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ABSTRACT

Electronic structure predictions are relevant for a wide range of applications, from
drug discovery to materials science. Since the cost of purely quantum mechanical
methods can be prohibitive, machine learning surrogates are used to predict the
result of these calculations. This work introduces the Basis Overlap Architecture
(BOA), an equivariant graph neural network architecture based on a novel mes-
sage passing scheme that utilizes the overlap matrix of the basis functions used
to represent the ground state electron density. BOA is evaluated on QM9 and
MD density datasets, surpassing the previous state-of-the-art in predicting accu-
rate electron densities.

1 INTRODUCTION

Accurate electronic structure predictions are crucial for the development of new catalysts, improved
batteries or more specific drugs. Today’s gold standard for reasonably sized systems is Kohn-Sham
density functional theory (KS-DFT). It accounts for a significant fraction of worldwide supercom-
puting time, and three of its cornerstone methods are amongst the ten most cited publications of all
times and fields (Van Noorden, 2025). Still, its computational cost prohibits routine use on large sys-
tems, or in very high throughput scenarios. In response, machine learning surrogates are developed
to either circumvent or speed up KS-DFT calculations.

These methods range from property prediction (directly predicting observables from molecular ge-
ometry (Batatia et al., 2022; Ko et al., 2023; Kozinsky et al., 2023; Simeon & Fabritiis, 2023; Batatia
et al., 2025; Liao et al., 2023; Anstine et al., 2025; Wood et al., 2025)) to incorporating more physi-
cal knowledge into the model. Examples for the latter include Hamiltonian prediction (Zhang et al.,
2024a; Yuan et al., 2024; Wang et al., 2024; Qian et al., 2025; Luo et al., 2025), mimicking the
self-consistent iterations of KS-DFT (Song & Feng, 2024), or predicting the electron density using
orbital-free schemes (Zhang et al., 2024b; Remme et al., 2025). Directly predicting the electron den-
sity, as done here, lies between these extremes. The ground state electron density is an observable of
central interest as it uniquely determines all ground state molecular properties in theory (Hohenberg
& Kohn, 1964), and many properties of interest can be derived from the density in practice. Another
use for electron densities is to reduce the number of self-consistent field iterations required in KS-
DFT (Koker et al., 2024; Sunshine et al., 2023). Even a single KS-DFT diagonalization step can be
enough to reach chemically accurate energies relative to a KS self-consistent solution (Jørgensen &
Bhowmik, 2022; Li et al., 2025).

Most previous work on directly predicting ground state electron densities can be broadly grouped
into two categories based on the representation used: The first class is based on a representation
of the density in a typically atom-centered basis (Cuevas-Zuvirı́a & Pacios, 2021; Rackers et al.,
2023; del Rio et al., 2023; Elsborg et al., 2025; Qiao et al., 2022; 2020; Fu et al., 2024; Cheng
& Peng, 2023; Kim & Ahn, 2024; Mitnikov & Jacobson, 2024; Febrer et al., 2025; Mitnikov &
Jacobson, 2024). A model would then predict the coefficients of an expansion of the ground state
electron density in the given basis. This approach has the advantage of being relatively scalable,
as the density only needs to be evaluated on a volumetric grid at the end of the model, if at all.
The choice of basis is however crucial, and to achieve high accuracy a very large number of basis
functions is typically required. This problem was partially addressed by Fu et al. (2024), where
virtual nodes are employed, and the basis functions adapted in a fine-tuning step to mitigate the
impact of a suboptimal basis. Virtual nodes are placed in the molecule, e.g. at the midpoint of bonds,
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Figure 1: The Basis Overlap Architecture (BOA). An overview of BOA is given in (A). The input
molecular geometry is fed into the edge and node embedding layers. The node embeddings are
updated using BOA blocks, which contain a function message passing step to facilitate communi-
cation between nodes. The edge features are modified using the edge update block, which uses the
current edge and node features to calculate new edge features. The output of the BOA backbone
consists of coefficients used to expand the density in atom-centered Gaussian-type basis functions
as described in Section 2.1. In the partial channel mean the number of channels is reduced by taking
the mean of groups of channels. M denotes the molecular geometry and rg are the grid positions
with g ∈ {1, . . . , Ng} and Ng being the number of grid points. (B) shows the flow of information
in the BOA message passing block. While the edge features are updated using the node features,
there is no flow of information from the edge features to the node features. (C) shows a benzene
molecule from the MD dataset with carbon atoms (black) and hydrogen atoms (white). Also shown
are the positions of the products of the selected basis functions.. The smaller def2-SVP (Weigend
& Ahlrichs, 2005) basis set is used here for better visualization. A pair of l = 0 basis functions from
two different hydrogen atoms is shown in blue. The localization of the product of these two basis
functions is shown in yellow. Since the products of basis functions are well distributed in space,
a highly accurate representation of the density can be achieved without the need for floating basis
functions or virtual nodes.

and additional localized basis functions are centered at these nodes. Another approach to address
this problem was taken by Elsborg et al. (2025), where floating basis functions are employed. These
floating orbitals are no longer centered at the atoms of the molecule and instead the basis function
positions are predicted per molecule individually, enabling a much more flexible representation of
the density.

The second class of methods works directly with a representation of the electron density on a vol-
umetric grid (Jørgensen & Bhowmik, 2022; Li et al., 2025; Koker et al., 2024; Gong et al., 2019;
Sunshine et al., 2023). While this approach avoids basis set related inaccuracies, it is typically much
more memory intensive, due to the large number of grid points required to accurately represent the
density.

