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Data Exchange Markets via Utility Balancing
Anonymous Author(s)

ABSTRACT
This paper explores the design of a balanced data-sharing market-
place for entities with heterogeneous datasets and machine learn-
ing models that they seek to refine using data from other agents.
The goal of the marketplace is to encourage participation for data
sharing in the presence of such heterogeneity. Our market design
approach for data sharing focuses on interim utility balance, where
participants contribute and receive equitable utility from refine-
ment of their models. We present such a market model for which
we study computational complexity, solution existence, and approx-
imation algorithms for welfare maximization and core stability. We
finally support our theoretical insights with simulations on a mean
estimation task inspired by road traffic delay estimation.

ACM Reference Format:
Anonymous Author(s). 2024. Data Exchange Markets via Utility Balancing.
In Proceedings of TheWebConf 2024 (WWW 2024). ACM, New York, NY, USA,
14 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
The power of big data comes from the improved decision making
it enables via training and refining machine learning models. To
unlock this power to the fullest, it is critical to enable and facilitate
data sharing among different units in an organization and between
different organizations. The market for big data “accounted for
USD 163.5 Billion in 2021 and is projected to occupy a market size
of USD 473.6 Billion by 2030 growing at a CAGR of 12.7%” [29].
Motivated by the emergence of online marketplaces for data such
as SnowFlake [11], in this paper we consider the timely question:

How can we design a principled marketplace for
sharing data between entities (organizations or ap-
plications) with heterogeneous datasets they own
and machine learning models they seek to refine,
so that each entity is encouraged to voluntarily
participate?

Towards this end, we assume agents have diverse ML models
for decision making that they seek to refine with data. At the same
time, each agent possesses data that may be relevant to the tasks
of other agents. As an example, a retailer may have sales data for
certain products in certain geographic locations, but may want data
for related products in other markets to make a better prediction of
sales trends. This data could be in the hands of competing retailers.
Similarly, a hospital system seeking to build its in-house model for
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a disease condition based on potentially idiosyncratic variables may
want patient data from other hospital systems to refine this model.

In our paper, we assume the participants in the market have no
value for money.We further assume that the agents seeking data are
the same as those seeking to refine models. Therefore we consider
an exchange economy without money as opposed to a two-sided
market with buyers and sellers. This is a reasonable assumption for
non-profits such as hospital systems or universities, where student
or patient data can be “exchanged” but not sold for profit. Though
we seek a market design without money, the agents in the market
still need to be incentivized to voluntarily participate in the market
and exchange data, and this is the main focus of our design.

In the settings we consider, data is often sensitive and private [3,
16]. As in [3], we address this issue by having a trusted central
entity (or clearinghouse) with who all agents share their ML tasks
and datasets. This entity can refine or retrain the model for one
agent using samples of the data from other agents. For instance, if
each agent specifies the gradient of their loss function and their
in-house model parameters, the central entity can run stochastic
gradient descent to update the parameters using the other data.
This way, the central entity can efficiently compute the loss of the
refined model and hence the utility of a collection of datasets to
a model. By using a utility sharing method such as Shapley value
that has been well-studied in machine learning [17, 18], the entity
can use the same process to attribute this utility gain fairly to the
agents that contributed data to the refinement. The entity then
sends the refined models back to the respective agents, preserving
data privacy in the process.

1.1 Model and Results
Our approach to market design for data exchange without money is
to view it as utility balancing – to encourage voluntary participation,
an agent should contribute as much utility to other agents as they
receive from them. In market design terminology, this corresponds
to having a common endogenous price per unit utility bought
or sold, so that each agent is revenue-neutral. The goal of the
central entity is to find the right amount of data any set of agents
should exchange, so that the overall solution is utility balanced.
The solution is randomized, where for each agent, we compute a
distribution over sets of other agents. When this agent chooses a
set from this distribution to obtain data from, then utility balance
holds in expectation (or interim). We motivate interim balance in
settings where the same agents trade over many epochs so that the
total utility across these epochs approaches its expectation. The
objective of the central entity could be to either maximize total
utility of agents (social welfare maximization), or core-stability
among coalitions of agents.

We call this overall problem the Data Exchange Problem. We
study computational complexity and existence results for the Data
Exchange Problem under natural utility functions and how that
utility is shared among contributors. At a high level, our main
results are the following.
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(1) We present a formal model for the Data Exchange Prob-
lem in Section 2 based on interim utility balancing, codify-
ing the objectives of welfare maximization and stability.

(2) We show NP-Hardness (Appendix B) and polynomial time
approximation algorithms for welfare maximization (Sec-
tion 3 and Appendix C). We present a logarithmic approxi-
mation in Theorem 6 for submodular utilities and a general
class of sharing rules that includes the well-known Shapley
value, and a PTAS for concave utilities with proportional
sharing in Theorems 6 and 7.

(3) We show the existence of core stable and strategyproof so-
lutions and the trade-offs achievable between these notions
and welfare in Appendix D. We also show that a specific
type of stable and strategyproof solution can be efficiently
computed via greedy matchings.

(4) We finally perform simulations on a road network where
agents are paths that are interested in minimizing sample
variance. We show that our approximation algorithms sig-
nificantly outperform a pairwise trade benchmark, showing
the efficacy of our model and algorithms.

We present the statements of these results more formally in
Section 2 after we present the formal mathematical model.

1.2 Related Work
The emerging field of data markets already has unearthed several
novel challenges in data privacy, market design, strategyproofness,
and so on. Please see recent work [3, 16] for a comprehensive
enumeration of research challenges. Our paper makes progress
on some of these challenges by proposing a market design via a
central clearinghouse and utility balancing, with computational
and stability analysis.

Exchange Economies. Our paper falls in the framework ofmarket
design. Though market design for exchange economies – where
agents voluntarily participate in trade given their utility functions
and the market constraints – is a classic problem, much of this work
concerns markets for goods that cannot be freely replicated. The
key challenge in our setting is that data can be freely replicated,
which makes the market design problem very different.

There are two classic exchange economies that relate to our work
– the trading of indivisible goods [32] and market clearing [5]. The
first classic problem is also termed the house allocation problem.
Here, every agent owns a house and has a preference ordering over
other houses. The goal is to allocate a house to each agent in a
fashion that lies in the core: No subset of agents can trade houses
and improve their outcome. Shapley and Scarf [32] showed that
the elegant top trading cycles algorithm finds such a core-stable
allocation. A practical application of this framework is to kidney
exchanges [30], which is widely studied and implemented.

Our problem falls in the same framework as house allocation,
albeit with data instead of houses. Data is a replicable resource, and
leads to complex utilities for agents; these aspects make the algo-
rithm design problem very different, as we compare in Appendix A.
We further note that strategyproofness is a big consideration in kid-
ney exchanges [6, 30], for instance, hospitals can be incentivized to
match patient pairs internally and not participate in inter-hospital
exchanges. Similar issues could arise in data exchange. Though

strategyproofness is not the main focus of our paper, we present
results for it in Appendix D.4.

In the same vein, the second classic problem of market clearing
for non-replicable goods dates back to Arrow and Debreau [5],
and has elegant solutions via equilibrium pricing of the goods.
However, equilibrium prices are harder to come by for replicable
digital goods such as music or video [23]. We bypass this issue by
having a common price per unit of utility traded, which translates,
via eliminating the price, to our flow formulation on utilities.

Federated Learning. Our work is closely related to recent work by
Donahue and Kleinberg [14, 15] on forming coalitions for data ex-
change in federated learning. However, in their settings, all agents
have the same learning objective (either regression or mean esti-
mation), but have data with different bias, leading to local models
with different bias. The goal is to form coalitions where the error
of the model for individual agents, measured against their own
data distribution, is minimized. The authors present optimal coali-
tional structures for maximizing welfare, as well as achieving core
stability. In contrast, we consider agents with heterogeneous tasks
and data requirements, which makes even welfare maximization
NP-Hard (without considering core stability).

Pricing and Shapley Value. In the settings we study, agents are
both producers and consumers of data, motivating an exchange
economy like the works cited above. When sellers of data are dis-
tinct from buyers, various works [3, 8, 10, 12, 19] have studied
pricing and incentives for selling aspects such as privacy and accu-
racy. See [27] for a survey.

One important aspect of our work is allocating utility shares to
the agents contributing data. For most of our paper, we adopt the
Shapley value [33]. Though this method has its roots in cost sharing
in Economics, it has seen a resurgence in interest as a method to
measure the utility of individual datasets for a machine learning
task [17, 18]. This method has many nice properties; see [3] for a
discussion of these properties in a data sharing context. We note
that our work presents a general framework and as we show in the
paper, it can be adapted to other utility sharing rules.

2 THE DATA EXCHANGE PROBLEM AND OUR
RESULTS

Without further ado, we formally present the Data Exchange
Problem and a summary of our results. We are given a set of agents
𝑋 . Each agent 𝑖 ∈ 𝑋 has a dataset D𝑖 and a machine learning task
𝑡𝑖 . (Our results easily extend to the setting where each agent has
multiple datasets and tasks.) The accuracy of the task 𝑡𝑖 can be
improved if agent 𝑖 obtains the datasets of other users.

2.1 Utility Functions
Suppose agent 𝑖 obtains the datasets ∪𝑗∈𝑆D𝑗 of a subset 𝑆 of agents,
then the improvement in accuracy is captured by a utility function
𝑢𝑖 (𝑆). We assume this function can be computed efficiently for a
given set 𝑆 of agents. Further, this set function is assumed to satisfy
the following:

Non-negativity and Boundedness: 𝑢𝑖 (𝑆) ∈ [0, 1] for all
𝑆 ⊆ 𝑋 \ {𝑖}. Furthermore, 𝑢𝑖 (∅) = 0. By scaling, we can
also assume that max𝑖 𝑢𝑖 (𝑋 ) = 1.
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Monotonicity: 𝑢𝑖 (𝑆) ≥ 𝑢𝑖 (𝑇 ) for all 𝑇 ⊂ 𝑆 .
Submodularity: This captures diminishing returns from ob-

taining more data. For all 𝑇 ⊂ 𝑆 and 𝑞 ∉ 𝑆 , we have
𝑢𝑖 (𝑆 ∪ {𝑞}) − 𝑢𝑖 (𝑆) ≤ 𝑢𝑖 (𝑇 ∪ {𝑞}) − 𝑢𝑖 (𝑇 ) .

A special case of submodular utilities is the symmetricweighted
setting: Here, there is a concave non-decreasing function 𝑓𝑖 for each
agent 𝑖 . Suppose agent 𝑗 ’s dataset that she contributes to 𝑖 has size
𝑠𝑖 𝑗 , then we have 𝑢𝑖 (𝑆) = 𝑓𝑖

(∑
𝑗∈𝑆 𝑠𝑖 𝑗

)
. In other words, the utility

only depends on the total size of the datasets contributed by the
agents in 𝑆 .

Example 1. Suppose each agent 𝑖 is interested in estimating the
population mean of data in its geographical vicinity, and its util-
ity function is the improvement in variance of this estimate. In this
case, agent 𝑗 can contribute 𝑠𝑖 𝑗 amount of data to agent 𝑖 , and we
let 𝐷𝑖 (𝑆) =

∑
𝑗∈𝑆 𝑠𝑖 𝑗 . Assuming 𝑠𝑖𝑖 = 1 and that these data are

drawn 𝑖 .𝑖 .𝑑 . from a population with variance 𝜎2
𝑖
, we have 𝑢𝑖 (𝑆) =

𝜎2
𝑖

(
1 − 1

1+𝐷𝑖 (𝑆 )

)
and falls in the symmetric weighted setting.

Continuous Utilities. Though the bulk of the paper focuses on
utilities modeled as set functions, in Appendix C, we also consider
the setting where agents can exchange fractions of data. Suppose
agent 𝑗 transfers 𝑦𝑖 𝑗 fraction of her data to agent 𝑖 , then agent 𝑖’s
utility is modeled as a continuous, monotonically non-decreasing
function 𝑢𝑖 ( ®𝑦𝑖 ) ∈ [0, 1], where ®𝑦𝑖 = ⟨𝑦𝑖1, 𝑦𝑖2, . . .⟩. As we show later,
such utilities lead to more tractable algorithmic formulations.

