Informed Correctors for Discrete Diffusion Models

Yixiu Zhao Jiaxin Shi
Stanford University Google DeepMind
yixiuz@stanford.edu ishijiaxin@gmail.com
Feng Chen Shaul Druckmann
Stanford University Stanford University
fengc@stanford.edu shauld@stanford.edu
Lester Mackey Scott Linderman
Microsoft Research New England Stanford University
Imackey@microsoft.com scott.linderman@stanford.edu
Abstract

Discrete diffusion has emerged as a powerful framework for generative modeling in
discrete domains, yet efficiently sampling from these models remains challenging.
Existing sampling strategies often struggle to balance computation and sample
quality when the number of sampling steps is reduced, even when the model
has learned the data distribution well. To address these limitations, we propose
a predictor-corrector sampling scheme where the corrector is informed by the
diffusion model to more reliably counter the accumulating approximation errors.
To further enhance the effectiveness of our informed corrector, we introduce
complementary architectural modifications based on hollow transformers and a
simple tailored training objective that leverages more training signal. We use a
synthetic example to illustrate the failure modes of existing samplers and show how
informed correctors alleviate these problems. On the text8 and tokenized ImageNet
256 x 256 datasets, our informed corrector consistently produces superior samples
with fewer errors or improved FID scores for discrete diffusion models. These
results underscore the potential of informed correctors for fast and high-fidelity
generation using discrete diffusion. Our code is available at https://github.
com/lindermanlab/informed-correctors.

1 Introduction

Denoising diffusion models are powerful generative models for high-dimensional data [1-3]. The
central idea of diffusion models is to gradually corrupt data into noise using a “noising” or “forward”
process and then to train a parameterized model (usually a deep neural network) to learn its time
reversal, commonly known as the “denoising” or “backward” process. In continuous domains like
image generation, the forward process is usually defined by gradual injection of Gaussian noise and
scaling that transform the data distribution into a standard normal. The backward process is then
approximated by learning the gradient of the log density (also known as the “score function™) of the
marginal distribution. To draw samples from a trained model, one first generates Gaussian noise
and then simulates the backward process using the score information. Diffusion generative models
are currently the dominant framework for image generation, and they can generate high-resolution
images with stunning details given prompts from a user [4, 5].
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Given the success of diffusion models for continuous data, recent work has explored diffusion
modeling in discrete domains [6—12]. Discrete diffusion models can be applied to language [11],
protein sequences [13, 14], graphs [15], and more. Notably, Campbell et al. [8] developed a general
framework for discrete denoising diffusion in continuous time. They formulated the forward and
backward processes as continuous time Markov chains (CTMCs), and they learned to predict the
distribution over denoised data via an evidence lower bound objective. Concurrent work by Shi et al.
[12], Sahoo et al. [16] and Ou et al. [17] focused on discrete diffusion with the absorbing state forward
process (a.k.a., masked discrete diffusion), deriving a simple formulation of the ELBO that reduces
to a weighted cross-entropy. Shi et al. [12] also noted that this simple objective provides a unifying
perspective to previous works [8, 11, 18], all of which are parameterizations and modifications of the
same ELBO objective.

Despite conceptual advances in discrete diffusion, the efficiency-accuracy trade-off in simulating
the continuous-time backward process still limit their effectiveness. Song et al. [19] proposed using
approximate MCMC correctors to fix the discretization error in simulating the backward process.
Campbell et al. [8] extended the predictor-corrector sampling to discrete diffusion models and
discovered that the corrector steps significantly impact generative performance. In practice however,
a clear understanding of how corrector steps contribute to sample quality is still missing, and recent
works [11, 12, 17, 16] still use predictor-only samplers for generation.

We show that predictor-corrector schemes can be improved by leveraging different sampling methods.
Analyzing the forward-backward corrector used by Campbell et al. [8], we identify its failure mode
in masked diffusion and illustrate it with a simple Markov chain modeling task. To address this
shortcoming, we propose the informed corrector — an alternative corrector scheme inspired by
adaptive Gibbs sampling that fixes the issues of the forward-backward corrector and explicitly targets
low-probability dimensions. Sampling with the informed corrector drastically decreases error rate in
our synthetic example, as well as in Text8, where the model makes much fewer spelling errors than
baselines. On tokenized ImageNet 256 x 256, we show that the informed corrector yield diverse,
high quality samples competitive with existing diffusion models.