Contributions This work falls into the first category of methods, i.e. we represent the density
in an atom-centered basis and the model predicts coefficients in this basis. In contrast to previous
work, we, however, choose to represent the density in a quadratic expansion of the basis functions,
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inspired by the internal representation of the density in KS-DFT calculations using a density matrix.
A product of two atom-centered Gaussian-type basis functions, as employed in this work, will be
centered between the two atoms, avoiding the need for floating orbitals or virtual nodes. For a
benzene molecule, this is shown in Figure 1C. This work avoids explicitly predicting coefficients
for each pair of basis functions, effectively employing a low-rank representation of blocks of the
density matrix, without constructing the full coefficient matrix at any point.

To effectively utilize this representation, we introduce the Basis Overlap Architecture (BOA), a
novel equivariant message passing neural network architecture. The full BOA architecture is shown
in Figure 1A. The fundamental idea of BOA is to imbue the model with information about the un-
derlying basis by interpreting, at appropriate points in the model, the internal features as functions
represented in the given basis. Most notably the message passing formulation utilizes the overlap
between functions represented in atom-centered basis functions at different atoms to facilitate com-
munication between nodes. During message passing each message is transformed from the basis of
the sending node to the basis of the receiving node, essentially giving the best fit of the message in
the basis of the receiving node. This instills the model with information not only about the underly-
ing basis, but also the geometry of the molecule, as the overlap between basis functions centered at
different atoms depends on their relative position. This novel approach to message passing is shown
to be very effective for the task of predicting the electron density.

The internal features of BOA are separated into node and edge features, with the bulk of the compu-
tation happening in the node features. This separation avoids the high computational costs of basing
the full procedure solely on edge features, while still allowing for a rich representation needed to
accurately predict the density. The flow of information between node and edge features is shown in
Figure 1B.

BOA is evaluated on electron densities generated from the widely used QM9 dataset (Jørgensen &
Bhowmik, 2022; Li et al., 2025; Ruddigkeit et al., 2012; Ramakrishnan et al., 2014) and a molec-
ular dynamics (MD) dataset of small organic molecules (Cheng & Peng, 2023; Bogojeski et al.,
2020; Brockherde et al., 2017). On all evaluated datasets BOA outperforms previous state-of-the-art
methods by a significant margin.

2 METHODS

To achieve the desired inductive bias, internal features are designed to be interpreted as functions
represented in an atom-centered basis. At each point the node features are given by hamµ, where
a ∈ N is the node with atom type Za, N is the set of all nodes, m ∈ {1, . . . , N c} is the feature
channel, and µ ∈ {1, . . . , NB

Za
} is the basis index. We use Gaussian-type (”GTO”) basis functions,

specifically a fully uncontracted version of def2-QZVPPD (Weigend & Ahlrichs, 2005). A correc-
tion to the radial part is predicted by the model; see Section 2.9 for details. The internal features
hamµ are understood as expansion coefficients of N c functions of space

hm(r) =
∑
a∈N

ham(r) =
∑
a∈N

∑
µ

hamµω
Za
µ (r− ra), (1)

consisting of a sum over functions ham(r) localized at the node positions ra. Each of these functions
in turn is represented in the atom type specific basis ωZa

µ (r). The same principle holds for the edge

features g(l)abmµ and g
(r)
abmµ, where (a, b) ∈ Ee is a directed edge in the graph, with Ee being the set

of all edges. Superscripts l and r denote left and right, respectively, for reasons that are clear from
Equation 2. The l edge features are interpreted as functions localized at node a, while the r edge
features are interpreted as functions localized at node b.

To guarantee rotational equivariance the choice of basis functions is essential. Choosing basis func-
tions where the angular part is given by spherical harmonics ensures that the basis function coeffi-
cients transform according to irreducible representations of SO(3), making it possible to construct
equivariant operations. BOA is fully equivariant under rotations and translations by construction,
details are shown in Appendix Section A.3.
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2.1 DENSITY REPRESENTATION

Previous work explored different ways to represent the density, either in a basis or directly on the
grid. We choose a representation in an atom-centered basis. In contrast to previous work, we
however do not expand the density or its square root directly as a linear expansion of the basis
functions ρ(r) =

∑
a∈N

∑
µ paµω

Za
µ (r − ra). Instead, we choose a quadratic expansion, inspired

by the natural expansion of the density in squared orbital functions in KS-DFT:

ρ(r) =
∑
a∈N

ĝ(l)a (r)ĝ(r)a (r) +
∑

(a,b)∈Ee

No∑
o

g
(l)
abo(r)g

(r)
abo(r), (2)

where No is the number of function pairs per edge and g
(l)
abo(r), g

(r)
abo(r), ĝ

(l)
a (r) and ĝ

(r)
a (r) are

expanded in the localized basis functions ωZa
µ (r) and ωZb

µ (r):

g
(l)
abo(r) =

∑
µ

g
(l)
aboµω

Za
µ (r− ra), g

(r)
abo(r) =

∑
µ

g
(r)
aboµω

Zb
µ (r− rb), (3)

ĝ(l)a (r) =
∑
µ

ĝ(l)aµω
Za
µ (r− ra), ĝ(r)a (r) =

∑
µ

ĝ(r)aµω
Za
µ (r− ra). (4)

