2023)), MMLU (Hendrycks
et al., |2021bga), and MMLU-Pro (Zheng, 2024). Where a benchmark family overlaps with our
post-training sources, we use disjoint splits (e.g., train vs. test), and we exclude benchmarks that
only provide a single split. This suite is widely used, admits standardized automatic scoring, and
directly probes whether upscaling small dense LMs to MoE improves their preexisting abilities in
knowledge-intensive and STEM-heavy settings.

4.3 MAIN RESULTS

Terminology. We use the following controlled terms throughout: Base (IT) — the publicly avail-
able instruction-tuned dense model that serves as the starting point for MoE conversion (not a purely
pre-trained LM); Base+SFT (control) — Base (IT) further trained on our 150k post-training cor-
pus; MoE+SFT (ours) — the same Base (IT) converted to MoE and trained on the identical corpus;
Larger Dense (headroom) — the next larger dense model whose fotal parameters are compara-
ble to the active parameters of our MoE; Larger Dense+SFT (control-L) — Larger Dense further
trained on the same corpus.

Evaluation protocol. To ensure fair comparison, all systems are scored zero-shot, pass@ 1 with
same configurations of generations; no chain-of-thought, self-consistency, or tool use is allowed.
To isolate structural gains from data effects, we report Base+SFT (control) alongside MoE+SFT
(ours). Training is limited to one epoch for both control and MoE, with a fixed step budget of
1056 updates (derived from a 150k example budget with 10% held out for validation); optimizer,
schedule, precision, and batch shaping are matched across conditions. We fix three random seeds
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. Activation | ARC | ARC | GPQA | GPQA | GSM | Hella | Math MMLO

Model Variant ‘ Params | (Easy) ‘ (Chal) | (Diamond) | (Main) ‘ 8K ‘ Swag ‘ 500 ‘ MMLU |~ pro)
Base (1T) 01358 | 2142 | 2389 | 1869 | 2522 | 150 | 5531 | 820 | 2295 | 927

SmolLMO-135M Base+SET (control) | 0.135B | 2121 | 2398 | 1869 | 2344 | 174 | 2436 | 860 | 2347 | 9.47
: MoF 4-2 (ours) ~021B | 3375 | 3192 | 3131 | 2857 | 388 | 3002 | 980 | 3239 | 1594

MoE 8-2 (ours) ~021B | 3615 | 3294 | 2576 | 2522 | 396 | 30.51 | 980 | 3220 | 1572

Base (IT) 0360 | 2382 | 2432 | 2222 | 2589 | 326 | 2456 | 780 | 2437 | 1065

SOl M2-360M Base+SFT (control) | 0360B | 2504 | 2295 | 2374 | 2746 | 379 | 2465 | 820 | 2554 | 1129
MoE 4-2 (ours) ~060B | 3670 | 3140 | 2879 | 2679 | 963 | 3093 | 1040 | 3221 | 1523

MOE §-2 (ours) ~060B | 3632 | 3183 | 2879 | 2679 | 10.01 | 31.07 | 1100 | 3224 | 1608

Base (IT) T708 | 6334 | 4509 | 2778 | 1853 | 470 | 3419 | 1580 | 4155 | 880

SmolLM2-1.7B Base+SFT (control) | 170B | 6427 | 4778 | 2424 | 2299 | 455 | 3456 | 1740 | 4111 | 904
MoF 4-2 (ours) ~291B | 8165 | 5879 | 3131 | 2478 | 39.05 | 4310 | 2240 | 5158 | 2178

Base (IT) TO0B | 6620 | 4744 | 2939 | 2701 | 417 | 3188 | 2000 | 4467 | 1811
Liama3.2-1B Base+SFT (control) | 1.00B | 5934 | 4113 | 2879 | 2455 | 1099 | 31.03 | 2040 | 4202 | 1668
MoE 4-2 (ours) ~181B | 8013 | 5666 | 2920 | 2500 | 3670 | 43.52 | 2320 | 5364 | 2534
Llama3235 (Demse) | B8 1) 3008 | 8392 | 7321 | 2475 | 3080 | 523 | 58.02 | 27.00 | 6136 | 3169
: Base+SFT (control) | 3.00B | 7593 | 6280 | 2626 | 2812 | 47.92 | 4585 | 2660 | 5653 | 2429
Llama3.1-85 (Demse) | B8 1) §00B | 8893 | 8174 | 2172 | 2701 | 2851 | 6493 | 28.00 | 67.06 | 35.99
: Base+SFT (control) | 8.00B | 87.88 | 77.65 | 3131 | 29.46 | 6778 | 50.50 | 3140 | 6361 | 3298

Table 2: Zero-shot pass@1 results for the SmolLLM2/Llama family. Bold indicates the best score
within the same original model and its variants (e.g., 135M group compares Base(IT), Base+SFT,
MoE 4-2, MoE 8-2; for larger dense baselines only Base vs. Control are compared). Activation
Params denote active parameters at inference (dense = total; MoE shows approximate active count).
If the score is tied, select a model with lighter parameters or no additional training.