2 Background

2.1 Continuous-Time Discrete Diffusion Models

Consider a data vector zy € SP sampled from a data distribution pg,,, where S is the base space
for each component. Denoising diffusion models [1-3, 19] model this unknown data distribution by
progressively adding noise to data samples until their distribution converges to a simple target, such
as a uniform distribution. Then, a deep neural network is trained to invert this process and remove the
noise. This reverse process forms a generative model from which new samples can be drawn. The
noising and generative processes are also called the forward and backward processes, respectively.
We will adopt this convention for the rest of the paper.

Continuous-time diffusion models define a forward process with noising distribution g;(x+|xo) and
marginals g;(z¢) = [ qt(z¢|z0)go(z0)dzo, With o = Pyaa and limiting distribution gy ~ . The
forward process is designed so that 7 is simple. Then, a parameterized process with marginals p¢ is
learned to match the true backward process.

When the data is discrete (e.g., text, protein sequences, neural spike counts), the base space becomes
a “vocabulary” S = {1,..., S} of size S, and the forward process can be described as a CTMC with
initial distribution g and transition rate matrix &, € RS”*5”_ The off-diagonal terms Ry (z, y) of
the matrix represent the rate of state x transitioning to state y at time ¢, and the diagonals R;(z, =)
are defined as the negative sum of all other elements in the same row: Ry(z,z) = —>_ , Ri(z,y).
Assuming that R, R; commute for all s and ¢, the finite-time transition probabilities satisfy

t+AL
QGyae(y | T) = [exp {/t R, ds}] (z,y) = I(z,y) + Ri(x,y) At + o(At),



where I represents the identity matrix, and in the square brackets we compute a matrix exponential.
The time reversal of this CTMC is also a CTMC, and its transition rate is,

- Rl ®®) o Grjo(@ | o) .
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Campbell et al. [8] approximated the backward rate by learning a parameterized denoising model
pg‘ (o | y) = qoje(wo | y). Alternatively, Meng et al. [20] and Lou et al. [11] observed that the
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ratio s;(y), = 9(2)/q,(y) plays a similar role as the continuous score function V log ¢;(y), up to an
additive constant. Therefore, they proposed to learn an approximate score function instead, sf (y).

The training objective is a negative evidence lower bound (ELBO), which is a function of the
approximate backward rate RY (y, z) = Ry(x,y)s (y).:

T
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Given the intractable sums over the exponentially large state space S above, it is natural to constrain
the forward process to be a composition of identical independent processes on each dimension, where
the rate over the entire state R; can be written as

D
Ri(z,y) = B(1) Z Ry (2%, y) 1 nacyay 3
d=1

for a base rate matrix R, € R%*S, absorbing the time dependence into the scalar coefficient 3(t).
Here, z\¢ represents all components of x apart from the d-th dimension. Backward rates are also
factorized with this forward rate factorization, allowing the objective in (2) to be nicely decomposed
into a sum over dimensions, as detailed by Campbell et al. [8].

2.2 Absorbing Discrete Diffusion

For generic discrete data, two forward processes are most commonly used: the uniform process and
the absorbing state process [7]. We focus on the absorbing state process in this paper, for which the
base rate matrix for each dimension can be written as
1 y%=MASK, 2% # MASK
Ribsorb (g gdy — &1yt =z, 29 £ MASK @
0 otherwise,

where we augment the vocabulary set S by introducing the MASK token, which represents the
absorbing state. The absorbing state diffusion is important to consider because it is very commonly
used to model sequence data without ordinal structure (e.g., text and protein sequences). It is also
intimately connected to masked language models [7, 21, 22].

We use special notation for the absorbing state process. For a sequence z € {MASK, 1,..., S}, we
use the mask operator y = M<(z) to denote the sequence obtained by changing the d™ component
of 2 to MASK. Finally, we denote the masked indices of x by M(z) = {d : ¢ = MASK}. The set
of non-mask indices is the complement, M (z).

Recently, Shi et al. [12] introduced the MD4 diffusion model, which outperformed previous discrete
diffusion models on both text and pixel-level image generation benchmarks. Furthermore, they
noted that several continuous time denoising diffusion objectives (including (2) ) are mathematically
equivalent and can be greatly simplified in the case of masked diffusion. The simplified MD4 loss is:
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where a; 2 exp (— fot B(s) ds) is the survival probability of the token at each position and

indicates its time derivative. We denote this loss as £ x4 since it sums over the masked dimensions.
As we will show later, this loss has a counterpart, Eﬂ, that can be combined with the MD4 loss to
yield better results for training our diffusion model.
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Figure 1: Demonstration of the failure modes of the uninformed 0000 e
corrector on the Markov chain example. The predictor made Number of Foaction Evaniations (NFeg)
a mistake (red) in sampling an impossible transition, which is
immediately corrected by the informed corrector. The uninformed
corrector, however, masks out tokens at random, while unmasking
other tokens at the same time. Changes made by the correctors

are highlighted in orange.
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Figure 2: The informed cor-
rector substantially lowers er-
ror rates on the Markov chain
synthetic experiment.