2.2 Utility Sharing
The utility 𝑢𝑖 (𝑆) that 𝑖 gains from the set 𝑆 of agents is attrib-
uted to the agents in 𝑆 according to a fixed rule. We let ℎ𝑖 𝑗 (𝑆)
denote the contribution of agent 𝑗 ∈ 𝑆 to the utility 𝑢𝑖 (𝑆), so that∑

𝑗∈𝑆 ℎ𝑖 𝑗 (𝑆) = 𝑢𝑖 (𝑆). In this paper, we consider two classes of shar-
ing rules that have been studied in cooperative game theory, and
more recently in machine learning:

Shapley Value: This is a classic “gold-standard” rule from
cooperative game theory [17, 18, 33], and works as follows:
Take a random permutation of the agents in 𝑆 . Start with
𝑊 as the empty set and consider adding the agents in 𝑆

one at a time to𝑊 . At the point where 𝑗 is added, let Δ 𝑗 =

𝑢𝑖 (𝑊 ∪ { 𝑗}) − 𝑢𝑖 (𝑊 ) be the increase in utility due to the
datasets in𝑊 . The Shapley value ℎ𝑖 𝑗 (𝑆) is the expectation
of Δ 𝑗 over all random permutations of 𝑆 .

Proportional Value: In this class of rules [9, 24], there is a
fixed set of weights {𝑤𝑖 𝑗 }, andwe defineℎ𝑖 𝑗 (𝑆) =

𝑤𝑖 𝑗∑
𝑘∈𝑆 𝑤𝑖𝑘

·
𝑢𝑖 (𝑆). The natural special case is the setting𝑤𝑖 𝑗 = 𝑢𝑖 ({ 𝑗}),
so that the utility is shared proportionally to how much 𝑗 ’s
dataset would have individually contributed to 𝑖 .

For submodular utilities, the Shapley value satisfies a property
called cross-monotonicity [25]: if 𝑇 ⊂ 𝑆 and 𝑗 ∈ 𝑇 , then ℎ𝑖 𝑗 (𝑇 ) ≥
ℎ𝑖 𝑗 (𝑆). Note that there is an entire class of rules that satisfy cross-
monotonicity for submodular utilities; please see [17, 18] for a de-
tailed discussion of the Shapley value and related cross-monotonic
rules in the context of machine learning. In contrast, the propor-
tional value does not satisfy this property. We contrast these rules
in the following example.

Example 2. There are 𝑛 agents each contributing data to agent
0. The first 𝑛 − 1 agents have identical data, so that 𝑢0 (𝑆) = 0.5 for
any non-empty 𝑆 ⊆ [𝑛 − 1]. Agent 𝑛 has a unique dataset so that
𝑢0 ({𝑛}) = 0.5, and 𝑢0 (𝑆 ∪ {𝑛}) = 1 for any non-empty 𝑆 ⊆ [𝑛 − 1].
Then, for 𝑆 ⊆ [𝑛 − 1], the Shapley value is ℎ0𝑛 (𝑆 ∪ {𝑛}) = 0.5 and
ℎ0𝑗 (𝑆 ∪ {𝑛}) = 1

2 |𝑆 | for 𝑗 ∈ 𝑆 . However, the proportional share with

𝑤𝑖 𝑗 = 𝑢𝑖 ({ 𝑗}) is ℎ0𝑗 (𝑆 ∪ {𝑛}) = 1
|𝑆 |+1 for all 𝑗 ∈ 𝑆 ∪ {𝑛}.

In the above example, the Shapley value is more reflective of
the actual contributions of the individual agents compared to pro-
portional value; however, the latter rule sometimes leads to better
algorithmic results. In particular, for continuous concave utilities
and the symmetric weighted setting, the proportional sharing rule
is more tractable, while for general submodular utilities, the Shapley
value is more tractable.

Example 3. For the symmetric weighted setting described above,
the proportional value with 𝑤𝑖 𝑗 = 𝑠𝑖 𝑗 has a relatively simple form:
ℎ𝑖 𝑗 (𝑆) =

𝑠𝑖 𝑗∑
𝑘∈𝑆 𝑠𝑖𝑘

· 𝑓𝑖 (
∑
𝑘∈𝑆 𝑠𝑖𝑘 ).

2.3 Constraints for Data Exchange: Utility Flow
We now present the constraints of the Data Exchange Problem.
We assume there is a central entity that computes this exchange.
The key constraint is that each agent receives as much utility from
the exchange as it contributes. In this exchange, each agent 𝑖 is
associated with a distribution {𝑥𝑖𝑆 } over sets 𝑆 ⊆ 𝑋 \ {𝑖} of agents
whose datasets she could receive. In other words, with mutually
exclusive probability 𝑥𝑖𝑆 , agent 𝑖 receives the datasets from 𝑆 and
receives utility 𝑢𝑖𝑆 as a result.

The first constraint encodes that {𝑥𝑖𝑆 } define a probability dis-
tribution over possible sets 𝑆 .

∀ 𝑖,
∑︁
𝑆

𝑥𝑖𝑆 ≤ 1 (1)

where the remaining probability is assigned to 𝑆 = ∅.
The balance condition captures that the expected utility con-

tributed by an agent to other agents is equal to the expected utility
she receives.

∀ 𝑖,
∑︁
𝑆

∑︁
𝑗∈𝑆

ℎ𝑖 𝑗 (𝑆)𝑥𝑖𝑆 =
∑︁
𝑗

∑︁
𝑆 |𝑖∈𝑆

ℎ 𝑗𝑖 (𝑆)𝑥 𝑗𝑆 (2)

Note that the balance condition is interim, meaning it holds for
the expected utility. Any solution that satisfies the balance condi-
tion subject to Eq. (1) is said to be a feasible solution to the Data
Exchange Problem.

Example 4. The above model has an interesting connection to
Markov chains. Suppose we restrict 𝑆 to either be ∅ or 𝑆𝑖 = 𝑋 \ {𝑖}.
Let 𝑣𝑖 𝑗 = ℎ𝑖 𝑗 (𝑆𝑖 ) and 𝑦𝑖 = 𝑥𝑖𝑆𝑖 . Then we have the constraints:

𝑦𝑖 ·
∑︁
𝑗∈𝑆𝑖

𝑣𝑖 𝑗 =
∑︁
𝑗 |𝑖∈𝑆 𝑗

𝑦 𝑗𝑣 𝑗𝑖 ∀𝑖 ∈ 𝑋

𝑦𝑖 ∈ [0, 1] ∀𝑖 ∈ 𝑋

Set 𝑤𝑖 =
∑

𝑗∈𝑋\{𝑖 } 𝑣𝑖 𝑗 , and 𝑝𝑖 𝑗 =
𝑣𝑖 𝑗
𝑤𝑖

∈ [0, 1]. Then, ∑𝑗∈𝑆𝑖 𝑝𝑖 𝑗 = 1
for all 𝑖 . Further, setting 𝑧𝑖 = 𝑦𝑖𝑤𝑖 , the first constraint becomes

𝑧𝑖 =
∑︁
𝑗 |𝑖∈𝑆 𝑗

𝑧 𝑗𝑝 𝑗𝑖 .
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Then, treating the 𝑝 𝑗𝑖 as transition probabilities from 𝑗 to 𝑖 in a
Markov chain, the {𝑧𝑖 } are the steady state probabilities of the chain.
Assuming all 𝑝 𝑗𝑖 > 0, by the Perron-Frobenius theorem, there is a
unique set of non-negative values {𝑧𝑖 }.

Remarks. First note that for deterministic exchange where 𝑥𝑖𝑆 ∈
{0, 1}, the balance constraints may not have a feasible solution.
This motivates our use of randomization and interim balance. A
randomized solution is justified when agents interact over many
epochs with different datasets and models. Though any specific
interaction is ex-post imbalanced, these even out over time by
the law of large numbers. Such interim balance also makes our
algorithmic problem more tractable.

Next, though we don’t discuss it in the paper, it is easy to gener-
alize the model to the setting where each agent 𝑖 has a collection of
datasets and a collection of tasks, and each needs different datasets.
Further, in Appendix C, we discuss the changes that need to be
made to the constraints to handle continuous, concave utilities.

Finally, as mentioned before, we assume the clearinghouse has
accurate access to all datasets and tasks, and can hence compute
utilities, their shares, and the feasible Data Exchange solution.
We ignore strategic misreporting on the part of the agents for most
of the paper, but we will discuss this aspect and its trade-off with
other objectives towards the end in Appendix D.4.

2.4 Social Welfare Objective
Our goal is to find the optimal Data Exchange subject to feasibility.
Towards this end, we mainly consider the social welfare objective
where the goal is to find the distributions {𝑥𝑖𝑆 } that maximizes:

Social Welfare =
∑︁
𝑖∈𝑋

∑︁
𝑆⊆𝑋\{𝑖 }

𝑢𝑖 (𝑆)𝑥𝑖𝑆 =
∑︁
𝑖∈𝑋

∑︁
𝑆⊆𝑋\{𝑖 }

∑︁
𝑗∈𝑆

𝑥𝑖𝑆ℎ𝑖 𝑗 (𝑆).

(3)
We will study the computational complexity of this problem.

Remark about running times. Throughout, we assume that there
is an efficient subroutine MLSub that given an agent 𝑖 and set
𝑆 ⊆ 𝑋 \ {𝑖} returns the utility 𝑢𝑖 (𝑆) and the shares ℎ𝑖 𝑗 (𝑆) for all
𝑗 ∈ 𝑆 . We remark that by “polynomial” running time, we mean
polynomially many calls to MLSub, combined with polynomially
many ancillary computations. Such an approach decouples the exact
running time of MLSub from our results. For ML tasks, estimating
𝑢𝑖 (𝑆) will require retraining the model using data from 𝑆 ; this can
typically be done efficiently. Further, estimate ℎ𝑖 𝑗 (𝑆) can be done
to a good approximation via sampling permutations; see [3, 18].

Computational complexity of welfare maximization. The welfare
maximization problem is a linear program with 2𝑛 constraints,
so that the optimum solution has at most 2𝑛 non-zero variables.
Nevertheless, we show NP-Hardness by a reduction from Exact
3-Cover. We note that the hardness result holds even when for any
𝑆 , both 𝑢𝑖 (𝑆) and ℎ𝑖 𝑗 (𝑆) are computable in near-linear time.

Theorem 5 (Proved in Appendix B). The welfare maximization
objective in Data Exchange is NP-Hard for submodular utilities
and Shapley value sharing.

In Section 3, we develop polynomial time algorithms that mul-
tiplicatively approximate social welfare.1 Our algorithms achieve
approximate feasibility, where we relax the balance constraint to
𝜖-balance (where 𝜖 ∈ (0, 1)):������∑︁𝑆

∑︁
𝑗∈𝑆

ℎ𝑖 𝑗 (𝑆)𝑥𝑖𝑆 −
∑︁
𝑗

∑︁
𝑆 |𝑖∈𝑆

ℎ 𝑗𝑖 (𝑆)𝑥 𝑗𝑆

������ ≤ 𝜖 ∀𝑖 . (4)

The running times we achieve are now polynomial in 1
𝜖 , with

the assumption that there are analogously many calls to MLSub.
We show the following theorem in Section 3; the precise running
time and approximation factors are presented there.

Theorem 6 (Proved in Section 3). We can achieve the following
approximation factors to the social welfare objective for Data Ex-
change via an algorithm that runs in time polynomial in the input
size and 1

𝜖 and finds a feasible solution that satisfies 𝜖-balance:
• A𝑂 (log𝑛) approximation for arbitrary submodular utilities2

and any cross-monotonic utility sharing rule (including the
Shapley value rule).

• A 1 + 𝜖 approximation for symmetric weighted setting and
proportional value with𝑤𝑖 𝑗 = 𝑠𝑖 𝑗 .