This representation can be rewritten by defining Γabµν =
∑No

o g
(l)
aboµg

(r)
aboν+δabĝ

(l)
aµĝ

(r)
aν , with δab =

1 if a = b and 0 otherwise, resulting in ρ(r) =
∑

(a,b)∈Ee
Γabµνω

Za
µ (r−ra)ω

Zb
ν (r−rb). Each Γabµν

can be interpreted as a block of the full density matrix Γµν , where the indices µ and ν are understood
to run over all basis functions of all atoms. Using the full density matrix, the density is represented
by ρ(r) = Γµν ω̄µ(r)ω̄ν(r), where ω̄(r) is the concatenation of the basis functions of all atoms. This
is exactly the representation of the density used in KS-DFT calculations. The full density matrix Γµν

is never explicitly constructed in BOA, instead the functions g
(l)
abo(r) and g

(r)
abo(r) are evaluated on

the grid and the density is obtained using Equation 2, avoiding the costly evaluation of all pairwise
products of basis functions on the grid. Equation 2 amounts to evaluating a density given by a
low-rank representation of each block Γabµν of the density matrix, where the rank is given by No.

The expansion coefficients g(l)aboµ and g
(r)
aboµ are predicted from the molecule geometry M by BOA

as described in the following sections. The self-loop coefficients ĝ(l)aµ and ĝ
(r)
aµ are used to represent

an initial guess for the density, which is added to the density predicted by BOA.

2.2 INITIAL GUESS

BOA uses an initial guess based on the atom types of the nodes. After pre-training the initial guess,
only an offset to that guess is learned. The learned guess amounts to one pair of edge functions
as described in Section 2.1 per atom. Consequently, the initial guess for the density is given by∑

a∈N ĝ
(l)
a (r)ĝ

(r)
a (r). The initial guess coefficients are concatenated to the output of the BOA

model in the channel dimension before evaluating the density, resulting in the initial guess being
added to the density predicted by the BOA model. The initial guess coefficients are pre-trained for
1000 steps, but are not fixed after that, i.e. the initial guess is refined during the full training process.

2.3 NODE AND EDGE EMBEDDINGS

The node and edge embeddings are used to set the initial node and edge features respectively. Both
are lookup tables, which map the atom type Za of the node a and the atom types of the nodes
connected by the edge (a, b) to a learned set of features. To keep equivariance under rotations, only
the coefficients corresponding to l = 0 basis functions are set in the embeddings, while the rest is
initialized to zero. The node features are therefore initialized as

hamµ =

{
W

(n)
Zamµ, if ωZa

µ (r) is an lZaµ = 0 basis function
0, otherwise,

(5)
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Figure 2: Subblocks of the BOA architecture. (A) The new edge features g̃
(l)
abmµ and g̃

(r)
abmµ are

generated as a superposition of the old edge features g(l)abmµ and g
(r)
abmµ and the node features hamµ

and hbnµ. The weights of this superposition are generated by passing the overlap integrals of the
edge and node features through an MLP. (B) Incoming messages are calculated by transforming the
feature functions from the basis of the sending node to the basis of the receiving node. Attention
weights α̃abmn are calculated from the overlap between the feature functions of the two nodes and
used to weight the messages. An encircled index in the graph indicates a contraction over the
corresponding dimension, i.e. multiplication of the inputs and summation over the given index. (C)
A correction to the radial part of the basis functions is learned for each atom type separately by a
small MLP. The radius is passed through a Gaussian radial embedding (Passaro & Zitnick, 2023)
before being fed into the MLP. The output cµ of the MLP is then used to scale the radial part of the
basis functions by 1 + cµ.

where W
(n)
Zamµ is learned during training and lZaµ is labeling the irreducible representation of the

basis function ωZa
µ (r). The edge features are initialized similarly as

g
(l)
abmµ =

{
W

(e,l)
ZaZbmµ, if ωZa

µ (r) is an lZaµ = 0 basis function
0, otherwise,

(6)

g
(r)
abmµ =

{
W

(e,r)
ZaZbmµ, if ωZb

µ (r) is an lZbµ = 0 basis function
0, otherwise,

(7)

where W
(e,l)
ZaZbmµ and W

(e,r)
ZaZbmµ are again learned.

2.4 BASIS OVERLAP MESSAGE PASSING

The fundamental principle behind the message passing mechanism introduced in this section is that,
each feature channel should be interpretable as a function represented in a given basis. To respect this
interpretation, a basis change is employed to transform each message from the basis of the sending
node to the basis of the receiving node, a concept similar to frame-to-frame transitions employed
in local canonicalization schemes (Lippmann et al., 2025). Inspired by the attention mechanism
(Vaswani et al., 2017), the messages are weighted by attention weights, which are calculated from
the overlap integrals between the features of the sending and receiving node. The full message
passing mechanism is illustrated in Figure 2B.
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BOA operates using two different cutoff radii re, rmp ∈ R, with re being a smaller cutoff defining
the edges Ee used for the edge features and in the edge update module defined in 2.8, and rmp being
a larger cutoff defining the edges Emp used in the message passing step.

The first step in transforming the features of node b into the basis of node a is calculating the overlap
integrals between these features and the basis functions of node a. This overlap oabmµ is given by

oabmµ =

∫
dr ωZa

µ (r− ra)hbm(r) =

∫
dr ωZa

µ (r− ra)
∑
ν

ωZb
ν (r− rb)hbmν (8)

=
∑
ν

W ab
µνhbmν , (9)

where W ab
µν =

∫
dr ωZa

µ (r − ra)ω
Zb
ν (r − rb) is the overlap matrix between the basis functions of

node a and node b. From these overlap integrals, the representation of the features of node b in the
basis of node a can be obtained by multiplying with the inverse of the overlap matrix (W aa)

−1
µν of

the basis functions of node a, resulting in the message mabmµ from node b to node a

mabmµ =
∑
ν

(W aa)
−1
µν oabmν . (10)

These messages mabmµ are the coefficients in the basis of node a that best represent the features of
node b in the least squares sense. A derivation of this result can be found in Appendix A.2.