2.3 Sampling From the Backward Process

Campbell et al. [8] proposed to use tau-leaping, an approximate sampling method that allows
simultaneous updates to multiple dimensions for a single model evaluation. Tau-leaping assumes that
the backward process transition rate is constant between [t — 7, t), regardless of whether states change
during that interval. Under this assumption, multiple transition events in the interval can be applied
simultaneously. Leverging the structure of masked diffusion, MD4 [12] used a simpler approach.
Instead of trying to simulate the continuous time process, they directly sampled from the finite-time
backward conditional distribution p?_ At (| ;). They call this approach ancestral sampling.

Corrector steps. Both the above approaches treat the one-step backward update as independent
across dimensions, which accumulates simulation errors over the course of the backward process. To
combat this problem, additional corrector steps can be used to ensure the marginal distribution of
samples z; at time ¢ matches ¢;. Campbell et al. [8] show that a corrector process with rates,

Rc(w7y) :Rt(x7y)+Rt(x7y) (6)

leaves the stationary distribution ¢; invariant. In practice, one must use the learned backward rates
R" as an approx1mat10n for the true backward rates R,. This can be thought of as an “uninformed”
corrector, as it is simply a summation of the forward and backward rates, neither of which explicitly
targets problematic tokens in the masked diffusion setting. Nevertheless, Campbell et al. [8] show
that this uninformed corrector increases sample quality in practice.

Correcting for the absorbing diffusion. The necessity of corrector steps is particularly apparent
when tau-leaping is used in conjunction with an absorbing forward process. In the reversal of the
absorbing process, only transitions from the absorbing state to other states are allowed, which is
reflected by the structure of I;. Thus, once a token has been generated, it cannot be erased or changed,
rendering it impossible for the predictor to fix its own errors. Forward-backward corrector steps
mitigate this issue by introducing the forward term ?;, allowing transitions in the forward direction,
resulting in generated tokens being “masked out” again with uniform probability.

Though forward-backward corrector steps solve the issue in theory, they are far from optimal in
practice. The steps can only correct mistakes by masking tokens at random. Ideally, we would like
the corrector to make informed transitions based on which states are more likely under the model.
This observation motivates us to find a better alternative to the forward-backward corrector.

3 Methods

To address the limitation of existing uninformed correctors, we design a corrector scheme that uses
the model to inform which tokens to correct, prioritizing tokens that are more likely to have errors.
Next, we introduce a hollow transformer-based architecture to parameterize this informed corrector,
along with a tailored training objective to enable efficient training of the corrector. We describe these
methods in detail below.



3.1 Informed Correctors

To design a corrector scheme for our sampler, we first identify a Markov chain that has the marginal
distribution g; as a stationary distribution. For discrete distributions, a straightforward option is to

use Gibbs sampling,! i.e., we iteratively select an index from d = 1, ..., D and resample the d-th
dimension according to the conditional distribution
2~ (-] 2\). )

There are two common ways of selecting the index d, known as systematic scan and random scan.
Systematic scan enumerates the dimensions following a fixed permutation, whereas random scan
selects the dimensions uniformly at each resampling step. In both cases, it can take many steps for
the Markov chain to “correct” a simulation error in one of the dimensions.

Informed selection. To improve efficiency, we use an adaptive random-scan Gibbs sampler with
a non-uniform selection distribution [25-28]. We choose this distribution so that the corrector
prioritizes updating those dimensions that are more likely to have simulation errors. To achieve
this, we let ¢4 be a confidence score indicating the likelihood of correctness in the d-th dimension
of the current sample. We select the indices to update in the next & steps dy, . .., d; by sampling

without replacement from the distribution Cat(%), where T is a temperature parameter.
d/ —Cq7

This sample can be generated using the Gumbel-top-k trick [29, 30]: First draw D independent
Gumbel random variates, g4 ~ Gumbel(0, 1), one for each dimension. Then rank the dimensions in
descending order of —cy4/7 + g4 and select the top k dimensions.