Our results follow by writing the social welfare optimization
problem as a Linear Program (LP) with exponentially many vari-
ables of the form {𝑥𝑖𝑆 }. Since the number of feasibility constraints
is 2𝑛, we use the multiplicative weight method to approximately
solve it. This requires developing a dual oracle for the constraints,
which for each agent 𝑖 , is a constrained maximization problem over
a weighted sum of {ℎ𝑖 𝑗 (𝑆)}, and we need to find the set 𝑆 ⊆ 𝑋 \ {𝑖}
that maximizes this weighted sum. We show approximation algo-
rithms for this problem, leading to the proof of the above theorem.

Further, in Appendix C, we show the following theorem (see
Appendix C for the formal model):

Theorem 7 (Proved in Appendix C). For Data Exchange with
continuous concave utility functions and proportional sharing, for
any 𝜖 ∈ (0, 1), there is an algorithm running in time polynomial in
the input size and 1

𝜖 and that finds a (1 + 𝜖) approximation to social
welfare, while violating balance by an additive 𝜖 .

2.5 Core Stability and Strategyproofness
Stability is a widely studied notion in cooperative game theory,
and seeks solutions that are robust to coalitional deviations. In our
context, we have the following definition.

Definition 8. A feasible solution F to Data Exchange is core
stable if there is no 𝑈 ⊆ 𝑋 of users and another feasible solution F ′

just on the users in 𝑈 such that for all 𝑖 ∈ 𝑈 , 𝑢𝑖 (F ′) > 𝑢𝑖 (F ). A
solution F is 𝑐-stable if there is no such𝑈 with |𝑈 | ≤ 𝑐 .

In other words, suppose a coalition 𝑈 ⊆ 𝑋 of agents deviates
and trades just among themselves via a feasible solution F ′ so that
all their utilities improve, then this coalition is blocking. A core
solution has no blocking coalitions.
1By 𝛼-approximation for 𝛼 ≥ 1, we mean our algorithm achieves at least 1

𝛼
fraction

of the optimal social welfare.
2The results hold for arbitrary monotone utilities and only require cross-monotonic
sharing; however, cross-monotonicity typically does not hold unless utilities are
submodular.
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In Appendix D, we first show that regardless of the utility func-
tion and choice of sharing rule, there is always a feasible Data
Exchange solution that is core-stable to an arbitrarily good approx-
imation (Theorem 18). This is a consequence of Scarf’s lemma [31]
from cooperative game theory. Though it is unclear how to effi-
ciently compute such a solution in general, we show an algorithm
to find a 2-stable solution via Greedy maximal weight matching.

We next study the trade-off between core and welfare. On the
negative side, we show an instance in the symmetric weighted
setting with proportional sharing, where any core solution has
social welfare that is Ω(

√
𝑛) times smaller than the optimal social

welfare (Theorem 20), showing the two concepts of core and welfare
maximization can be far from each other. Nevertheless, we show
(Theorem 21) how to achieve approximate core-stability and social
welfare simultaneously via randomizing between them.

We finally consider strategic behavior by agents, where they
hide either their tasks or data. We define feasible misreports in
Appendix D.4, and again show that for the symmetric weighted
setting, strategyproofness and approximate welfare maximization
are simultaneously incompatible (Theorem 23). On the positive side,
we show that a Greedy cycle canceling algorithm that generalizes
greedy matching is strategyproof.

Comparison to kidney exchange. We present a comparison of our
results above with kidney exchange in Appendix A.

3 ALGORITHMS FORWELFARE
MAXIMIZATION: PROOF OF THEOREM 6

In this section, we present approximation algorithms for welfare
maximization. We present the overall framework in Section 3.1,
which reduces the problem to solving an oracle problem, one for
each agent (Eq. (10)), so that an approximation algorithm to the or-
acle translates to the same approximation to welfare maximization,
while achieving 𝜖-balance (Eq. (4)). We present the approximations
to the oracle for submodular utilities with Shapley value in Sec-
tion 3.3, and for symmetric weighted concave utilities with propor-
tional sharing in Section 3.4. We present an extension to continuous
concave utilities with proportional sharing in Appendix C.

As mentioned before, the welfare maximization problem can
be written as an exponential-sized LP, where the non-negative
variables are {𝑥𝑖𝑆 }; the objective is to maximize Eq. (3) subject to
the constraints Eqs. (1) and (2).

3.1 Multiplicative Weight Algorithm
We solve this using the multiplicative weights framework of Plotkin,
Shmoys, and Tardos (PST) [28]. Since our final solution loses an
additive 𝜖 in the balance constraints (Eq. (2)), we assume at the
outset that these constraints are violated by an additive 𝜖 , that is,
Eq. (4). The problem with relaxed constraints can only have a larger
objective value (social welfare). The relaxation helps us achieve
polynomial running time.

Lemma 9. Let 𝑂𝑃𝑇 denote the optimal solution value to the in-
stance with relaxed balance constraints. Then 𝑂𝑃𝑇 ≥ 𝜖 .

Proof. To see this, recall that we assumed max𝑖 𝑢𝑖 (𝑋 ) = 1. For
the maximizer 𝑖 , set 𝑥𝑖𝑋 = 𝜖 and set all other variables to zero. This
gives us a guarantee that 𝑂𝑃𝑇 ≥ 𝜖 . □

Now, we try all objective values in powers of (1+𝜖) using binary
search. Consider some guess 𝐵 for this value; we want to check
if this value is feasible. By Lemma 9 we assume that 𝐵 ≥ 𝜖 . We
therefore want to check the feasibility of the following LP, where
the objective Eq. (3) is encoded in Eq. (5); the balance constraints
Eq. (4) is enconded in Eqs. (6) and (7); and the probability constraint
Eq. (1) is encoded in Eq. (8). Call this LP1(𝐵, 𝜖). Our final solution
will correspond to the largest 𝐵 for which LP1(𝐵, 𝜖) is feasible.

(LP1)

∑︁
𝑖, 𝑗,𝑆

ℎ𝑖 𝑗 (𝑆)𝑥𝑖𝑆 ≥ 𝐵 (5)

∀ 𝑖,
∑︁
𝑗,𝑆

ℎ𝑖 𝑗 (𝑆)𝑥𝑖𝑆 −
∑︁

𝑗,𝑆 |𝑖∈𝑆
ℎ 𝑗𝑖 (𝑆)𝑥 𝑗𝑆 ≥ −𝜖 (6)

∀ 𝑖,−
∑︁
𝑗,𝑆

ℎ𝑖 𝑗 (𝑆)𝑥𝑖𝑆 +
∑︁

𝑗,𝑆 |𝑖∈𝑆
ℎ 𝑗𝑖 (𝑆)𝑥 𝑗𝑆 ≥ −𝜖 (7)

∀ 𝑖,
∑︁
𝑆

𝑥𝑖𝑆 ≤ 1 (8)

∀ 𝑖, 𝑆,
∑︁
𝑆

𝑥𝑖𝑆 ≥ 0 (9)

We will use the PST framework to solve the feasibility of the
above LP. Let Eqs. (5) to (7) be represented by the coefficient ma-
trices 𝐴,𝑏 and let 𝑃 be the polytope of vectors satisfying Eqs. (8)
and (9). We are testing whether ∃?𝑥 ∈ 𝑃,𝐴𝑥 ≥ 𝑏. The PST frame-
work requires an oracle to solve max𝑥∈𝑃 𝑝⊤𝐴𝑥 for arbitrary vectors
𝑝 . In our setting, this becomes

Oracle = max
𝑥∈𝑃

∑︁
𝑖, 𝑗,𝑆

𝑄𝑖 𝑗ℎ𝑖 𝑗 (𝑆)𝑥𝑖𝑆

for possibly negative weights𝑄𝑖 𝑗 . Since the constraints across 𝑖 are
now independent, the maximum solution will select the optimum
solution 𝑆 to Eq. (10) and sets 𝑥𝑖𝑆 = 1, for each 𝑖 .

Oracle for agent 𝑖 = max
𝑆

∑︁
𝑗∈𝑆

𝑄𝑖 𝑗ℎ𝑖 𝑗 (𝑆) (10)

Using a similar proof as Theorem 5, it can be shown the Oracle
problem is NP-Hard. We will therefore develop approximation
algorithms, and show two such algorithms in Sections 3.3 and 3.4.
As we show below, this will translate to an approximation for the
social welfare. The overall algorithm is presented in Algorithm 1.

3.2 Analysis
Suppose the multiplicative approximation ratio of the oracle Eq. (10)
is 𝛼 ≥ 1; this means the oracle subroutine finds a solution whose
value is at least 𝑂𝑃𝑇 /𝛼 when 𝑂𝑃𝑇 is the optimal solution to the
oracle. Define 𝜌 be the maximum value that any of the constraints
in 𝐴𝑥 ≥ 𝑏, 𝑥 ∈ 𝑃 can be additively violated. Since we assume
𝑢𝑖 (𝑋 ) ≤ 1 for all 𝑖 , it is clear that 𝜌 =

∑
𝑖 𝑢𝑖 (𝑋 ) ≤ 𝑛.

Our main theorem is the following.

Theorem 10. Suppose the oracle problem Eq. (10) can be solved to

a multiplicative approximation factor of 𝛼 . Then, with 𝑂 ( 𝑛
2𝛼2 log𝑛

𝜖2 )
calls to the oracle subproblem and 𝑂 (𝑛) time overhead per call to the
oracle, Algorithm 1 returns a solution x that satisfies Eqs. (6) to (9)
and that satisfies: ∑︁

𝑖, 𝑗,𝑆

ℎ𝑖 𝑗 (𝑆)𝑥𝑖𝑆 ≥ 𝑂𝑃𝑇

2𝛼 (1 + 3𝛿) .
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Algorithm 1Multiplicative Weights Update to solve LP1.

1: Choose parameters 𝜖, 𝛿 ≤ 1 and 𝜂 = 𝜖
4𝑛𝛼 .

2: Try values for 𝐵 via in powers of (1 + 𝛿).
3: Let 𝐴 ∈ R(2𝑛+1)×𝑛, 𝑏 ∈ R2𝑛+1 denote the coefficients of

LP1(𝐵, 𝜖).
4: Let w(1) = 12𝑛+1.
5: for 𝑡 = 1, . . . ,𝑇 =

32𝑛2𝛼2 log𝑛
𝜖2 do

6: Let p(𝑡 ) := w(𝑡 )∑
𝑖 𝑤

(𝑡 )
𝑖

.

7: Let x(𝑡 ) be the output of the 𝛼-approximate oracle with input
p(𝑡 )⊤𝐴x.

8: if p(𝑡 )⊤𝐴x(𝑡 ) < p(𝑡 )⊤ 𝑏
𝛼 then

9: Return infeasible and decrease the guess for 𝐵.
10: else
11: m(𝑡 ) := 1

𝜌 (𝐴x(𝑡 ) − b
𝛼 ).

12: ∀ 𝑖,𝑤𝑖
(𝑡+1) := 𝑤

(𝑡 )
𝑖

(1 − 𝜂𝑚
(𝑡 )
𝑡 ).

13: end if
14: end for
15: Return x̄ =

∑
𝑖 x(𝑡 )

𝑇
.

To prove this theorem, we require a result from [4].

Lemma 11 (Theorem 2.1 in [4]). After 𝑇 rounds in Algorithm 1,
for every 𝑖 ,

𝑇∑︁
𝑡=1

m(𝑡 ) · p(𝑡 ) ≤
𝑇∑︁
𝑡=1

𝑚
(𝑡 )
𝑖

+ 𝜂
𝑇∑︁
𝑡=1

���𝑚 (𝑡 )
𝑖

��� + 2 log𝑛
𝜂

. (11)

Proof of Theorem 10. Suppose the algorithm did 𝑇 iterations
without declaring infeasibility. Since the algorithm did not declare
it infeasible, then we have that

p(𝑡 )⊤𝐴x(𝑡 ) ≥ p(𝑡 )⊤ 𝑏
𝛼

for every time step 𝑡 . Thus, the left hand side of Eq. (11) is non-
negative.