To weight the messages, an attention matrix α̃abmn is calculated for each edge (a, b). Each entry in
this attention matrix describes the weight of the message from channel n of node b to channel m of
node a. The attention matrix is calculated from the overlap between the feature functions of the two
nodes

αabmn =

∫
dr ham(r)hbn(r) =

∫
dr
∑
µν

hamµω
a
µ(r− ra)hbnνω

b
ν(r− rb) (11)

=
∑
µν

hamµW
ab
µνhbnν =

∑
µ

hamµoabnµ. (12)

This feature overlap matrix αabmn is processed by a multi-layer perceptron to produce the atten-
tion weights α̃abmn, which determine the contribution of messages from neighboring nodes. These
weighted messages are then aggregated to update the features of node a:

h̃amµ =
∑

(a,b)∈Emp

∑
n

α̃abmnmabnµ. (13)

Since the edges Emp include self-loops, the original features of each node are included in the message
passing step, which amounts to a residual connection weighed by the attention weights α̃aamn.

2.5 NONLINEARITY

Searching for a suitable nonlinearity for features that should be interpretable as functions, one faces
similar problems as for nonlinearities applied in equivariant neural networks. Here features are
grouped together to form tensors with known transformation behavior under rotations, so that the
nonlinearity can not be applied independently to each feature. In our case, the features are not only
grouped to form tensors, but also form larger groups that each represent a function.

One solution in the case of equivariant networks are gated nonlinearities (Weiler et al., 2018), where
first scalar features are computed to which some nonlinear function is applied. The resulting scalar
features are then used to scale the tensors, i.e. each group of features forming a tensor is scaled with
the same scalar. In a similar approach we first calculate scalar features

lamn =

∫
dr

∫
dr′

ham(r)han(r
′)

∥r− r′∥
=
∑
µν

hamµC
aa
µνhanν , (14)

where Caa
µν =

∫
dr

∫
dr′

ωZa
µ (r−ra)ω

Za
ν (r′−ra)

∥r−r′∥ is the Coulomb matrix, which can be generated
for Gaussian-type basis functions using the PySCF package (Sun et al., 2020). The resulting scalar
features lamn are flattened and passed through an MLP. The result

wa = MLPZa (la) (15)
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is reshaped to the original shape of lamn and then used to linearly transform the features of node a

h̃amµ =
∑
n

wamnhanµ. (16)

Za denotes the atom type of node a, i.e. separate MLPs are learned for each atom type.

2.6 L2 NORMALIZATION

The normalization also aims to respect the function nature of the features, so the L2 norm
of each of the per-atom channel functions is normalized. The norm is calculated as nam =√∫

dr (ham(r))
2
=
√∑

µν hamµW aa
µνhamν and the features are normalized by h̃amµ =

hamµ

nam+ϵ

where ϵ is chosen as 10−6 to avoid division by zero.

2.7 LINEAR LAYERS

Standard equivariant linear layers, as implemented in the e3nn package (Geiger & Smidt, 2022), are
applied to the features of each channel and node. This means that only tensors of the same type
are mixed and biases are only applied to scalars to preserve equivariance. The linear layers used
depend on the atom type of each node, i.e. separate parameters are learned for each atom type. After
the application of these equivariant linear layers, the channels are mixed by a weight matrix, which
again depends on the atom type of the node. This results in

h̃Za
amµ =

∑
µ

∑
ν

WZa
mnW

Za,(eq)
µν hanν (17)

where WZa
mn is the weight matrix for the mixing of the channels and W

Za,(eq)
µν is the weight matrix

for the equivariant linear layer. While the linear layer used here is fully equivariant, it arguably does
not fully respect the function interpretation of the features. Initial experiments with linear layers that
respect the function interpretation, i.e. by applying an integration

∫
dr wmn(r)hn(r) where wmn(r)

are learned functions represented in some basis, showed strong instabilities in training. Since the
linear layers shown here worked well in practice, we decided to use them in the final architecture,
opting for stability over additional inductive bias.

2.8 EDGE UPDATE

The edge functions g
(l)
abm(r), g

(r)
abm(r) are updated after each BOA block. The flow of information

is illustrated in Figure 1B. The node features ham(r) are used together with the old edge features
g
(l)
abm(r), g

(r)
abm(r) to generate new edge features g̃

(l)
abm(r), g̃

(r)
abm(r). There is however no flow of

information from the edge features to the node features. The full edge update procedure is shown in
Figure 2A. Intermediate features are generated using the overlap integrals of edge and node features

o
(n)
abmn =

∫
dr ham(r)hbn(r) =

∑
µν

hamµW
ab
µνhbnν , (18)

o
(e)
abmn =

∫
dr g

(l)
abm(r)g

(r)
abn(r) =

∑
µν

g
(l)
abmµW

ab
µνg

(r)
abnν , (19)