We consider two choices of the confidence score. The first option is ¢y 2 log g, (z? | 2\%), the
log-probability of the d-th dimension of the current sample given all other dimensions, where:

1-« ¢ = MASK
dy\dy _ t
a(@® [ z) {atq0|t(9:d | 2\?) 2% £ MASK’ ®

and qo‘t(xd \ x\‘i) is the denoising conditional distribution. An alternative confidence score is

Cglargin A log qt(xd | l‘\d) _ H;a§log Qt(xd =il m\d). C)]

Similar to in [31], the advantage of this definition is that it maintains low confidence for a di-
mension when there is an alternative token that the model assigns comparable high probabilities
(i.e., max,a_za log g (z'¢ | x\?) is equally large). In practice, we often use this definition of the
confidence as we found it consistently outperforms the former.

Parallel updates. Rather than updating the £ dimensions sequentially, we update them in parallel,
as in Hogwild Gibbs sampling [32]. In practice, we want to keep k small to avoid errors in the parallel
resampling, while keeping it large enough so that errors can be fixed reliably. We study the effects of
this hyperparameter in section 5.3.

Conditioning on the mask configuration. In masked diffusion, a sample x; ~ ¢;( - ) contains both
mask and non-mask tokens. The Gibbs-inspired update above might turn a mask into a non-mask
token or vice versa. This is nonoptimal — on the one hand, the corrector steps are not introduced to
generate new tokens but rather to fix errors introduced by the predictor steps; on the other, re-masking
tokens that the predictor will later unmask creates redundancy. To improve corrector efficiency,
instead of the marginal distribution ¢;( - ), we target the mask-conditional distribution,

qe( | M(2)) o< qe (- )L pg( y=M(a) - (10

In other words, starting from the current sample x, we fix the mask configuration M x) and only
allow the corrector to change non-mask tokens into other non-mask tokens. To update position
d € M(x), we now simply need to sample from the denoising conditional distribution:

2~ gope (4] 2\9). an

'Other Markov chains could be employed instead. For example, the forward-backward corrector proposed by
Campbell et al. [8] leverages a birth-death process that has g: as the stationary distribution [23]. We also tested
locally-balanced Markov processes [24], but their performance was inferior to Gibbs.



Intuitively, this is true because a non-mask token at time ¢ must be consistent with the token from
the true token at time O given the masking forward process. This is convenient for us, since the only
distribution required by the informed corrector scheme is q0|t(9:d | 2\9). For derivation and more
implementation details, see appendix B.

Next, we will discuss how to implement this corrector scheme efficiently, so that only one network
evaluation is needed to select and update positions dy, . . . , di simultaneously.

3.2 Parameterizing the Conditional Distribution Using Hollow Transformers

Since the MASK token provides no information about the original data, we make the further observa-
tion that go(¢ (% | 2\?) = go; (2 | M%(x)), which is the familiar denoising distribution that we can
approximate using pg|t(;vd | M?(x)). Therefore, we can implement the corrector on dimension d by

calling our denoiser on M?(x). However, correcting k dimensions in this case requires k forward
passes through the denoiser. In order to simultaneously obtain o ( A :z:\d) for multiple d, we need
an architecture where information about x¢ does not propagate to the output at the dth position.

We solve this problem with a hollow transformer [33], a two-stream self-attention architecture where
each stream runs causal attention in a different direction. The embeddings are then offset by one
position so that the embedding at position d does not attend to the corresponding input position. The
two streams are then summed together and sent through multilayer perceptron layers to the output.
By construction, the hollow transformer satisfies the property that for all (¢, 9),

:I;\d = y\d — fg(l'yt)d = fe(yat)d’ (12)

where f?(x,t)q represent network output at sequence position d with inputs (z,t) and parameter
6. In other words, the output at dimension d is agnostic to the input at the same dimension d. We
expand upon architectural details of the hollow transformer in appendix C.

Once we have the hollow transformer, we can use it to parameterize the denoiser, which is learned
through regular masked diffusion training. This denoiser can then be used for both the predictor
and corrector steps in sampling. Nonetheless, we observe that switching from standard transformer
to hollow transformer can sometimes degrade the predictor performance, thereby diminishing the
overall benefit of correctors. In these situations, we propose to keep the original denoiser architecture
and train a separate hollow transformer for the corrector. We will show this in section 5.3.