0 ≤
𝑇∑︁
𝑡=1

𝑚
(𝑡 )
𝑖

+ 𝜂
𝑇∑︁
𝑡=1

���𝑚 (𝑡 )
𝑖

��� + 2 log𝑛
𝜂

=
1
𝑛

𝑇∑︁
𝑡=1

(𝐴𝑖x(𝑡 ) − 𝑏𝑖

𝛼
) + 𝜂𝑇 + 2 log𝑛

𝜂

Dividing by 𝑇 , and choosing 𝜂 = 𝜖
4𝑛𝛼 and 𝑇 =

32𝑛2𝛼2 log𝑛
𝜖2 , we get

𝐴𝑖 x̄ ≥ 𝑏𝑖

𝛼
− 𝜂𝑛 − 2𝑛 log𝑛

𝜂𝑇
=⇒ 𝐴𝑖 x̄ ≥ 𝑏𝑖

𝛼
− 𝜖

2𝛼
.

The theorem statement then follows by choosing 𝛿 ≤ 1
3 and with

the observation that for some guess 𝐵 for the optimal value, we
have 𝐵 ≥ 𝑂𝑃𝑇

1+𝛿 ≥ 𝜖
1+𝛿 . □

3.3 Oracle for Cross-monotonic Sharing
We now consider the case whereℎ𝑖 𝑗 (𝑆) is cross-monotonic in 𝑆 , and
𝑢𝑖 (𝑆) is a non-decreasing submodular set function. Note that cross-
monotonicity captures the Shapley value.Wewill present a𝑂 (log𝑛)
approximation to the oracle (Eq. (10)) for this setting, which when
combined with Theorem 10, completes the proof of the first part

of Theorem 6. The key hurdle with devising an approximation
algorithm is that the quantities 𝑄𝑖 𝑗 in Eq. (10) can be negative; we
show this is not an issue for cross-monotonic sharing.

Simplifying the data exchange problem. Before considering
the oracle problem (Eq. (10)), we consider the overall data ex-
change problem (Eqs. (5) to (9)) and show some bounds for it. Let
𝑢𝑖 𝑗 := ℎ𝑖 𝑗 ({ 𝑗}) = 𝑢𝑖 ({ 𝑗}). Note that by cross-monotonicity, we
have ℎ𝑖 𝑗 (𝑆) ≤ 𝑢𝑖 𝑗 for all 𝑗 ∈ 𝑆 .

Lemma 12. By losing a multiplicative factor of (1 − 𝜖) in social
welfare, for every 𝑖 , we can set 𝑥𝑖𝑆 = 0 for any 𝑆 that contain some 𝑗
such that 𝑢𝑖 𝑗 := ℎ𝑖 𝑗 ({ 𝑗}) ≤ 𝜖2

𝑛2 .

Proof. Fix some 𝑖 . Let 𝑆small =
{
𝑗 | ℎ𝑖 𝑗 ({ 𝑗}) ≤ 𝜖2

𝑛2

}
. Consider

any solution x. We claim that modifying x such that we add the
value of 𝑥𝑖𝑆 to 𝑥𝑖𝑆\𝑆small , and set 𝑥𝑖𝑆 = 0 only loses (1 − 𝜖) factor
in the objective. Since the utility sharing rule is cross-monotone,
for any set 𝑆 we have ℎ𝑖 𝑗 (𝑆 \ 𝑆small) ≥ ℎ𝑖 𝑗 (𝑆) for all 𝑗 ∈ 𝑆 \ 𝑆small.
Further, we have ℎ𝑖 𝑗 (𝑆small) ≤ ℎ𝑖 𝑗 ({ 𝑗}) for all 𝑗 ∈ 𝑆small. Therefore,
we have

𝑢𝑖 (𝑆) =
∑︁
𝑗∈𝑆

ℎ𝑖 𝑗 (𝑆) =
∑︁

𝑗∈𝑆small

ℎ𝑖 𝑗 (𝑆) +
∑︁

𝑗∈𝑆\𝑆small

ℎ𝑖 𝑗 (𝑆)

≤
∑︁

𝑗∈𝑆small

ℎ𝑖 𝑗 ({ 𝑗}) +
∑︁

𝑗∈𝑆\𝑆small

ℎ𝑖 𝑗 (𝑆 \ 𝑆small)

≤ 𝜖2

𝑛
+ 𝑢𝑖 (𝑆 \ 𝑆small) .

Adding up the losses, we lose a 𝜖2

𝑛 for each user 𝑖 , leading to a loss
of 𝜖2 overall. By Lemma 9, the initial optimum was at least 𝜖 . We
therefore lose a factor of at most (1 − 𝜖) in social welfare. □

We therefore assume 𝑥𝑖𝑆 = 0 for all 𝑆 s.t. 𝑗 ∈ 𝑆 and 𝑢𝑖 𝑗 < 𝜖2

𝑛2 .

Approximating the Oracle. For agent 𝑖 , let

𝑆∗ = arg max
∑︁
𝑗∈𝑆

𝑄𝑖 𝑗ℎ𝑖 𝑗 (𝑆) 𝑂𝑃𝑇 =
∑︁
𝑗∈𝑆∗

𝑄𝑖 𝑗ℎ𝑖 𝑗 (𝑆∗).

For given 𝜖 > 0, the algorithm works as follows:
(1) Guess 𝑂𝑃𝑇 in powers of (1 + 𝜖) by binary search.
(2) For constant 𝛿 = 𝑒 − 1, divide the agents into buckets based

on the 𝑄𝑖 𝑗 value. The 𝑘𝑡ℎ bucket 𝐵𝑘 is defined as

𝐵𝑘 = { 𝑗 | 𝑄𝑖 𝑗 ∈
(
𝑢0 (1 + 𝛿)𝑘 , 𝑢0 (1 + 𝛿)𝑘+1

]
}

where 𝑢0 = 𝜖 ·𝑂𝑃𝑇
𝑛 and 𝑘 ∈ {0, 1, . . . , 3⌈log1+𝛿 ( 𝑛𝜖 )⌉ − 1}.

(3) For each bucket 𝐵𝑘 , let 𝑉𝑘 =
∑

𝑗∈𝐵𝑘
𝑄𝑖 𝑗ℎ𝑖 𝑗 (𝐵𝑘 ).

(4) For this guess of 𝑂𝑃𝑇 , the final solution is 𝑆𝑧 where 𝑧 =

argmax𝑘𝑉𝑘 .
(5) The solution is valid for this value of 𝑂𝑃𝑇 if 𝑉𝑧 ≥ 𝑂𝑃𝑇 /𝛼 ,

where 𝛼 = 3𝑒 (1+3𝜖) ln𝑛. We use the largest𝑂𝑃𝑇 for which
the solution returned is valid, and return this solution.

In the analysis below, we assume 𝑂𝑃𝑇 can be precisely guessed.

Theorem 13. For 𝜖 > 0, when utilities 𝑢𝑖 (𝑆) are monotone non-
decreasing in 𝑆 and the utility sharing rule is cross-monotone, the
Oracle problem can be approximated to factor 𝛼 ≤ 3𝑒 (1 + 2𝜖) ln𝑛
in 𝑂 ( 𝑛 log𝑛

log(1+𝜖 ) ) time and correspondingly many calls toMLSub.
6
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Proof. Let 𝑆0 = { 𝑗 ∈ 𝑆∗ |𝑄𝑖 𝑗 < 0}. We have:∑︁
𝑗∈𝑆∗

𝑄𝑖 𝑗ℎ𝑖 𝑗 (𝑆∗) =
∑︁
𝑗∈𝑆0

𝑄𝑖 𝑗ℎ𝑖 𝑗 (𝑆∗) +
∑︁

𝑗∈𝑆∗\𝑆0

𝑄𝑖 𝑗ℎ𝑖 𝑗 (𝑆∗)

≤
∑︁

𝑗∈𝑆∗\𝑆0

𝑄𝑖 𝑗ℎ𝑖 𝑗 (𝑆∗) ≤
∑︁

𝑗∈𝑆∗\𝑆0

𝑄𝑖 𝑗ℎ𝑖 𝑗 (𝑆∗ \ 𝑆0).

where the final inequality follows by cross-monotonicity. Since 𝑆∗
is optimal, this means 𝑆0 = ∅. Therefore, we assume 𝑄𝑖 𝑗 > 0.

Next note that𝑂𝑃𝑇 ≥ ∑
𝑗∈𝑆 𝑄𝑖 𝑗ℎ𝑖 𝑗 (𝑆) for 𝑆 = { 𝑗}, which means

𝑄𝑖 𝑗𝑢𝑖 𝑗 ≤ 𝑂𝑃𝑇 for all 𝑗 . Given constant 𝜖 ∈ (0, 1], let 𝑆small ={
𝑗 | 𝑄𝑖 𝑗𝑢𝑖 𝑗 < 𝜖 · 𝑂𝑃𝑇

𝑛

}
. By the same argument as in the proof of

Lemma 12, we can restrict to agents in 𝑋 \ 𝑆small by losing a (1− 𝜖)
factor in 𝑂𝑃𝑇 . Let 𝑋 = 𝑋 \ 𝑆small, so that these are now the only
agents of interest. The above implies𝑄𝑖 𝑗𝑢𝑖 𝑗 ∈ 𝑂𝑃𝑇 ·

[
𝜖
𝑛 , 1

]
for 𝑗 ∈ 𝑋 .

Since 𝑢𝑖 𝑗 ∈
[
𝜖2

𝑛2 , 1
]
by Lemma 12, this implies 𝑄𝑖 𝑗 ∈ 𝑂𝑃𝑇 ·

[
𝜖
𝑛 ,

𝑛2

𝜖2

]
.

Therefore, the buckets constructed by the algorithm only use agents
from 𝑋 .

Let 𝑆 = 𝑆∗∩𝑋 . By the Pigeonhole principle, the elements of some
bucket must contribute at least log(1+𝛿 )

3 log 𝑛
𝜖

fraction of the objective,

𝑂𝑃𝑇 . Suppose this is the 𝑘𝑡ℎ bucket 𝐵𝑘 . We therefore have:

log(1 + 𝛿)
log 𝑛

𝜖

·𝑂𝑃𝑇 ≤
∑︁

𝑗∈𝑆∩𝐵𝑘

𝑄𝑖 𝑗ℎ𝑖 𝑗 (𝑆) ≤ (1 + 𝛿)𝑘+1
∑︁

𝑗∈𝑆∩𝐵𝑘

ℎ𝑖 𝑗 (𝑆).

Suppose we choose 𝐵𝑘 as the solution instead. We have∑︁
𝑗∈𝐵𝑘

𝑄𝑖 𝑗ℎ𝑖 𝑗 (𝐵𝑘 ) ≥ (1 + 𝛿)𝑘
∑︁
𝑗∈𝐵𝑘

ℎ𝑖 𝑗 (𝐵𝑘 ) = (1 + 𝛿)𝑘𝑢𝑖 (𝐵𝑘 )

≥ (1 + 𝛿)𝑘𝑢𝑖 (𝐵𝑘 ∩ 𝑆) = (1 + 𝛿)𝑘
∑︁

𝑗∈𝐵𝑘∩𝑆
ℎ𝑖 𝑗 (𝐵𝑘 ∩ 𝑆)

≥ (1 + 𝛿)𝑘
∑︁

𝑗∈𝐵𝑘∩𝑆
ℎ𝑖 𝑗 (𝑆) ≥

(1 − 𝜖) log(1 + 𝛿)
3(1 + 𝛿) log 𝑛

𝜖

𝑂𝑃𝑇 .