These intermediate features are flattened and passed through an MLP to obtain weights w
(n,l)
abmn,

w
(n,r)
abmn, w(e,l)

abmn, w(e,r)
abmn, s(n,l)ab , s(n,r)ab , s(e,l)ab , s(e,r)ab . The weight matrices w(n,l)

ab ,w
(n,r)
ab ,w

(e,l)
ab ,w

(e,r)
ab

are normalized by

w̃
(·,·)
ab =

w
(·,·)
ab∥∥∥w(·,·)

ab

∥∥∥
f
+ ϵ

γ(·,·), (20)

where (·, ·) denotes either (n, l), (n, r), (e, l) or (e, r) and γ(·,·) is a learned scalar factor. The
normalization is computed in the Frobenius norm ∥·∥f . Using these weights the new edge features

g̃
(·)
abmµ =

∑
n

s
(e,·)
ab w̃

(e,·)
abmng

(·)
abnµ +

∑
n

s
(n,·)
ab w̃

(n,l)
abmnh⋆nµ (21)

are generated, where ⋆ = a for the l features and ⋆ = b for the r features.
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2.9 RADIAL CORRECTION FACTOR

While internally all features are represented in a basis consisting of Gaussian-type basis functions,
for the final density representation an additional correction factor to the radial part of the basis
functions is learned. For each atom type Z separately a small MLP is used to predict a correction
factor cµ based on the radius r = ∥r∥. As shown in Figure 2C the radius is passed through a
Gaussian radial embedding (Passaro & Zitnick, 2023) before being fed into the MLP. The corrected
basis functions ω̃Z

µ (r) are then given by ω̃Z
µ (r) = ωZ

µ (r) (1 + cµ(r)) .

2.10 SMOOTH ABSOLUTE VALUE OF ONE OF THE EDGE FUNCTIONS

Taking the smooth absolute value

|x|s =
{

λ
2x

2, if |x| < 1
λ

|x| − 1
2λ , otherwise

(22)

of g(r)abo(r) resulted in slightly improved performance compared to keeping the function unmodified,
see Appendix Section A.1. The factor λ steers the scale of the smooth absolute value function and is
here chosen as λ = 1000. The density is then given by ρ̂(r) =

∑
(a,b)∈Ee

∑No

o g
(l)
abo(r)

∣∣∣g(r)abo(r)
∣∣∣
s
+∑

a∈N ĝ
(l)
a (r)

∣∣∣ĝ(r)a (r)
∣∣∣
s
.

3 EXPERIMENTS

The performance of BOA is evaluated on two electron density datasets based on QM9 (Jørgensen
& Bhowmik, 2022; Li et al., 2025; Ruddigkeit et al., 2012; Ramakrishnan et al., 2014) and on a
dataset based on MD trajectories (Cheng & Peng, 2023; Bogojeski et al., 2020; Brockherde et al.,
2017). These datasets provide ground state electron densities for given geometries on a volumetric
grid. Two versions of BOA are evaluated, a small version and a large version, differing only in the
number of grid points used to evaluate the loss during training and the batch size. The small version
uses 5000 grid points and a batch size of 12 while the large version uses 6000 grid points and a
batch size of 24. Using these settings, the small version fits on a single A100 GPU with ∼40GB of
memory while the large version requires a H100 GPU with ∼94GB of memory or some setup with
similar memory. All hyperparameters are listed in Appendix Section A.4.

As in previous works, the predicted electron density ρ̃(r) is compared to the reference electron
density ρ(r) using the normalized mean absolute error (NMAE)

NMAE(ρ̃, ρ) =
∫
dr |ρ̃(r)− ρ(r)|∫

dr |ρ(r)|
. (23)

The integration is approximated on the full grid by summing over all grid points.

The two QM9 based datasets differ in the way the reference electron density was calculated, either
using VASP (Jørgensen & Bhowmik, 2022) or PySCF (Li et al., 2025). BOA surpasses the previous
state-of-the-art on both QM9 datasets, as shown in Table 1. The split between training, validation
and test set is taken from Fu et al. (2024). This makes the results on the QM9 VASP dataset directly
comparable. However, this is not the same split as used for the training of the ResNet model (Li
et al., 2025), which makes the results not directly comparable. The split used for the ResNet model
was not available to the authors at the time of writing.

Additionally, the performance of BOA is evaluated on the MD dataset. As described in Cheng
& Peng (2023), the MD dataset is curated from two sources. The ethanol, benzene, phenol and
resorcinol data is taken from Bogojeski et al. (2020), while the ethane and malonaldehyde data is
taken from Brockherde et al. (2017). BOA outperforms all previous methods on all molecules but
one, where it matches the state-of-the-art, as shown in Table 2. Especially promising is the fact
that no additional hyperparameter tuning was needed to achieve these results. The model is exactly
the same as in the QM9 experiments, with the only change being a reduction in training steps to
200,000. Since only a training and test set is provided for the MD dataset, 10% of the training set is
randomly sampled and used as a validation set to choose the best model during training.
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Table 1: Comparison of BOA with previous best methods on the QM9 charge density datasets.
Two datasets based on QM9 are evaluated, differing in the reference electron density calculation
method. Errors are reported as NMAE [%]. For BOA the mean and standard error of the mean
over three runs are reported for the small models. For the large models only one run is reported
(experiments are ongoing). Errors of eqDeepDFT, InfGCN, ChargE3Net and SCDP are reproduced
from Fu et al. (2024). The ResNet results are taken from Li et al. (2025) and are not directly
comparable to BOA, as they use a different training/validation/test split.