. Activation | ARC ARC GPQA GPQA | GSM | Hella | Math MMLU
Model Variant ‘ Params (Easy) ‘ (Chal.) | (Diamond) | (Main) ‘ 8K ‘ Swag ‘ 500 ‘ MMLU (Pro)
Base (IT) 0.60B 65.53 | 4932 29.80 2545 | 46.17 | 41.06 | 29.20 40.81 16.50
Qwen3-0.6B Base+SFT (control) 0.60B 66.58 50.60 27.27 27.01 | 34.87 | 32.40 | 24.80 41.80 20.56
o MOoE 4-2 (ours) ~0.86B 86.65 66.73 26.26 31.03 | 43.14 | 45.66 | 32.40 53.38 31.54
MOoE 8-2 (ours) ~0.86B 87.50 | 68.61 28.79 31.92 | 44.13 | 48.73 | 33.20 54.00 32.42
Qwen3-1.7B (Dense) Base (IT) 1.70B 8232 | 7253 19.70 25.00 | 52.24 | 54.46 | 29.00 53.90 20.66
) i Base+SFT (control) 1.70B 76.35 65.96 27.27 25.89 | 59.67 | 49.14 | 2640 50.33 23.81
Qwen3-4B (Dense) Base (IT) 4.00B 91.71 88.31 22.73 27.23 | 48.82 | 79.30 | 37.40 68.27 39.26
) Base+SFT (control) 4.00B 88.80 82.08 33.84 30.58 | 71.27 | 72.39 | 40.40 64.51 37.14

Table 3: Zero-shot pass@1 results for the Qwen3 family. Bold indicates the best score within the
same original model and its variants (0.6B group compares Base/Control/MoE 4-2/MoE 8§-2; larger
dense baselines compare Base vs. Control). If the score is tied, select a model with lighter parameters
or no additional training.

and report mean (and, where appropriate, + std); when seed replication is infeasible, we disclose
the exact seed. Benchmarks are the nine datasets in §4.2} families that overlap with our post-training
sources are evaluated on disjoint splits (e.g., train vs. test), and single-split benchmarks are excluded.

Result overview. Across both model families (SmolLM2/Llama-3.2 and Qwen3), MoE+SFT
(ours) consistently outperforms Base (IT) and the data-only control (Base+SFT) under the same
decoding protocol, while narrowing the gap to Larger Dense baselines when compared at similar
active parameter counts.

Parameter accounting. Activation Params in Tables [2H3]| report the number of parameters activated
at inference (dense = total). For completeness, the approximate tofal parameter counts after MoE
conversion are: SmolLM2-135M — 4-2: ~0.37B, 8-2: ~0.69B; SmolLM2-360M — 4-2: ~1.07B,
8-2: ~2.01B; SmolLM2-1.7B — 4-2: ~5.32B; Llama-3.2-1B — 4-2: ~3.42B; Qwen3-0.6B — 4-2:
~1.39B, 8-2: ~2.45B. All models are trained for one epoch with a fixed budget of 1056 updates
(150k examples with a 10% validation holdout), using identical optimizer, schedule, and precision.

4.4 EFFECT OF ToP-k EXPERT ACTIVATION

Parameter growth. For reference, the approximate foral parameter counts corresponding to Table 4]
are - SmolLM2-135M(8 experts): ~0.69B; SmolLM2-360M(8 experts): ~2.01B; Qwen3-0.6B(8
experts): ~2.45B.