Here, the second inequality holds because 𝑢𝑖 is monotonically
non-decreasing, and the next inequality holds since ℎ𝑖 𝑗 is cross-
monotone, so that ℎ𝑖 𝑗 (𝐵𝑘 ∩ 𝑆) ≥ ℎ𝑖 𝑗 (𝑆). Thus, the largest of the
solutions 𝑉𝑘 is a 3(1+𝛿 ) log 𝑛

𝜖

(1−𝜖 ) log(1+𝛿 ) -approximation to the optimal solu-
tion. This is minimized at 𝛿 = 𝑒 − 1, giving us an approximation
ratio of 3𝑒 log 𝑛

𝜖

(1−𝜖 ) ≤ 3𝑒 (1 + 2𝜖) log𝑛 for 𝜖 < 1
2 and for large enough

𝑛.
We can execute this algorithm in almost linear time in the fol-

lowing way: guess the right value of𝑂𝑃𝑇 by a binary search, which
takes 𝑂 ( log𝑛

log(1+𝜖 ) ) time to find 𝑂𝑃𝑇 up to multiplicative error of

(1 + 𝜖). Throw out all elements that have 𝑄𝑖 𝑗𝑢𝑖 𝑗 < 𝜖 ·𝑂𝑃𝑇
𝑛 and

𝑢𝑖 𝑗 < 𝜖2

𝑛2 , and find the bucket with the largest utility. This takes

time 𝑂 (𝑛), leading to an overall time of 𝑂 ( 𝑛 log𝑛
log(1+𝜖 ) ). □

3.4 Oracle for Symmetric Weighted Utilities
We will now complete the proof of the second part of Theorem 6.
Recall that in the symmetric weighted setting, each agent 𝑗 has a
fixed non-negative amount of data 𝑠𝑖 𝑗 that they contribute agent
𝑖 if they trade. For 𝑆 ⊆ 𝑋 \ {𝑖}, let 𝐷 (𝑆) =

∑
𝑗∈𝑆 𝑠𝑖 𝑗 . Then the

utility that 𝑖 receives if it is assigned 𝑆 is 𝑓𝑖 (𝐷 (𝑆)), where 𝑓𝑖 is a

monotonically non-decreasing and non-negative concave function.
Further, we divide the utilities according to the proportional value
rule ℎ𝑖 𝑗 (𝑆) = 𝑓𝑖 (𝐷 (𝑆 ) )

𝐷 (𝑆 ) 𝑠𝑖 𝑗 .

Let 𝑄 (𝑆) = ∑
𝑗∈𝑆 𝑄𝑖 𝑗𝑠𝑖 𝑗 . Then the oracle (Eq. (10)) becomes:

max
𝑆⊆𝑋\{𝑖 }

𝑓𝑖 (𝐷 (𝑆))
𝐷 (𝑆) ·𝑄 (𝑆) .

Wewill present a (1+𝜖) approximation to the oracle, which when
combined with Theorem 10 completes the proof of the second part
of Theorem 6. First note that 𝑓𝑖 (𝑥)/𝑥 is a non-increasing function
of 𝑥 . Therefore, the optimal solution does not contain any 𝑗 with
𝑄𝑖 𝑗 ≤ 0; if it did, removing this 𝑗 increases 𝑄 (𝑆) and does not
decrease 𝑓𝑖 (𝐷 (𝑆 ) )

𝐷 (𝑆 ) . We therefore assume 𝑄𝑖 𝑗 > 0 ∀𝑗 .
For 𝜖 > 0, the algorithm is now as follows, where 𝑆∗ is the

optimal solution:
(1) Guess the value of 𝐷 (𝑆∗) in powers of (1 + 𝜖). Let 𝜙 denote

the current guess.
(2) Solve the following Knapsack problem to a (1 + 𝜖) approx-

imation [35]:

𝑉 (𝜙) = max𝑆
∑︁
𝑗∈𝑆

𝑄𝑖 𝑗𝑠𝑖 𝑗 s.t.
∑︁
𝑗∈𝑆

𝑠𝑖 𝑗 ≤ 𝜙.

(3) Choose 𝜙 and the solution that maximizes 𝑉 (𝜙) · 𝑓𝑖 (𝜙 )
𝜙

.

Theorem 14. The above algorithm yields a (1 + 𝜖) approximation
to the oracle in polynomial time.

Proof. Let 𝜙∗ =
∑

𝑗∈𝑆∗ 𝑠𝑖 𝑗 , and let 𝑉 (𝜙∗) = ∑
𝑗∈𝑆∗ 𝑄𝑖 𝑗𝑠𝑖 𝑗 . Our

algorithm tries some 𝜙 ∈ 𝜙∗ · [1, 1 + 𝜖]. Fix this choice of 𝜙 . Clearly,

𝑓𝑖 (𝜙∗)
𝜙∗

≤ (1 + 𝜖) 𝑓𝑖 (𝜙)
𝜙

and 𝑉 (𝜙∗) ≤ 𝑉 (𝜙) .

Combining these yields the proof. □

4 EXPERIMENTS
We will now empirically compare the performance of our approxi-
mation algorithm in Section 3 with a no-sharing baseline, and with
a pair-wise trade benchmark, showing we outperform both. In our
experiments, each agent corresponds to a path in a road network.
The delay of each edge in the road network is a random variable
and each agent has a set of samples for each edge on its path that it
can trade with other agents. The goal of each agent is to trade her
samples in order minimize the sample variance in the estimate of
the delay on her path.

Setup. We sample a random neighborhood of radius 8 from the
Manhattan road network in [1]. This will serve as the graph of
interest for the rest of the experiment. We have 𝑛 = 20 agents.
Each agent 𝑖 is assigned a path in the graph in the following way:
Sample a random node 𝑢 in the graph. Sample a length 𝑡 uniformly
at random between 5 and the depth of the BFS tree from𝑢. Sample a
node 𝑣 uniformly at random at layer 𝑡 of the BFS tree. The shortest
path from 𝑢 to 𝑣 in the graph is the path 𝑃𝑖 corresponding to agent
𝑖 , and she is interested in minimizing the variance of the sample
mean of the delay of this path.

The delay of each edge 𝑒 is a random variable whose variance 𝜎2
𝑒

is drawn uniformly from [0, 1], independently of other edges. Agent
7
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Figure 1: (a) Box plots of the total utility of the algorithm and benchmark (matching) solutions, measured as a fraction of the
baseline. (b,c) Total utility of the algorithm and matching benchmark with varying levels of correlation, again measured as a
fraction of the baseline. Figure (b) is Random correlation, and (c) is Local correlation.

𝑖 starts with 𝑧 (𝑖 ) data points for the delay of her path 𝑃𝑖 , where
𝑧 (𝑖 ) is chosen uniformly at random between 2 and 9. Therefore, she
starts with 𝑧

(𝑖 )
𝑒 = 𝑧 (𝑖 ) data points for each edge 𝑒 in her path.

The agent’s objective is to minimize the sum of the sample vari-
ances of the delays of the edges in her path 𝑃𝑖 . Her initial sample
variance is 𝜎2

𝑒

𝑧
(𝑖 )
𝑒

and therefore, her initial total sample variance is

Baseline for 𝑖 = 𝑣0 (𝑖) :=
∑︁
𝑒∈𝑃𝑖

𝜎2
𝑒

𝑧
(𝑖 )
𝑒

Suppose she receives data from a set of other agents 𝑆 , who collec-
tively give her 𝑧 (𝑆 )𝑒 additional samples for edge 𝑒 . Then, her utility
is defined as the reduction in total sample variance. That is,

Utility of 𝑖 = 𝑢𝑖 (𝑆) = 𝑣0 (𝑖) −
∑︁
𝑒∈𝑃𝑖

𝜎2
𝑒

𝑧
(𝑖 )
𝑒 + 𝑧

(𝑆 )
𝑒

.

This is a monotonically increasing submodular function. We per-
form the cost-sharing via the Shapley value. We simulate the Shap-
ley value by taking 𝑚 = 10 random permutations, and use use
𝜖 = 0.01 as the violation allowed in the balance constraints.

Results. Since the optimal solution to Data Exchange is NP-
Hard, we compare the total utility of our approximation algorithm
(Section 3.3) to the baseline sample variance

∑
𝑖 𝑢0 (𝑖), where no

agents in the solution share their data. As a benchmark, we also
find the best solution with trades only between pairs of agents. For
this, we construct a graph on the agents where the weight for pair
(𝑖, 𝑗) is the maximum utility of Data Exchange with 𝜖-Balance on
just these two agents. We then find a maximum weight matching
on this weighted graph. (See Appendix D.2 for more details.)

In Fig. 1a, we present the total utility of our algorithm and the
matching benchmark, measured as a fraction of the baseline sample
variance, across several random samples of the road network. Our
algorithm outperforms the benchmark, by a factor of 1.8 on average.
Note that we can easily construct instances with a single long path
with 𝑚 edges and many paths sharing one edge with this path,
where our algorithm outperforms matching by a factor of Ω(𝑚).
The goal of our experiment is to show that our algorithm has a
significant advantage even in more realistic settings.

We now introduce correlation between the random variables of
the edges. In this setting, we assume that correlated edges have their
delays sampled from the same distribution. We introduce this corre-
lation in two ways. In random correlation (Fig. 1b), we sample pairs
of edges uniformly at random and correlate the pair. We measure
the correlation (𝑥-axis) as a ratio of the number of pairs sampled to
the total number of edges in the graph. In local correlation (Fig. 1c),
we sample vertices uniformly at random, and correlate all the edges
incident to this edge. We measure the correlation (𝑥-axis) as a ratio
of the number of vertices sampled to the total number of vertices
in the graph.

We measure how the total utility of our algorithm and the match-
ing benchmark changes as a function of the correlation in Figs. 1b
and 1c, again measured as a fraction of the baseline sample vari-
ance. Our algorithm outperforms the benchmark in both modes of
correlation, and at both high and low levels of correlation.

5 CONCLUSION
There are several open questions that arise from our work. First,
the approximation ratio for Shapley value sharing is 𝑂 (log𝑛) and
we have not ruled out the existence of a constant approximation.
Secondly, our algorithmic results require utilities to be submodular.
Though this is a natural restriction, there are cases where it does
not hold. For instance, if each dataset is a collection of features, the
effect of combining features could be super-additive [17]. Devising
efficient algorithms for special types of non-submodular functions
that arise in learning is an interesting open question.

Next, for Shapley value sharing (as opposed to proportional shar-
ing), our negative result for core-stability (Theorem 20) only shows
the absence of a (2 − 𝜖)-approximation to welfare. Either strength-
ening this impossibility result or showing a constant approximation
that lies in the exact core would be an interesting question. Fur-
ther, it would be interesting to study strategyproofness for thick or
random markets, analogous to results for stable matchings [7, 22].

Finally, our model can be viewed as budget balance with a single
global price per unit utility transferred. Though there are hurdles
to defining an Arrow-Debreau type market with endogenous prices
for each data type, it would be interesting to define a richer and
tractable class of markets along this direction.
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A COMPARISON TO KIDNEY EXCHANGE
It is instructive to compare the upper and lower bounds for social
welfare in Section 2 with those for barter with non-replicable goods,
that is, kidney exchange [2, 30]. Note that there, trades are deter-
ministic and hence intractability with long sequences of exchanges
follows from the hardness of set-packing type problems. On the
other hand, our formulation of Data Exchange Problem allows
interim balance and its intractability (Theorem 5) is because of
non-linear utility functions, making it technically very different.
Similarly, the positive approximation results in Theorem 6 are very
different from the 𝑘+1

3 approximation factor for length 𝑘-trades in
kidney exchange, that follow from approximation algorithms for
maximum set packing [13, 20, 34].

Similarly, for kidney exchange, stability and strategyproofness
can be simultaneously achieved with Pareto-efficiency or maxi-
mizing match size; see [6, 21, 30, 32] for positive results in var-
ious exchange models. However, for Data Exchange Problem,
we show in Appendix D that these goals are incompatible with
welfare, mainly because of the non-linearity in utility functions.
Nevertheless, the Greedy matching rules from kidney exchange
does extend to our setting and is simultaneously strategyproof and
2-stable.

B NP-HARDNESS OF WELFARE
MAXIMIZATION: PROOF OF THEOREM 5

We now show that welfare maximization is NP-Hard for submodu-
lar utilities and Shapley value sharing. We note that the hardness
result holds even when for any 𝑆 , both 𝑢𝑖 (𝑆) and ℎ𝑖 𝑗 (𝑆) are com-
putable in near-linear time.