NMAE [%] VASP ground truth PySCF ground truth

eqDeepDFT (Jørgensen & Bhowmik, 2022) 0.284 n/a
InfGCN (Cheng & Peng, 2023) 0.869 n/a
ChargE3Net (Koker et al., 2024) 0.196 n/a
SCDP (Fu et al., 2024) 0.178 n/a
ELECTRA (Elsborg et al., 2025) 0.177 n/a
ResNet (Li et al., 2025) n/a 0.14

BOA small 0.1381± 0.0003 0.122± 0.007
BOA large 0.134 0.107

Table 2: Comparison of BOA with other methods on the MD charge density dataset. Errors
are reported as NMAE [%]. For BOA the mean and standard error of the mean over three runs are
reported. Errors of the other models (InfGCN (Cheng & Peng, 2023), GPWNO (Kim & Ahn, 2024),
SCDP (Fu et al., 2024), ELECTRA (Elsborg et al., 2025)) are reproduced from the Elsborg et al.
(2025).

NMAE [%] ethanol benzene phenol resorcinol ethane malonaldehyde

InfGCN 8.43 5.11 5.51 5.95 7.01 10.34
GPWNO 4.00 2.45 2.68 2.73 3.67 5.32
SCDP 2.34 1.13 1.29 1.35 2.05 2.71
ELECTRA 1.02 0.45 0.56 0.62 0.91 0.80

BOA small 0.710± 0.004 0.361± 0.003 0.56± 0.03 0.371± 0.004 0.772± 0.002 0.61± 0.01

4 DISCUSSION

Electronic structure calculations plays a fundamental role in computational chemistry, with a myriad
of practical applications. Accelerating these calculations has the potential of enabling new applica-
tions which are currently not possible, and of cutting costs for what is already feasible. BOA takes a
step towards this goal by introducing a novel architecture, permitting predictions of the electron den-
sity with unprecedented accuracy. These results are enabled by a novel message passing mechanism
treating the internal features as functions additional to a representation of the density in a quadratic
basis expansion.

While BOA already achieves state-of-the-art on the evaluated datasets, there are several avenues for
future work. Both the QM9 and the MD dataset contain only relatively small organic molecules.
Training on larger more diverse datasets will be needed to enable applicability to a wider range of
practical applications. Generalization over a large part of the periodic table would be desirable,
which might require changes to the architecture. Currently, BOA uses separate parameters for each
atom type, which could become infeasible for more diverse datasets. A unified basis set for all atom
types could be employed in the future to mitigate this problem.

An efficient representation of the density is crucial for basis-set-based models like BOA. Another
avenue for future work is therefore to improve the basis set used. BOA currently uses a fixed basis
set of uncontracted Gaussian-type basis functions as a base and learns a radial correction factor.
To achieve more flexibility, also the exponents of the Gaussian basis functions could be learned,
as done in (Fu et al., 2024). In BOA, the overlap and Coulomb matrices used internally could be
adapted during training, which could be achieved using differentiable quantum chemistry packages
like PySCFAD (Zhang & Chan, 2022).
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A APPENDIX

A.1 ABLATION STUDIES

An ablation study of the radial correction factor and taking the smooth absolute value of one of the
basis functions in each pair in the expansion of the density is performed. The results are shown
in Table 3. For each configuration, three training runs are performed and the mean and standard
error are reported. Both the radial correction and taking the absolute value significantly improve the
performance, with the radial correction having the larger effect. The best performance is achieved
when both techniques are used together.

Table 3: Ablation studies. Ablation study of taking the absolute value of one of the basis functions
in the pair and applying the radial correction. The small BOA version is trained on the QM9 VASP
dataset. Errors are reported as NMAE [%].

Absolute Value Radial Correction NMAE [%]

× × 0.204± 0.002
✓ × 0.167± 0.004
× ✓ 0.1423± 0.0006
✓ ✓ 0.1381± 0.0003

A.2 FUNCTION MESSAGE PASSING DERIVATION

We show that the messages mabmµ are the coefficients in the basis of node a that represent the feature
functions hbn(r) of node b best in the least squares sense. The message passing step therefore solves
the optimization problem

min
mabmµ

∥∥∥∥∥hbm(r)−
∑
µ

mabmµω
Za
µ (r− ra)

∥∥∥∥∥
2

(24)

⇒ min
mabmµ

∥∥∥∥∥∑
µ

hbmµω
Zb
µ (r− rb)−

∑
µ

mabmµω
Za
µ (r− ra)

∥∥∥∥∥
2

. (25)

Taking the derivative with respect to mabmµ and setting it to zero results in

0 = 2

(∑
µ

hbmµω
Zb
µ (r− rb)−

∑
µ

mabmµω
Za
µ (r− ra)

)
(26)

⇒
∑
µ

hbmµω
Zb
µ (r− rb) =

∑
µ

mabmµω
Za
µ (r− ra). (27)

Multiplying both sides with ωZa
ν (r− ra) and integrating over r results in∫

dr
∑
µ

hbmµω
Zb
µ (r− rb)ω

Za
ν (r− ra) =

∫
dr
∑
µ

mabmµω
Za
µ (r− ra)ω

Za
ν (r− ra) (28)

⇒
∑
µ

W ab
νµhbmµ =

∑
µ

W aa
νµmabmµ (29)

⇒ mabmµ =
∑
ν

(W aa)
−1
µν

∑
κ

W ab
νκhbmκ, (30)

which is the solution to the optimization problem in Equation 25 and exactly what is implemented
in the message passing step.
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A.3 EQUIVARIANCE OF BOA

To understand the equivariance of the different BOA layers, it is necessary to understand how the
basis functions ωZ

µ (r) transform under rotations. The angular part of the basis functions is given by
spherical harmonics, which are known to transform under irreducible representations of the rotation
group SO(3). These irreducible representations are indexed by l with dimension 2l + 1. The basis
functions can now be grouped according to their l value, i.e. there are groups of 2l+1 basis functions
that transform under the irreducible representation indexed by l. A basis function ωl

m(r) in the group
indexed by l transforms under a rotation R ∈ SO(3) as

ωl
m(Rr) =

∑
m′

Dl
mm′(R)ωl

m′(r), (31)

where Dl
mm′(R) is the Wigner D-matrix. A set of basis functions ωZ

µ (r) can therefore be separated
into irreducible representations

ωZ(r) =

ωl1
−l1

(r), . . . , ωl1
l1
(r)︸ ︷︷ ︸

2l1+1

, ωl2
−l2

(r), . . . , ωl2
l2
(r)︸ ︷︷ ︸

2l2+1

, . . .