Takeaway. Increasing the number of activated experts primarily increases active parameters (and
thus latency/compute) without systematic improvements in strict pass@ 1. Given our training budget
(one epoch, 1056 updates) and evaluation protocol, 8-2 is typically the most compute-efficient choice,
with 8-3 occasionally tying for the best score (e.g., SmolLM2-360M on ARC-Easy and GSMS8K).
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X Activation | ARC | ARC | GPQA | GPQA | GSM | Hella | Math MMLU
Model ‘ Variant ‘ Params | (Easy) | (Chal) ‘ (Diamond) | (Main) ‘ 8K ‘ Swag | 500 ‘ MMLU | “ )
MoES2 | ~021B | 36.15 | 3294 | 2576 | 2522 | 395 | 3051 | 980 | 3220 | 5.2
SmolLM2-135M | MoE 8-3 | ~029B | 3573 | 3251 | 3081 | 2389 | 395 | 30.54 | 920 | 3198 | 1543
MoE8-4 | ~037B | 3421 | 3226 | 3030 | 2567 | 395 | 3061 | 1020 | 3203 | 1551
MoES2 | ~0.60B | 3632 | 3183 | 28.79 | 2679 | 1001 | 31.07 | 100 | 3224 | 1608
SmolLM2-360M | MoE 8-3 | ~0.83B | 36.32 | 30.64 | 2929 | 27.23 | 1047 | 3073 | 11.00 | 3208 | 1586
MoE8-4 | ~107B | 36.61 | 3123 | 2879 | 2656 | 1001 | 31.07 | 1020 | 3246 | 1553
MoE8-2 | ~086B | 8750 | 68.61 | 2879 | 3192 | 44.13 | 48.73 | 33.20 | 5400 | 32.42
Qwen3-0.6B MoES-3 | ~1.13B | 8678 | 6733 | 2727 | 30.13 | 45.64 | 46.86 | 30.00 | 53.67 | 31.79
MoE8-4 | ~139B | 8640 | 6622 | 2778 | 3125 | 4443 | 4643 | 3120 | 53.18 | 31.65

Table 4: Top-k comparison (zero-shot, pass@ 1) for three representative models. Within each model
block, we compare MoE 8-2, 8-3, and 8-4 and bold the best score per column. If the score is tied,
select a model with lower Top-k. Activation Params report active parameters at inference. Across
all three models, increasing k enlarges the active footprint but yields little or no consistent accuracy
gain; in several columns the lighter 8-2 or 8-3 already attains the best score.

4.5 EFFECT OF DEPTH UPSCALING (DUS)

We evaluate Depth Upscaling (DUS)—increasing the number of transformer layers by a fixed per-
centage while keeping other hyperparameters unchanged—on three families used in our main ex-
periments: SmolLM2 (135M/360M), Llama 3.2 (1B), and Qwen3 (0.6B). For each setting we report
zero-shot pass@1 on the nine benchmarks in §4.2] DUS is applied at none, 20%, 40%, and 50%
(Llama-1B uses DUS-19/22/24 as available).

Summary. (1) For SmolLM2-135M/360M and Llama-1B, DUS does not yield consistent gains;
several 40-50% settings regress despite larger parameter/activation budgets. (2) Qwen3-0.6B shows
small but repeatable gains at DUS-20%; returns are mixed or negative at 40-50%. (3) Compared
to DUS, MoE upcycling (4-2/8-2) delivers broader, more stable improvements at a lower active-
parameter footprint, making experts a more effective use of compute than depth.

[t]
[t]

Interpretation. DUS increases total and active parameters substantially, yet for SmolLM2 and
Llama-1B this translates poorly to accuracy. In contrast, MoE 4-2/8-2 provides consistent improve-
ments with a predictable activation budget. For Qwen3-0.6B, DUS-20% is a sweet spot (notably
on ARC-Challenge, GSM8K, HellaSwag, and MMLU/Pro), while 40-50% depth gives diminishing
or negative returns. Overall, if extra compute is available under our single-GPU (RTX PRO 6000
Max-Q, 96GB) constraint, prioritizing experts over depth is more cost-effective.

4.6 MAIN OBSERVATIONS

* Control fine-tuning can reduce strict zero-shot performance. Training the dense Base
with one epoch of mixed SFT (Base+SFT) frequently lowers pass@1 compared to the
instruction-tuned Base (Base(IT)), even on families that overlap the post-training sources.
We observe this behavior on multiple sizes (e.g., Llama-3.2-3B and Llama-3.1-8B degrade
on ARC-Easy/Challenge, HellaSwag, and MMLU/MMLU-Pro; see the main tables), sug-
gesting mild alignment drift under a small mixed SFT budget.