Proof of Theorem 5. We reduce from an instance of Exact
Cover by 3-Sets (X3C). In this problem there are𝑚 sets 𝑃1, . . . , 𝑃𝑚 ,
each containing three elements. The universe 𝑈 has 3𝑘 elements
{𝑒′1, 𝑒

′
2, . . . , 𝑒

′
3𝑘 } and the decision problem is whether there are 𝑘

disjoint sets from 𝑃1, . . . , 𝑃𝑚 that exactly cover𝑈 .
9
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Figure 2: Construction for Theorem 5. The X3C instance has
elements labelled. Blue boxes correspond to𝑄𝑖s and red boxes
correspond to 𝑃𝑖s.

We reduce from the X3C instance in the following way: Add𝑚
dummy elements 𝑒1, . . . , 𝑒𝑚 to𝑈 . Modify each set 𝑃𝑖 so that it also
includes the dummy element 𝑒𝑖 . We also add𝑚 new sets𝑄1, . . . , 𝑄𝑚

where 𝑄𝑖 = {𝑒𝑖 }.
In the corresponding Data Exchange instance, we have two

sets of agents: {𝑝𝑖 }𝑖∈[𝑚] and {𝑞𝑖 }𝑖∈[𝑚] and three special agents
𝑤, 𝑧1, 𝑧2. For each 𝑖 ∈ [𝑚], we add the directed edges (𝑝𝑖 ,𝑤), (𝑞𝑖 ,𝑤),
(𝑧1, 𝑝𝑖 ),and (𝑧2, 𝑞𝑖 ). We also have the edges (𝑤, 𝑧1) and (𝑤, 𝑧2).
Agents can only send data along a directed edge. See Fig. 2.

We have a one-to-one correspondence between the agents 𝑝𝑖 and
the sets 𝑃𝑖 , and the agents 𝑞𝑖 and the sets 𝑄𝑖 . Let 𝑉 = {𝑝𝑖 }𝑖∈[𝑚] ∪
{𝑞𝑖 }𝑖∈[𝑚] . For agent 𝑎 ∈ 𝑉 , let elem(𝑎) denote the set of elements
in𝑈 covered by the set corresponding to 𝑎. For 𝑆 ⊆ 𝑉 , let sets(𝑆) ⊆
{𝑃1, . . . , 𝑃𝑚, 𝑄1, . . . , 𝑄𝑚} denote the the corresponding sets in the
X3C instance. Then the utility of agent𝑤 is defined as3

𝑢𝑤 (𝑆) = Number of elements from𝑈 covered by sets(𝑆).

The Shapley value implies the following: Given 𝑆 ⊆ 𝑉 , let element
𝑒 ∈ 𝑈 be covered by 𝑐𝑒 (𝑆) sets from sets(𝑆). Then each agent 𝑎 ∈ 𝑆

whose corresponding set covers 𝑒 contributes utility 1
𝑐𝑒 (𝑆 ) . Then

the utility share ℎ𝑤𝑎 (𝑆) for 𝑎 ∈ 𝑆 is

ℎ𝑤𝑎 (𝑆) =
∑︁

𝑒∈elem(𝑎)

1
𝑐𝑒 (𝑆)

For every 𝑖 ∈ [𝑚], we set 𝑢𝑝𝑖 ({𝑧1}) = 4, 𝑢𝑞𝑖 ({𝑧2}) = 1. We also
set 𝑢𝑧1 ({𝑤}) = 7𝑘

2 and 𝑢𝑧2 ({𝑤}) =𝑚 − 𝑘
2 . The Shapley values are

trivial to define.
The decision problem is whether there exists a feasible Data

Exchange solution with social welfare exactly 3(𝑚 + 3𝑘). We show
that if the X3C instance is a YES instance, the welfare is exactly
3(𝑚 + 3𝑘), while for NO instances, the welfare is strictly smaller.

Case 1. If the X3C instance is aYES instance, this means there are
sets (w.l.o.g.) 𝑃1, . . . , 𝑃𝑘 that cover all elements from {𝑒′1, . . . , 𝑒

′
3𝑘 }.

For the set 𝑇 = {𝑝1, . . . , 𝑝𝑘 , 𝑞1, . . . , 𝑞𝑚}, set 𝑥𝑤𝑇 = 1. Set 𝑥𝑝𝑖 {𝑧1 } =
7
8 for all 𝑖 ∈ [𝑘]. Set 𝑥𝑞𝑖 {𝑧2 } = 1

2 for 𝑖 ∈ [𝑘] and 𝑥𝑞𝑖 {𝑧2 } = 1 for
𝑖 ∉ [𝑘]. Further, set 𝑥𝑧1 {𝑤} = 1 and 𝑥𝑧2 {𝑤} = 1. All other values of
𝑥 are set to zero. It can be checked that this is a feasible solution
with total utility 3(𝑚 + 3𝑘).

3These utilities are not bounded above by 1, but we can achieve this by simply scaling
them down by the largest possible utility. This does not change the reduction.

Case 2. Suppose we have a NO instance of X3C. This means any
collection of 𝑘 sets covers less than 3𝑘 elements from {𝑒′1, . . . , 𝑒

′
3𝑘 }.

Observe that𝑢𝑧1 ({𝑤}) +𝑢𝑧2 ({𝑤}) =𝑚+3𝑘 , so that by the balance
condition on feasibility, we have∑︁

𝑆

𝑥𝑤𝑆𝑢𝑤 (𝑆) ≤ 𝑚 + 3𝑘.

Also observe that from the balance constraint, the social welfare
is at most thrice the utility that 𝑤 gets. Therefore, to achieve a
total utility of 3(𝑚 + 3𝑘), it must be that 𝑤 receives a utility of
𝑚 + 3𝑘 and provides a utility of 7𝑘

2 to 𝑧1 and𝑚 − 𝑘
2 to 𝑧2. Since any

set 𝑇 provides 𝑤 with utility at most𝑚 + 3𝑘 (as there are𝑚 + 3𝑘
elements in 𝑈 ), the previous statement implies that if 𝑥𝑤𝑇 > 0
then 𝑢𝑤 (𝑇 ) =𝑚 + 3𝑘 . Thus, each such 𝑇 must correspond to sets 𝑆
that cover all the elements in {𝑒′1, . . . , 𝑒

′
3𝑘 }. Since the original X3C

instance was a NO instance, this means that each such 𝑇 must
contain at least 𝑘 + 1 agents from {𝑝𝑖 }𝑖∈[𝑚] . But note that in any
such𝑇 , the agents 𝑞1, . . . , 𝑞𝑚 can collectively only get a utility of at
most𝑚 − 𝑘+1

2 , since each element 𝑒 𝑗 covered by 𝑄 𝑗 and 𝑃 𝑗 , where
𝑝 𝑗 ∈ 𝑇 contributes utility 1/2 to𝑄 𝑗 . This bounds the expected utility
that users in 𝑞1, . . . , 𝑞𝑚 receive by𝑚− 𝑘+1

2 . This then means that 𝑧2
can collectively give (and hence receive) a utility of at most𝑚− 𝑘+1

2 ,
which is a contradiction. Therefore the total utility of the solution
is strictly smaller than 3(𝑚 + 3𝑘), completing the reduction. □

C GENERAL CONCAVE UTILITIES WITH
PROPORTIONAL SHARING

In this section, we will prove Theorem 7. Unlike Section 3, we will
assume the utilities are continuous and concave, which is moti-
vated by agents partially sharing their data. Formally, we assume
agent 𝑗 can contribute at most 𝑠𝑖 𝑗 amount of data to 𝑖 . Suppose
they contribute fraction 𝑦𝑖 𝑗 ∈ [0, 1] of this data. Denote by ®𝑦𝑖
the vector ⟨𝑦𝑖1, 𝑦𝑖2, . . .⟩. Then the utility 𝑖 receives is given by the
monotonically non-decreasing concave function 𝑢𝑖 ( ®𝑦𝑖 ) ∈ [0, 1].

We will assume 𝑢𝑖 (®0) = 0. Further, we will assume 𝑖 gets strictly
positive utility from every agent 𝑗 ’s data4, so that for a value 𝛿 > 0
with polynomial bit complexity, we assume 𝑢𝑖 ( ®𝑦𝑖 ) ≥ 𝛿 for any ®𝑦𝑖
with at least one coordinate set to 1.

We now assume this utility is shared via proportional value as:

ℎ𝑖 𝑗 ( ®𝑦𝑖 ) =
𝑠𝑖 𝑗𝑦𝑖 𝑗∑

𝑘∈𝑋\{𝑖 } 𝑠𝑖𝑘𝑦𝑖𝑘
· 𝑢𝑖 ( ®𝑦𝑖 ) .

Let 𝑌𝑖 =
∏

𝑗∈𝑋\{𝑖 } [0, 1]. Then a solution to Data Exchange
assigns a Borel measure 𝜇𝑖 to 𝑌𝑖 , and it satisfies the balance condi-
tions:

∀ 𝑖,
∑︁

𝑗∈𝑋\{𝑖 }

∫
ℎ𝑖 𝑗 ( ®𝑦𝑖 ) 𝑑𝜇𝑖 =

∑︁
𝑗∈𝑋\{𝑖 }

∫
ℎ 𝑗𝑖 ( ®𝑦 𝑗 ) 𝑑𝜇 𝑗 . (12)

The objective of maximizing social welfare becomes:

Social Welfare =
∑︁
𝑖∈𝑋

∑︁
𝑗∈𝑋\{𝑖 }

∫
ℎ𝑖 𝑗 ( ®𝑦𝑖 ) 𝑑𝜇𝑖 .

4We assume there is a set 𝑋𝑖 of agents satisfying this condition and these are the
only agents of interest in the remaining optimization. For simplicity, we are assuming
𝑋𝑖 = 𝑋 .
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C.1 Multiplicative Weight Method and Oracle
As before, we can solve this using the multiplicative weight method,
where the set 𝑃 is simply the set of all Borel measures on 𝑌𝑖 for
each agent 𝑖 . This solution will violate the balance constraint by an
additive 𝜖 . For a given choice of dual variables {𝑄𝑖 𝑗 }, the optimum
Borel measure for the oracle becomes a point mass for each agent
𝑖 . For given 𝑖 , omitting the calculation, the oracle corresponds to
solving the problem:

Oracle for agent 𝑖 = max
®𝑦𝑖 ∈𝑌𝑖

©­«
∑︁

𝑗∈𝑋\{𝑖 }
𝑄𝑖 𝑗𝑠𝑖 𝑗𝑦𝑖 𝑗

ª®¬ ·
(

𝑢𝑖 ( ®𝑦𝑖 )∑
𝑗∈𝑋\{𝑖 } 𝑠𝑖 𝑗𝑦𝑖 𝑗

)
.

For this agent 𝑖 and setting of dual variables, let 𝑂𝑃𝑇 denote the
optimal value of the oracle. We now show how to approximate𝑂𝑃𝑇
to a factor of 1 + 𝜖 in polynomial time.

Approximating the Oracle. First note that we cannot simply delete
agents 𝑗 with 𝑄𝑖 𝑗 < 0; the optimum solution can include such
agents. However, if all agents have 𝑄𝑖 𝑗 < 0, then 𝑂𝑃𝑇 = 0, since
®𝑦𝑖 = ®0 is a feasible solution. We can easily check this; therefore, we
assume 𝑂𝑃𝑇 > 0. In this case, there exists agent 𝑗 such that 𝑦 𝑗 = 1
in the optimal solution. Otherwise, we can scale the variables up till
this is satisfied; note that the ratio of the two linear terms remains
unaffected by scaling, while 𝑢𝑖 ( ®𝑦𝑖 ) only increases by scaling up.