T

, (32)

resulting in a block diagonal transformation behavior under rotations
ωZ(Rr) = DZ(R)ωZ(r), (33)

where DZ(R) is a block diagonal matrix with blocks given by the Wigner D-matrices corresponding
to the l values of the basis functions. The Wigner D-matrices are orthogonal matrices, so that DZ(R)

is also an orthogonal matrix, i.e.
(
DZ(R)

)T
=
(
DZ(R)

)−1
.

BOA employs the overlap and Coulomb matrices between the basis functions of different nodes,
which are defined as

W ab
µν =

∫
dr ωZa

µ (r− ra)ω
Zb
ν (r− rb), (34)

Cab
µν =

∫
dr

∫
dr′

ωZa
µ (r− ra)ω

Zb
ν (r′ − rb)

∥r− r′∥
. (35)

Considering a rotation R of the molecule geometry, without changing the orientation of the basis
functions, the overlap matrix transforms as

W̄ ab
µν =

∫
dr ωZa

µ (r−Rra)ω
Zb
ν (r−Rrb) =

∫
dr′ ωZa

µ (Rr′ −Rra)ω
Zb
ν (Rr′ −Rrb) (36)

=

∫
dr′

∑
µ′

DZa

µµ′(R)ωZa

µ′ (r
′ − ra)

∑
ν′

DZb

νν′(R)ωZb

ν′ (r
′ − rb) (37)

=
∑
µ′

DZa

µµ′(R)
∑
ν′

DZb

νν′(R)

∫
dr′ ωZa

µ′ (r
′ − ra)ω

Zb

ν′ (r
′ − rb) (38)

=
∑
µ′

DZa

µµ′(R)
∑
ν′

DZb

νν′(R)W ab
µ′ν′ . (39)

⇒ W̄ab = DZa(R)Wab
(
DZb(R)

)T
, (40)

where W̄ is the transformed matrix. This notation will be used throughout this section. Completely
analogously, the Coulomb matrix transforms

C̄ab = DZa(R)Cab
(
DZb(R)

)T
. (41)

Similarly, one can consider a function f(r) =
∑

µ fµω
Z
µ (r). The rotated function f̄(r) represented

in the same basis with rotated molecule geometry is given by

f̄(r) = f(R−1r) =
∑
µ

fµω
Z
µ (R

−1r) =
∑
µ

fµ
∑
µ′

DZ
µµ′(R−1)ωZ

µ′(r) =
∑
µ′

f̄µ′ωZ
µ′(r), (42)

⇒ f̄µ′ =
∑
µ

DZ
µµ′(R−1)fµ. (43)

⇒ f̄ =
(
DZ(R−1)

)T
f = DZ(R)f . (44)
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A.3.1 MESSAGE PASSING

The overlap integrals oabmµ defined in Equation 9 transform as

ōabmµ =
∑
ν

W̄ ab
µν h̄bmν =

∑
ν

∑
µ′

DZa

µµ′(R)
∑
ν′

DZb

νν′(R)W ab
µ′ν′

∑
ν′′

DZb

νν′′(R)hbmν′′ (45)

=
∑
µ′

DZa

µµ′(R)oabmµ′ , (46)

leading to the transformation behavior

m̄abmµ =
∑
ν

(W̄ aa)−1
µν ōabmν =

∑
ν

∑
µ′

DZa

µµ′(R)(W aa)−1
µ′ν

∑
ν′

DZa

νν′(R)oabmν′ (47)

=
∑
µ′

DZa

µµ′(R)mabmµ′ (48)

of the messages mabmµ. The overlap integrals αabm are scalars because

ᾱabmn =
∑
µν

h̄amµW̄
ab
µν h̄bnν (49)

=
∑
µν

∑
µ′

DZa

µµ′(R)hamµ′

∑
µ′′

DZa

µµ′′(R)
∑
ν′

DZb

νν′(R)W ab
µ′′ν′

∑
ν′′

DZb

νν′′(R)hbnν′′ (50)

=
∑
µ′

hamµ′

∑
ν′

W ab
µ′ν′hbnν′ = αabmn. (51)

For scalar features any MLP is equivariant, since scalars are invariant under rotations. The attention
weights α̃abmn are therefore also scalars. The updated node features h̃amµ transform as

¯̃
hamµ =

∑
(a,b)∈Emp

∑
n

¯̃αabmnm̄abnµ (52)

=
∑

(a,b)∈Emp

∑
n

α̃abmn

∑
µ′

DZa

µµ′(R)mabnµ′ (53)

=
∑
µ′

DZa

µµ′(R)h̃amµ′ , (54)

showing that the message passing layer is equivariant.