* MoE upcycling improves consistently within size groups. For each original size group
(135M, 360M, 1.7B, 1B, 0.6B), MoE-upcycled models (4-2 / 8-2) achieve the highest
scores in-group on most benchmarks (bold cells), under the same evaluation protocol (zero-
shot, greedy, T'=0, pass@1). When compared at similar active parameters, MoE recovers
a substantial fraction of the gap to the next dense tier, while keeping activation budget
predictable.

* Qwen3 highlight: 0.6B MoE competes above its weight. On knowledge-heavy GPQA,
QOwen3-0.6B MoE 8-2 surpasses larger dense bases: GPQA-Diamond 28.79 vs. 1.7B base
19.70 and 4B base 22.73; GPQA-Main 31.92 vs. 1.7B base 25.00 and 4B base 27.23. It
also matches or exceeds the 1.7B base on MMLU (54.00 vs. 53.90) and MMLU-Pro (32.42
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X ARC | ARC | GPQA | GPQA | GSM | Hella | Math MMLU

Model ‘ Variant ‘ DUS ‘ (Chal.) ‘ (Easy) ‘ (Diamond) ‘ (Main) | 8K ‘ Swag ‘ 500 ‘ MMLU /" o

none | 2398 | 2121 1869 | 2344 | 1.74 | 2436 | 8.60 23477947

20% | 2150 | 1848 | 2071 210 | 152 | 2457 | 840 20.60/8.51

Base+SFT

40% | 18.09 | 14.73 1616 | 2165 | 121 | 17.56 | 5.60 22.46/7.16

50% | 2005 | 18.73 17.68 1875 | 174 | 2173 | 540 21.2475.61

none | 3192 | 3375 | 3131 3857 | 3.87 | 3002 | 9.80 | 323971594

20% | 2936 | 35.10 | 2727 | 2723 | 379 | 3111 | 920 | 32.33/15.63
SmoILM2-135M | MoE4-2 | o0 | 3029 | 3320 | 2029 | 2723 | 387 | 30.63 | 860 | 31.61/1602

50% 31.23 34.42 28.28 26.12 3.41 | 30.55 | 8.20 32.43/16.27
none | 32.94 36.15 25.76 2522 395 | 30.51 | 9.80 32.20/15.72
20% 32.26 36.02 27.27 28.80 395 | 30.84 | 9.80 31.70/16.20

MoE 8-2 40% 32.77 35.77 26.77 25.89 448 | 31.03 | 9.20 31.83/15.50
50% 31.75 34.76 28.28 26.56 425 | 30.89 | 10.20 32.54/15.90
none | 22.95 25.04 23.74 27.46 379 | 24.65 | 8.20 25.54/11.29
20% 23.55 23.48 25.25 23.21 3.11 | 26.34 | 7.40 25.47/10.53

Base+SFT

40% 23.81 22.14 29.29 27.01 273 | 2437 | 5.60 25.72/10.85
50% 23.72 22.94 19.70 24.55 250 | 23.83 | 6.60 24.96/10.21
none | 31.40 36.70 28.79 26.79 9.63 | 30.93 | 10.40 32.21/15.23
20% 33.03 36.06 31.31 27.01 8.65 | 31.23 | 10.20 32.65/15.97
40% 32.26 33.33 28.79 26.56 7.74 | 31.17 | 10.40 32.43/16.02
50% 31.83 33.29 26.77 29.69 7.13 | 29.12 | 10.80 32.62/16.01

SmolLM2-360M | MoE 4-2

none | 31.83 36.32 28.79 26.79 | 10.01 | 31.07 | 11.00 32.24/16.08

MOoE 8.2 20% 32.26 36.15 30.30 28.57 9.40 | 31.11 | 10.40 32.24/16.53

40% 31.75 36.49 29.29 25.67 8.27 | 31.14 | 10.20 32.35/16.30

50% 31.40 33.54 27.27 26.56 6.90 | 29.58 | 12.80 32.36/16.09

none | 41.13 59.34 28.79 24.55 | 10.99 | 31.03 | 20.40 42.02/16.68

Basc+SFT 20% 46.12 63.72 29.80 25.89 | 26.61 | 30.89 | 13.00 44.01/16.28

40% 46.67 65.28 28.79 2545 | 28.20 | 28.53 | 11.40 44.94/17.25

Llama-3.2-1B 50% 47.27 64.81 27.27 2522 | 28.51 | 27.62 | 11.40 45.61/17.25
none | 56.66 80.13 29.29 25.00 | 36.70 | 43.52 | 23.20 53.63/25.34