3.3 Learning the Hollow Transformer with the ELBO

The preceding section demonstrated that the corrector can be trained using the same ELBO objective
employed for training the denoiser. Interestingly, we reveal that for hollow transformers, there is an
alternative expression of the ELBO that offers training signals that are complementary to the widely
used simplified objective (20). This new expression is presented in the following proposition.

Proposition 3.3.1 When R; = R{**°'"®, the continuous-time objective function (2) simplifies to

CY’

> logpf(af | M%(x))| dt +C. (13)
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We include a full derivation of this result in appendix A and show that it is related to £ 4 via a simple
label-switching trick. Notably, Campbell et al. [8] and Shi et al. [12] both avoid writing the loss
in this form, since evaluating pg‘t(xd | M4 (x)) for each different d requires a separate call to the
denoising network, which is prohibitively inefficient in practice. The hollow transformer fixes this
issue, as now the inner sum over d can be evaluated with one forward pass of the network.

Furthermore, we observe that this different form of the ELBO complements the MD4 loss in (5), in the
sense that it sums over the non-mask dimensions M (), while MD4 sums over the masked dimensions
M(z) instead. Both losses ignore half of the learning signal from the sample z ~ qo(- | 2o),
which seems unideal. This observation suggests that a more informative objective can be obtained by
averaging the two losses:

Lup = 5(Lyg+ Lm). (14)



Since both terms are different expressions of the same ELBO, Lyp can be viewed as applying a
variance reduction trick for the sample estimator. We observe in experiments that this objective
indeed outperforms its individual components and makes training converge faster (see appendix D.2).
We term our hollow transformer masked diffusion model trained with loss (14) HollowDiff.

4 Related Work

MaskGIT. Alongside the development of discrete diffusion models, other classes of non-
autoregressive models employing similar iterative generation principles have emerged [34, 35, 33].
Among these, MaskGIT [35] is notably similar to masked diffusion models [12, 36], particularly as
both are trained using denoising cross-entropy losses. However, key differences distinguish them:
MaskGIT utilizes a non-likelihood-based weighting for its loss function and employs a confidence-
based decoding order. In contrast, masked diffusion models typically unmask tokens in a random
order that aligns with their theoretical backward process. Inspired by MaskGIT, large language
diffusion models such as LLaDA [37] adopt similar heuristics for remasking tokens at each prediction
step. This effectively alters the predictor’s unmasking order based on confidence, which can introduce
bias into the sampling process, causing it to deviate from the diffusion model’s theoretical reverse
process. In contrast, our confidence metric is only used to define the selection distribution of a
random-scan Gibbs sampler, and the informed corrector preserves the marginal distributions of the
original diffusion framework to first order.

Discrete diffusion correctors. Campbell et al. [8] and Gat et al. [38] introduced the forward-
backward and DFM correctors for discrete diffusion. However, these “uninformed” correctors can
only address errors through inefficient random re-masking. ReMDM [39] proposed the remasking
diffusion process that includes forward-backward and DFM as special cases, while effectively
combining the predictor and corrector steps into one. Relatedly, DPC [40] proposed a corrector
scheme for MaskGIT sampling. Although their method can be seen as “informed”, they reportedly
require hundreds of steps to achieve good sample quality on ImageNet 256 x256.

5 Experiments

In section 5.1, we test the informed corrector against other sampling methods in a hidden Markov
model setting where the true denoising conditional distribution is known. We find that informed
correctors consistently reduce error rates across a wide range of function evaluation counts. This
observation is confirmed in section 5.2 on real-world data, where informed corrector also greatly
reduce spelling errors in sampled text. In section 5.3, we use informed correctors for tokenized image
synthesis, achieving competitive FID scores on ImageNet 256 x 256 with a 230M parameter model
and only a small number of function evaluations.

5.1 Hidden Markov Modeling

To check if informed correctors improve sample quality, we propose a simple setting where the true
denoising conditional distribution ¢, is easily accessible. Consider sequence data x € {0,...,S—1}
sampled from a Markov chain: go(z) = qo(z?!) HdD=2 qo(z? | x971), where qo(z? = i | 2971
j) = Ai; and z! is sampled uniformly. At time ¢ of the forward process, the denoising model
observes a masked version of this sequence:

D
grjo(xt | o) H qupo(f | xf) = H {at]l{wg:zg} +(1— Oét)]l{zg:MASK}} ; (15)

and tries to predict the conditional denoising likelihood o) (zd | x}d). This can be seen as performing
inference in a hidden Markov model (HMM), where the prior is the Markov chain ¢qq, and the
observation model is g¢|. Given this, we can perform standard message-passing inference [41] to

find the posterior go);(z{ | z}d).