A.3.2 NONLINEARITY

The nonlinearity is based on calculating scalar quantities, which are then transformed by an MLP,
and weighing the original features with these scalars. The scalar features lamn invariant under
rotations because

l̄amn =
∑
µν

h̄amµC̄
aa
µν h̄anν (55)

=
∑
µν

∑
µ′

DZa

µµ′(R)hamµ′

∑
µ′′

DZa

µµ′′(R)
∑
ν′

DZa

νν′(R)Caa
µ′′ν′

∑
ν′′

DZa

νν′′(R)hanν′′ (56)

=
∑
µ′

hamµ′

∑
ν′

Caa
µ′ν′hanν′ = lamn. (57)

Therefore, the weights wamn are also scalars and the updated node features h̃amµ transform as
¯̃
hamµ =

∑
n

w̄amnh̄anµ =
∑
n

wamn

∑
µ′

DZa

µµ′(R)hanµ′ (58)

=
∑
µ′

DZa

µµ′(R)h̃amµ′ , (59)

showing that the nonlinearity is equivariant.
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A.3.3 L2 NORMALIZATION

The L2 normalization of the features is done per node and feature channel, i.e. for each a and m.
The normalization factor is a scalar because

n̄am =

√∑
µν

h̄amµW̄ aa
µν h̄amν (60)

=

√∑
µν

∑
µ′

DZa

µµ′(R)hamµ′

∑
µ′′

DZa

µµ′′(R)
∑
ν′

DZa

νν′(R)W aa
µ′′ν′

∑
ν′′

DZa

νν′′(R)hamν′′ (61)

=

√∑
µ′

hamµ′

∑
ν′

W aa
µ′ν′hamν′ = nam. (62)

Therefore, the normalized features h̃amµ are straightforwardly equivariant.

A.3.4 EDGE UPDATE

Exactly the same arguments as for the L2 normalization and the nonlinearity can be used to show
that o(n)abmn and o

(e)
abmn are scalars. Therefore, also the generated weights s(·,·)ab and w̃

(·,·)
abmn are scalars,

making the update step in Equation 21 equivariant.

A.4 HYPERPARAMETERS AND TRAINING DETAILS

The model is trained in two stages, the pre-training of the initial guess followed by the full training.
During training an exponential moving average (EMA) of the previous weights is used. For testing
the epoch that performed best in validation is chosen in all experiments. A mean absolute error loss
on the electron density values on the grid is used. When evaluating the density on the grid, edge
function values are set to 0 if both of the edge functions have a distance of more than 3 Å from the
grid point. The electron density prediction on the grid is multiplied with the standard deviation of
the labels calculated over the whole training set. The predicted density is additionally multiplied
with 0.1, as this stabilized training in initial experiments.

A.4.1 MODEL HYPERPARAMETERS

The detailed list of hyperparameters of the model is given in Table 4. Settings changed for the pre-
training of the initial guess are listed in Table 5. One special layer is the MLP for the edge update,
which consists of a two linear layers, with a SiLU activation and a LayerNorm between them. The
first layer has 2·(N c)

2 input and output neurons, and the second has 4·N c ·(N c+1) output neurons.

The MLP used in the nonlinearity consists of two linear layers with (N c)
2 input and output neurons,

separated by first a SiLU activation and then a LayerNorm.

The Gaussian radial embedding employed in the radial correction uses 50 Gaussians evenly spaced
between 0a0 and 3a0 (with a0 being the Bohr radius). Therefore, 50 values are fed into the following
MLP, which consists of first a linear layer with dimension 50× 50 then SiLU activation and a linear
layer with dimension 50 ×N exp. Here N exp is the number of different exponents used in the radial
parts of the basis functions, i.e. the number of unique radial functions. For basis functions belonging
to the same irreducible representations of SO(3), and therefore having the same radial part, the same
correction factor is used.

Differences between BOA sizes Going from the small to the large version of BOA, the number of
randomly probed points per molecule is increased from 5000 to 6000. Additionally, the batch size
is increased from 12 to 24 which also leads to an increase in ”epochs”, since the maximum number
of steps remains at 500000.

Differences between datasets On the MD datasets, the number of maximum training steps was
reduced to 200000.
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Table 4: The hyperparameters on the QM9 dataset using the small settings. Differences on other
datasets are in the text.

Hyperparameter Value

Batch Size 12
Initial Learning Rate 0.001
Learning Rate Schedule CosineAnnealingLR
Tmax 500000 steps
Optimizer Adam
β1, β2, ϵ (0.9, 0.999, 10−8)
Weight Decay 0.0
Max Training Steps 500000
Gradient Clipping Value 0.5
EMA Decay 0.995

# BOA blocks 4
# hidden channels N c 32
# edge functions after partial channel mean 8
MLP activation SiLU
Initial Guess Channels 1
Absolute Value Scale λ 1000
scale factor 0.1
Probed Points 5000
Message passing cutoff rmp 6 Å
Edge function cutoff re 3 Å
Basis Set def2-QZVPPD

Table 5: The pretraining hyperparameters that differ from the default settings in Table 4.

Hyperparameter Value

Initial Learning Rate 0.001
Learning Rate Scheduler CosineAnnealingWarmRestarts
T0 250
Tmult 1
# Steps 1000

A.4.2 BASIS SET

The number of basis functions per atom type and shell of def2-QZVPPD basis set is given in Table
6.

Table 6: Uncontracted (primitive) shells per ℓ in def2-QZVPPD and total spherical functions.

Element 0 1 2 3 4 Total (sph.)

H 7 4 2 1 0 36
C 16 8 4 2 1 83
N 16 8 4 2 1 83
O 16 9 4 2 1 86
F 16 9 4 2 1 86
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A.5 LLM USAGE

Large Language Models (LLMs) were used to assist with writing (formulation and wording), coding
(AI autocomplete), and gathering resources in the preparation of this article.
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