MOoE 4.2 20% 57.34 79.37 31.82 23.66 | 36.92 | 41.74 | 20.40 53.45/24.22

40% 58.28 80.89 29.80 2545 | 34.80 | 41.42 | 22.60 53.98/25.35
50% 57.34 80.59 28.28 30.13 | 35.18 | 41.81 | 18.60 53.71/25.15

Table 5: Depth Upscaling (DUS) on SmolLM2 (135M/360M) and Llama-3.2-1B (zero-shot,
pass@1). The Model column is grouped by family using multirows. Within each family, we show
Base+SFT, MoE 4-2, and MoE 8-2 blocks; each block lists DUS {none, 20%, 40%, 50% (or DUS-
19/22/24 for Llama-1B).

) ARC | ARC | GPQA | GPQA | GSM | Hella | Math MMLU
Model ‘ Variant ‘ DUS ‘ (Chal.) ‘ (Easy) ‘ (Diamond) ‘ (Main) ‘ 8K ‘ Swag | 500 ‘ MMLU /" )
none | 5060 | 6658 | 2727 | 2701 | 3487 | 3240 | 2480 | 41.80/2056
BasesspT | 20% | 5256 | 6612 | 2727 | 2857 | 3321 | 2728 | 2100 | 421972018
40% | 4898 | 6515 | 2323 | 2612 | 31.01 | 27.09 | 2240 | 40.54/18.79

50% 50.26 65.70 25.25 2299 | 27.22 | 27.34 | 18.40 41.25/18.85
none | 66.73 86.65 26.26 31.03 | 43.14 | 45.66 | 32.40 53.38/31.54
20% 67.24 88.38 26.26 31.47 | 44.66 | 45.65 | 32.20 53.70/31.49
40% 68.18 87.92 28.28 31.03 | 4542 | 48.55 | 30.00 53.39/31.95
50% 66.22 86.36 30.30 31.92 | 44.05 | 40.84 | 30.00 53.14/31.13

Qwen3-0.6B | MoE 4-2

none | 68.61 87.50 28.79 31.92 | 44.13 | 48.73 | 33.20 54.00/32.42
MoF 8-2 20% 69.20 88.46 29.29 31.47 | 4572 | 44.61 | 30.00 54.10/32.86
40% 69.03 88.51 27.78 31.03 | 4557 | 48.22 | 32.00 54.21/32.54
50% 68.95 88.17 31.82 31.70 | 4375 | 42.05 | 31.80 53.72/32.42

Table 6: DUS study on Qwen3-0.6B (zero-shot, pass@1) with model-family multirows. Blocks
correspond to Base+SFT, MoE 4-2, and MoE 8-2; rows list DUS(none, 20%, 40%, 50%).

vs. 20.66), and is stronger on MATH-500 (33.20 vs. 29.00). These gains arrive without
increasing active parameters beyond the 8-2 budget.

» Data/compute efficiency remains high. Across all families, MoE 4-2/8-2 improvements
are obtained with a 150k post-training budget (10% held out; fixed 1,056 steps) on a single
NVIDIA RTX PRO 6000 Max-Q (96 GB), with wall-clock times of ~1.5-8 hours depend-
ing on size. This underscores that specialization (experts) is a more effective use of limited
training budget than deeper stacks or longer SFT.
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5 RESULTS

5.1 OVERALL PERFORMANCE

Across nine benchmarks and two model families (SmolLM2; Llama/Qwen) evaluated strictly as
zero-shot, greedy, T=0, pass@ I, MoE upcycling consistently improves over the dense Base(IT)
under the same post-training budget. With only 150k mixed SFT samples (10% held out; fixed
1,056 updates) on a single NVIDIA RTX PRO 6000 Max-Q (96 GB), MoE 4-2/8-2 raises accuracy
broadly for 135M and 360M models and remains effective on 1B and 0.6B bases. These gains repli-
cate across heterogeneous architectures (SmolLM2, Llama 3.2, Qwen3), underscoring robustness to
backbone choice.

5.2 COMPARISON WITH DENSE COUNTERPARTS

MoE-upcycled variants reliably outperform their dense bases after one-epoch post-training, indi-
cating that width via specialization is a stronger lever than additional dense SFT at this budget.
When compared to larger dense tiers with similar fotal parameters, MoE-upcycled models are typ-
ically competitive rather than strictly superior; however, because only a subset of experts is active
at inference, active parameters remain substantially lower, yielding stronger accuracy per active
parameter and better throughput. In other words, MoE upcycling recovers much of the next-tier
dense performance at a fraction of the active compute.