Let𝑉 ( ®𝑦𝑖 ) = 𝑢𝑖 ( ®𝑦𝑖 )∑
𝑗 ∈𝑋 \{𝑖} 𝑠𝑖 𝑗 𝑦𝑖 𝑗

, and let𝑉min and𝑉max denote the max-
imum and minimum values attained by this function over ®𝑦𝑖 ∈ 𝑌𝑖
with at least one coordinate set to 1. Note that both these quantities
have polynomial bit complexity since 𝑢𝑖 ( ®𝑦𝑖 ) ≥ 𝛿 for such solutions
®𝑦𝑖 . Let 𝑉 ∗ denote its value in the optimal solution, 𝑂𝑃𝑇 ; clearly
𝑉 ∗ ∈ [𝑉min,𝑉max].

Our algorithm has the following steps:
(1) We use binary search to guess 𝑉 ∗ to a factor of 1 + 𝜖 in the

range [𝑉min,𝑉max].
(2) For each guess 𝑉 , we solve the following convex optimiza-

tion problem:

max
®𝑦𝑖 ∈𝑌𝑖

∑︁
𝑗∈𝑋\{𝑖 }

𝑄𝑖 𝑗𝑠𝑖 𝑗𝑦𝑖 𝑗 , s.t. 𝑢𝑖 ( ®𝑦𝑖 ) ≥ 𝑉 ·
∑︁

𝑗∈𝑋\{𝑖 }
𝑠𝑖 𝑗𝑦𝑖 𝑗 .

(3) Among these solutions ®𝑦𝑖 , one for each guess of 𝑉 , we
choose the one that has largest value for the oracle objec-
tive.

Lemma 15. For any 𝜖 > 0 above algorithm is a 1+𝜖 approximation
to 𝑂𝑃𝑇 in time polynomial in the input bit complexity and 1

𝜖 .

Proof. The algorithm tries some 𝑉 ∈ [𝑉 ∗/(1 + 𝜖),𝑉 ∗]. For this
setting, suppose the convex program achieves objective𝑊 . Since
𝑂𝑃𝑇 ’s variables ®𝑦∗

𝑖
are feasible for this convex program, we have

𝑊 ≥ ∑
𝑗∈𝑋\{𝑖 } 𝑄𝑖 𝑗𝑠𝑖 𝑗𝑦

∗
𝑖 𝑗
. This means the oracle objective achieved

by our algorithm satisfies:

Oracle Objective ≥𝑊 ·𝑉 ≥
∑︁

𝑗∈𝑋\{𝑖 }
𝑄𝑖 𝑗𝑠𝑖 𝑗𝑦

∗
𝑖 𝑗 ·

𝑉 ∗

1 + 𝜖
,

completing the proof. □

This finally shows the following theorem, which restates Theo-
rem 7:

Theorem 16. For general monotone concave utilities with propor-
tional value sharing, for any 𝜖 > 0, there is an algorithm for Data
Exchange running in time polynomial in input size and 1

𝜖 , that
approximates the social welfare to a factor of (1 + 𝜖) while violating
Eq. (12) by an additive 𝜖 .

D CORE STABILITY AND
STRATEGYPROOFNESS

We will now consider the concept of core stability as defined in
Definition 8. We assume utilities are monotone set functions, as in
Section 3. We first show that such solutions always exist to arbitrar-
ily good approximations, and the special case of 2-stable solutions
can be efficiently computed via a Greedy matching algorithm. We
then show that core solutions can be far from welfare optimal; nev-
ertheless, approximate core stability trades off with approximate
welfare.

We finally consider strategic misreports by agents in Appen-
dix D.4, where we present a formal model and show how strategy-
proofness trades off with approximate welfare maximization.

D.1 Existence of Core
We now show the existence of an 𝜖-approximate core solution
(Definition 8) for any 𝜖 > 0. This solution is defined as follows,
where we note in the definition below that F ′ is a feasible solution
constructed just on agents in𝑈 .

Definition 17. For 𝜖 > 0, a feasible solution F to Data Ex-
change is 𝜖-approximately core stable if there is no𝑈 ⊆ 𝑋 of users
and another feasible solution F ′ just on the users in𝑈 such that for
all 𝑖 ∈ 𝑈 , 𝑢𝑖 (F ′) > 𝑢𝑖 (F ) + 𝜖 .

Our proof uses Scarf’s lemma from cooperative game theory [31].
More recently, this lemma has seen applications in showing exis-
tence of stable matchings [26]. However, Scarf’s lemma is an exis-
tence result, and it is not clear how such a solution can be efficiently
computed.

Theorem 18. For theData Exchange problemwith utilities being
non-negative monotone set functions, an 𝜖-approximately core-stable
solution always exists for any fixed 𝜖 > 0.

Proof. Define a matrix𝑄 as follows, where the rows are agents
and there is a column for every coalition 𝑆 and every possible
feasible solution 𝑓 to Data Exchange just on the agents in 𝑆 . We
denote this feasible solution by 𝑓 , and let set(𝑓 ) = 𝑆 .

To make the number of columns finite, we round utilities down
to the nearest 𝜖 to create the set𝑈 = {0, 𝜖/2, 𝜖, . . . , 1}. The columns
of 𝑄 are the elements of the set 𝑈𝑛 . Given a solution 𝑓 , let 𝑢 𝑓 =

(𝑢1 (𝑓 ), 𝑢2 (𝑓 ), . . . , 𝑢𝑛 (𝑓 )) denote the utilities of the 𝑛 agents. We
round each𝑢𝑖 (𝑓 ) down to the nearest multiple of 𝜖/2 yielding utility
𝑢𝑖 (𝑓 ). The resulting vector of utilities is an element of𝑈𝑛 , which
we denote as col(𝑓 ). Let 𝑔 = col(𝑓 ).

Let 𝑄𝑖𝑔 = 1 iff 𝑢𝑖 (𝑔) > 0. Then there is a natural ordering ⪰𝑖 of
the columns 𝑔 with 𝑄𝑖𝑔 = 1, such that 𝑔1 ⪰𝑖 𝑔2 ⇐⇒ 𝑢𝑖 (𝑔1) ≥
𝑢𝑖 (𝑔2).

Consider choosing 𝑔 to fraction 𝑦𝑔 , so that for every agent 𝑖 ,
we have

∑
𝑔𝑄𝑖𝑔𝑦𝑔 ≤ 1. Consider any feasible solution 𝑓 ∗ to Data

Exchange. Since 𝑔∗ = col(𝑓 ∗) is a column of 𝑓 ∗, choosing 𝑦𝑔∗ = 1,
11
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this shows the set of feasible solutions is captured by the constraints
𝑇 = {∑𝑔𝑄𝑖𝑔𝑦𝑔 ≤ 1∀𝑖}. Similarly, any solution to the constraints 𝑇
maps to at least one feasible solution to Data Exchange. To see
this, set

𝑥𝑖𝑆 =
∑︁

𝑓 :𝑖∈set(𝑓 )
𝑦𝑓 · 𝑥 𝑓

𝑖𝑆
,

where {𝑥 𝑓
𝑖𝑆
} are the variables corresponding to any solution 𝑓

such that 𝑔 = col(𝑓 ). The variables {𝑥𝑖𝑆 } preserve Eqs. (1) and (2),
showing feasibility.

Scarf’s lemma [31] (see Lemma 3.1 in [26]) then says that there
is a 𝑦 satisfying constraints 𝑇 , such that for every column 𝑔 of 𝑄 ,
there is a row 𝑖 with 𝑄𝑖𝑔 > 0 (i.e. an agent) such that both these
conditions hold:

(1)
∑
𝑔′ 𝑄𝑖𝑔′𝑦𝑔′ = 1; and

(2) For every 𝑔′ with 𝑄𝑖𝑔′ = 1 and 𝑦𝑔′ > 0, we have 𝑓 ′ ⪰𝑖 𝑓 ,
that is 𝑢𝑖 (𝑔′) ≥ 𝑢𝑖 (𝑔).

Taking the linear combination of the second condition usingweights
given by 𝑦, we have ∑︁

𝑔′ |𝑄𝑖𝑔′=1
𝑦𝑔′ · 𝑢𝑖 (𝑔′) ≥ 𝑢𝑖 (𝑔) .

Consider some feasible solution to data markets given by 𝑦. Then,
the above says that for every possible 𝑓 that a set of agents set(𝑓 )
could deviate to, there is one agent 𝑖 whose utility (as given by
𝑢) in 𝑦 (the LHS of the previous equation) is at least 𝑢𝑖 (𝑓 ). Since
we discretized utilities to within 𝜖/2, this means this coalition will
not deviate to 𝑓 if they are indifferent to utilities increasing by 𝜖 .
This shows 𝑦 yields an 𝜖-approximate core solution, completing
the proof. □

D.2 Greedy Matching is 2-Stable
The above proof is based on a fixed point argument, and does
not lend itself to efficient computation. On the positive side, we
show a simple polynomial time algorithm for the special case of
2-stability. Recall from Definition 8 that a solution is 𝑐-stable if
there is no coalition of at most 𝑐 agents that can deviate to improve
all their utilities. The algorithm below generalizes a similar greedy
algorithm for kidney exchanges [30].

Greedy Algorithm. Consider a pair of agents (𝑖, 𝑗). Let 𝑢𝑖 𝑗 =

𝑢𝑖 ({ 𝑗}) and 𝑢 𝑗𝑖 = 𝑢 𝑗 ({𝑖}). Consider the Data Exchange solution
that sets 𝑥𝑖 𝑗 = min

(
1, 𝑢 𝑗𝑖

𝑢𝑖 𝑗

)
and 𝑥 𝑗𝑖 = min

(
1, 𝑢𝑖 𝑗𝑢 𝑗𝑖

)
. This solution

satisfies balance for this pair of agents, and is maximal, in the sense
that both agents cannot simultaneously improve their utilities. Both
agents achieve utility 𝑢𝑖 𝑗 = min(𝑢𝑖 𝑗 , 𝑢 𝑗𝑖 ) in this solution.

Now construct a graph on the agents where we place an edge
between every pair of agents 𝑖 and 𝑗 with weight𝑤𝑖 𝑗 = 𝑢𝑖 𝑗 . Find any
greedy maximal weight matching in this graph (call this algorithm
Greedy), and for each pair of agents in this matching, construct the
Data Exchange solution for this pair. This yields the final solution
Greedy.

Theorem 19. For arbitrary monotone utility functions of the
agents, the Greedy algorithm is 2-stable.

Proof. Suppose not, then there is a pair (𝑖, 𝑗) that can deviate
and where 𝑢𝑖 𝑗 is larger than the utilities 𝑖 and 𝑗 were receiving

in Greedy. But by the construction of maximal weight matching,
one of 𝑖 or 𝑗 must have larger utility in the matching, which is a
contradiction. Therefore, Greedy is 2-stable. □

D.3 Gap between Social Welfare and the Core
We next study the tradeoff between the core and social welfare. We
first show that though core-stable solutions always exist, they may
be quite far from welfare optimal solutions.

Theorem 20. For symmetric weighted utilities and proportional
sharing of utility, the gap in social welfare between any core-stable
solution and the welfare-optimal solution can be Ω(

√
𝑛).

v1 vn

vn−1

vn−2v3

v2

. . .

Figure 3: Instance for the proof of Theorem 20

Proof. Recall the definition of symmetric weighted utilities
from Section 3.4. Now consider the instance in Fig. 3. To simplify no-
tation, we denote by 𝑠𝑖 𝑗 the weight along the directed edge (𝑣 𝑗 , 𝑣𝑖 ),
the utility function at 𝑣𝑖 as 𝑢𝑖 , etc. Note that 𝑠𝑖 𝑗 = 0 if there is no
directed edge (𝑣 𝑗 , 𝑣𝑖 ). We set 𝑠1𝑛 = 𝑠𝑛1 = 𝑀 , and 𝑠𝑖 𝑗 = 1 for the
remaining directed edges (𝑣 𝑗 , 𝑣𝑖 ), where𝑀 ≥ 3 will be chosen later.
We also set 𝑓𝑖 (𝑥) =

√
𝑥 for all 𝑖 . Note that

𝑢1 ({2, 𝑛}) =
√
𝑀 + 1; 𝑢1 ({2}) = 1; 𝑢1 ({𝑛}) = 𝑢𝑛 ({1}) =

√
𝑀,

and further, ℎ12 ({2, 𝑛}) = 1√
𝑀+1

and

ℎ12 ({2}) = ℎ23 ({3}) = · · · = ℎ𝑛−1𝑛 ({𝑛}) = 1.