5.3 EFFECT OF EXPERT NUMBER AND ROUTING
We varied expert count and top-k routing:
* Expert count. Moving from 4 to 8 experts gives modest gains on average, with clearer

improvements on newer, better-aligned bases (e.g., Qwen3-0.6B).

* Top-k. Increasing top-k beyond 2 (8-3/8-4) does not produce meaningful additional gains
despite higher activation; in several backbones the differences are within noise and some-
times regress, making 4-2 or 8-2 the best accuracy—efficiency trade-off.

5.4 INSIGHTS FOR PRACTITIONERS

1. Consistency. With a fixed, small budget (150k; 1 epoch), MoE upcycling improves dense
SLMs across tasks and sizes.

2. Efficiency. Because only k experts are active, MoE attains higher accuracy per active
parameter and faster serving than dense scaling at similar total size.

3. Design. Lightweight settings (4-2 or 8-2) are strong defaults; higher top-k rarely pays off.
Prefer adding experts to adding depth at this scale.

Together, these results demonstrate a practical, reproducible path to enhance small instruction-tuned
models under realistic single-GPU budgets.

5.5 DEPTH SCALING VS. WIDTH SCALING

To test whether depth complements experts, we compared the dense Base(IT), Depth Upscaling
(DUS; layer replication by 20/40/50%), and MoE with/without DUS (Table 5| [Table 6)). We find:

* DUS alone gives negligible or negative returns. For SmolLM2-135M/360M and Llama-
3.2-1B, 40-50% DUS often reduces pass@1 despite larger parameter/activation budgets.

* MoE dominates DUS. MoE-only upcycling already captures most of the attainable gains;
MoE+DUS is indistinguishable or slightly worse than MoE-only under the same budget.

* A narrow exception at DUS-20%. Qwen3-0.6B shows small but repeatable bumps around
DUS-20% (e.g., ARC-Challenge, GSMS8K, HellaSwag, MMLU/Pro), while 40-50% again
saturates or regresses.
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Overall, in the small-model regime, increasing width via MoE is far more effective than increas-
ing depth, both for accuracy and for activation efficiency.

5.6 MAIN OBSERVATIONS

* Control fine-tuning can reduce strict zero-shot performance. One-epoch mixed SFT
on dense Base(IT) (Base+SFT) frequently lowers pass@1 vs. the original Base(IT), in-
cluding strong models (e.g., Llama-3.2-3B and Llama-3.1-8B on ARC-Easy/Challenge,
HellaSwag, MMLU/MMLU-Pro), indicating mild alignment drift at this budget.

* MoE upcycling improves consistently within size groups. For each original size (135M,
360M, 1.7B, 1B, 0.6B), MoE 4-2/8-2 yields the best in-group scores on most tasks (bold
cells in the tables), and narrows much of the gap to the next dense tier at similar active
parameters.

* Qwen3 highlight: 0.6B MoE competes above its weight. Qwen3-0.6B MoE 8-2 surpasses
the 1.7B and even 4B dense bases on GPQA (Diamond 28.79 vs. 27.27 / 22.73; Main 31.92
vs. 25.00 / 27.23), matches or exceeds the 1.7B base on MMLU (54.00 vs. 53.90) and
MMLU-Pro (32.42 vs. 20.66), and is stronger on Math 500 (33.20 vs. 29.00)—all within
the 8-2 activation budget.

6 CONCLUSION

We showed that Mixture-of-Experts upcycling is a simple, reliable way to upgrade small
instruction-tuned models under tight budgets. With only 150k post-training examples and a sin-
gle 96 GB GPU, MoE 4-2/8-2 consistently improves strict zero-shot pass@1 across nine public
benchmarks and multiple backbones. Compared to dense scaling, MoE delivers higher accuracy
per active parameter and better serving efficiency, while depth upscaling provides little benefit at
this scale. Lightweight expert configurations are often sufficient, and in some cases (e.g., Qwen3-
0.6B) can rival or exceed the next dense tier. We hope these results encourage practical upcycling
of open SLMs, enabling individuals and small labs to build stronger models with modest data, time
(1.5-8 hours), and compute.
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