To lower bound social welfare, consider the solution that sets
𝑥1 ({2}) = 𝑥2 ({3} = · · · = 𝑥𝑛−1 ({𝑛}) = 1 and sets 𝑥𝑛 ({1}) = 1√

𝑀
.

This solution has welfare 𝑛.
We now upper bound the welfare of any core solution. In this

solution, denote 𝑝 = 𝑥1 ({2}), 𝑞 = 𝑥1 ({2, 𝑛}), and 𝑟 = 𝑥1 ({𝑛}).
Denote the utility of agent 𝑖 in this solution as𝑈𝑖 . We have

𝑈2 = 𝑝 · ℎ12 ({2}) + 𝑞 · ℎ12 ({2, 𝑛}) = 𝑝 + 𝑞 · 1
√
𝑀 + 1

≤ 𝑝 + 1
√
𝑀 + 1

.

(13)
Note that𝑈1,𝑈𝑛 ≤

√
𝑀 + 1. By balance, all of {2, 3, . . . , 𝑛 − 1} have

the same utility. Therefore, the total utility of the solution is at most

Total Utility ≤ (𝑛 − 2) ·𝑈2 + 2
√
𝑀 + 1

By balance, we have 𝑈1 = 𝑈𝑛 . Further, if 𝑈1 <
√
𝑀 , then

agents {1, 𝑛} can deviate and obtain utility
√
𝑀 each by setting

𝑥1 ({𝑛}) = 𝑥𝑛 ({1}) = 1. Since this is not possible, we have𝑈1 ≥
√
𝑀 .

Therefore,

𝑈1 = 𝑝 + 𝑞 ·
√
𝑀 + 1 + 𝑟 ·

√
𝑀 ≥

√
𝑀.

12
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Since 𝑝 + 𝑞 + 𝑟 ≤ 1, the above implies

𝑝+(1−𝑝)·
√
𝑀 + 1 ≥

√
𝑀 ⇒ 𝑝 ≤

√
𝑀 + 1 −

√
𝑀

√
𝑀 + 1 − 1

≤ 1
√
𝑀 + 1

,

where the final inequality holds for 𝑀 ≥ 3. Plugging this into
Eq. (13), we have𝑈2 ≤ 2√

𝑀+1
, so that

Total Utility ≤ (𝑛 − 2) · 2
√
𝑀 + 1

+ 2
√
𝑀 + 1 ≤ 4

√
𝑛 − 2,

where we set𝑀 = 𝑛 − 3. This shows a gap of Ω(
√
𝑛) between the

welfare of the core and the social optimum. □

Note that the utility function above is submodular and the shar-
ing scheme is cross-monotonic. Therefore the lower bound holds
for this case as well; though it is an open question whether it holds
for Shapley value sharing specifically.

Bridging the Gap between Core and Welfare. On the positive side,
we can achieve a tradeoff between approximate core stability and
approximate social welfare. Towards this end, we modify Defini-
tion 17 to the followingmultiplicative approximation guarantee: For
𝛼 ≥ 1, a feasible solution F to Data Exchange is 𝛼-approximately
core stable if there is no 𝑈 ⊆ 𝑋 of users and another solution F ′

on the users in𝑈 such that for all 𝑖 ∈ 𝑈 , 𝑢𝑖 (F ′) > 𝑢𝑖 (F )/𝛼 .
Consider the welfare optimal solution F1 with social welfare𝑊 ∗

and a core-stable solution F2. Suppose we take a convex combina-
tion of these two solutions where we set 𝑧𝑖𝑆 = 𝛽𝑥𝑖𝑆 + (1 − 𝛽)𝑦𝑖𝑆 ,
where {𝑥𝑖𝑆 } and {𝑦𝑖𝑆 } denote the variables in F1 and F2 respec-
tively. Clearly, this solution is feasible, and its social welfare is at
least 𝛽 ·𝑊 ∗. Further, it is easy to check that it is 1

1−𝛽 -approximately
core stable. This shows the following theorem:

Theorem 21. For any 𝛽 ∈ (0, 1], there is a solution F to Data
Exchange that is simultaneously a 1

𝛽
approximation to social welfare

and 1
1−𝛽 -approximately core stable.

This shows the following corollary via the Greedy rule in Ap-
pendix D.2:

Corollary 22. For any 𝛽 ∈ (0, 1], there is a poly-time computable

solution F to Data Exchange that is simultaneously a 𝑂
(

log𝑛
𝛽

)
approximation to social welfare and 1

1−𝛽 -approximately 2-stable.

D.4 Strategyproofness
The discussion so far has ignored strategic considerations on the
part of the agents. We now present some negative and positive
results for this aspect.

Model for strategic behavior. We first present the model for strate-
gic behavior. We assume that agents can choose to hide tasks or
data from the clearinghouse. For agent 𝑖 , let 𝑢𝑖 , ℎ𝑖 𝑗 denote the true
utilities and shares, while 𝑢̃𝑖 , ℎ̃𝑖 𝑗 denote the reported utilities and
shares. If agent 𝑖 reports fewer tasks, this corresponds to agent 𝑖
reporting 𝑢̃𝑖 (𝑆) ≤ 𝑢𝑖 (𝑆) for some subsets 𝑆 ⊆ 𝑋 \ {𝑖}; correspond-
ingly ℎ̃𝑖 𝑗 (𝑆) ≤ ℎ𝑖 𝑗 (𝑆). Since there is a centralized entity that does
model refinement, if we assume agent 𝑖 only gets the refined model
back and not any data, then the agent does not get utility for the

tasks it did not report, so that its perceived utility will be measured
using 𝑢̃𝑖 .

On the other hand, if agent 𝑖 hides data, this changes the util-
ity perceived by other agents. For another agent 𝑗 , we must have
𝑢̃ 𝑗 (𝑆) ≤ 𝑢 𝑗 (𝑆) and ℎ̃ 𝑗𝑖 (𝑆) ≤ ℎ 𝑗𝑖 (𝑆) for 𝑆 such that 𝑖 ∈ 𝑆 . Note that
it could be that ℎ̃ 𝑗𝑘 (𝑆) ≥ ℎ 𝑗𝑘 (𝑆) if 𝑖 ∈ 𝑆 , but 𝑗, 𝑘 ≠ 𝑖 .

Formalizing this, let 𝜃 ′ = {𝑢̃, ℎ̃} be reported utilities and shares
and let 𝜃 = {𝑢,ℎ} be the true values. We say that a misreport by
agent 𝑖 is feasible if for the resulting 𝜃 ′, we have:

(1) 𝑢̃ 𝑗 (𝑆) ≤ 𝑢 𝑗 (𝑆) for all 𝑗, 𝑆 ;
(2) ℎ̃ 𝑗𝑘 (𝑆) ≤ ℎ 𝑗𝑘 (𝑆) when either 𝑗 = 𝑖 or 𝑘 = 𝑖;
(3) 𝑢̃ 𝑗 (𝑆) = 𝑢 𝑗 (𝑆) if 𝑗 ≠ 𝑖 and 𝑖 ∉ 𝑆 ; and
(4) ℎ̃ 𝑗𝑘 (𝑆) = ℎ 𝑗𝑘 (𝑆) if 𝑗, 𝑘 ≠ 𝑖 and 𝑖 ∉ 𝑆 .

LetA denote an algorithm for which 𝑈̃𝑖 is the utility perceived by
𝑖 (measured using the utility function 𝑢̃𝑖 ) when A is implemented
with misreport 𝜃 ′, and 𝑈𝑖 is the corresponding utility (measured
using the utility function 𝑢𝑖 ) when A is run using its true report
𝜃𝑖 . We say that A is strategyproof if for every feasible misreport by
𝑖 , we have 𝑈̃𝑖 ≤ 𝑈𝑖 .

Approximate welfaremaximizers. Wefirst show the strategyproof-
ness is incompatible with welfare to any approximation. We will
restrict to the class of strategyproof algorithms A that are non-
wasteful, meaning that for any instance 𝜎 , if ®𝑥𝜎 is the allocation
found by A, then for some agent 𝑗 ,

∑
𝑆 𝑥

𝜎
𝑗𝑆

= 1. In other words, the
allocation cannot be scaled up while retaining feasibility.

Theorem 23. For the symmetric weighted setting with propor-
tional sharing, any non-wasteful and strateyproof algorithm A can-
not approximate social welfare to better than a factor of Ω(

√
𝑛).

Proof. We use the same instance as in the proof of Theorem 20.
We follow the same proof. Note that for agents {1, 𝑛}, the only
non-wasteful solution sets each of their utilities to

√
𝑀 . Suppose

there were a strategyproof algorithm A that gives utility 𝑈1 to
agent 1 and 𝑛. If 𝑈1 <

√
𝑀 , agent 𝑛 will report 𝑠𝑛−1𝑛 = 0, thereby

killing the long cycle. But then, since A is non-wasteful, it will
then give utility

√
𝑀 to agent 𝑛. Therefore, any strategyproof and

non-wasteful algorithm A has 𝑈1 ≥
√
𝑀 . Continuing with the

proof of Theorem 20 shows a gap of Ω(
√
𝑛) between the welfare of

any such algorithm and the optimal social welfare. □

The Greedy Cycle Canceling Algorithm. We now present a
truthful algorithm that generalizes greedy matching. Given any
directed cycle C on a subset of agents, let 𝑢C denote the maximum
utility that can be derived if agents trade along the cycle. In other
words, suppose the cycle has agents 𝑣1 → 𝑣2 → · · · → 𝑣𝑘 →
𝑣1. Then we compute quantities ®𝑥 = {𝑥12, 𝑥23, . . . , 𝑥𝑘1} ∈ [0, 1]𝑘 ,
where 𝑥𝑖𝑖+1 = 𝑥𝑖+1{𝑖 } . These quantities satisfy balance:

𝑥12·𝑢2 ({1}) = 𝑥23·𝑢3 ({2}) = 𝑥34·𝑢4 ({3}) = · · · 𝑥𝑘1·𝑢1 ({𝑘}) = 𝜆( ®𝑥).

We define 𝑢C = max®𝑥 𝜆( ®𝑥) = min{𝑢2 ({1}), 𝑢3 ({2}), . . . , 𝑢1 ({𝑘})}.
The greedy cycle canceling algorithm works as follows: Find

the directed cycle C1 with largest 𝑢C . Trade along this cycle and
delete these agents. Again find the cycle C2 with largest 𝑢C among
the remaining agents, trade along it, and repeat.
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Theorem 24. For arbitrary monotone utility functions on the
agents, the Greedy cycle canceling algorithm is strategyproof.

Proof. Focus on an agent 𝑖 . Consider the setting with true re-
ports, and let agent 𝑖 be removed in the 𝑘𝑡ℎ iteration of greedy.
If agent 𝑖 misreports, then it does not affect 𝑢̃ℓ ({ℓ′}) for agents
ℓ, ℓ′ ≠ 𝑖 , and cannot increase 𝑢̃ℓ ({ℓ′}) if either ℓ or ℓ′ is equal to
𝑖 . Therefore, 𝑢̃C for any cycle not containing 𝑖 remains the same,
while that for cycles C containing 𝑖 cannot increase. This implies
the first 𝑘 −1 cycles chosen by greedy remain the same when agent
𝑖 misreports. Since agent 𝑖’s utility will be measured using 𝑢̃𝑖 , its

utility in any cycle C that it participates in cannot increase, since
𝑢̃C did not increase. This means agent 𝑖’s utility cannot increase by
misreporting, showing the algorithm is strategyproof. □

As a corollary, it is immediate that the Greedy maximal weight
matching algorithm from Appendix D.2 is strategyproof. Theo-
rems 19 and 24 together show that if trades are restricted to be
among disjoint pairs of agents, then the greedy maximal weight
matching is simultaneously core-stable, strategy-proof, and a 2-
approximation to optimal welfare (in this case, themaximumweight
matching).
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