Table 1: A comparison of guidance-free discrete diffusion and MaskGIT models on ImageNet
256 x 256. We report two informed corrector approaches (see section 3.2): “HollowDiff + informed
corrector” uses a hollow transformer for both predictor and corrector, while “MD4 + informed
corrector” uses a separately trained hollow transformer model to correct predictions made by the
MD4 model. We use 8 predictor steps, 8 corrector steps, and 1 final denoising step.

Method #Params #Steps FID | ISt Precision T Recall
MaskGIT [42] 227M 18 6.56 203.6 0.79 0.48
DPC (40) 391M 180 4.45 244.8 0.78 0.52
VQ-Diffusion 43] 518M 100 11.89 - - -
ReMDM (39 227TM 16 7.40 145.27 - -
MD4 230M 17 6.28 175.32 0.79 0.48
+ Uninformed corrector 230M 17 7.41 174.49 0.80 0.44
+ ReMDM sampler 230M 17 6.51 246.34 0.85 0.40
Informed Corrector (Ours)
HollowDiff + informed corrector 230M 17 6.26 188.18 0.78 0.45
MD4 + informed corrector 400M 17 5.78 212.52 0.82 0.43

To demonstrate the problems with existing samplers, we choose a structured transition matrix A:

P J=1
0 otherwise.

At each position, the token x¢ has probability p of staying fixed and probability 1 — p of changing
into the next token. To evaluate sample quality, one important metric is the number of errors in the
samples, i.e., occurrences of impossible transitions within the sampled sequence. The overall error
rate is computed by:

N D-1
1
A~ N _
Tere((Zn)1) = ND -1) > > Lgarizaay Lottt szt 1) moa sy (17
n=1 d=1
Since the samplers have access to the true denoising distribution, the error rate will be 0 if no more
than one token is generated in a single step. However, if more than one token is generated during a
parallel update, there is a risk of generating impossible transitions.

We show error rates (mean and standard deviation over 5 random seeds) in Fig. 2. We find that
ancestral sampling with the informed corrector yields the least error for all examined NFE settings.
Meanwhile, the uninformed corrector consistently performs worse than using no corrector at all,
showing that an uninformed corrector step is not as valuable as an additional predictor step in this
setting (see fig. 1). More experimental details can be found in appendix D.

5.2 Character Level Text Modeling

We next evaluate our method on the character-level — 'nforf?ed Corfector) MD4§uni"f°rTed corrector)
. . —— MD4 o MD4 (ReMDM
modeling task using the text8 dataset [44]. Follow- o comecter °

ing standard practice, we use the provided dataset 20 \
splits and train on text chunks of length 256 for _
1 million steps using a batch size of 512. As a 30
simple measure of sample quality, we compute the 9
error rate, defined as the fraction of total characters %20
in words that are absent from the training set vocabulary. e

*10
We benchmark against MD4 [12], which employs a
standard transformer architecture and has a compara- 0

16 32 64 128 256

ble parameter count (fig. 3). HollowDiff significantly
outperforms the standard MD4 baseline in MD4 en-
hanced with the uninformed corrector and the ReMDM Figure 3: Comparison of word error rate
sampler, demonstrating the utility of our proposed sam-  4¢ross different sampling methods and
pling framework. We direct the readers to table 3 for models on the text8 dataset.

examples of generated text.

Number of Function Evaluations (NFEs)



5.3 Class-conditional Image Modeling

We evaluate our method on tokenized ImageNet 256x256 using the VQ tokenizer from [43]. All
models are trained on the standard training split and evaluated without classifier-free guidance.
Table 1 presents a comparison of generative models in the guidance-free setting. HollowDiff with
the informed corrector achieves an FID of 6.26, using only 17 total steps (8 predictor, 8 corrector
and a final denoising step). This outperforms several baselines with similar or larger model sizes and
substantially more sampling steps. VQ-Diffusion [43] requires 100 steps to reach FID 11.89, while
ReMDM [39] achieves FID 7.40 in 16 steps. We also note that the MD4 baseline achieves similarly
strong results without any correctors, and the uninformed corrector and ReMDM sampler fail to
improve its performance further. Generated samples from our method are shown in appendix D.3.5.

Transformer architectures. Without using correctors,
HollowDiff significantly underperforms MD4 in FID (10.24
vs 6.28 in table 2), indicating Hollow transformer’s subpar
denoising capabilities compared to standard transformer on
image data. This deficiency is offset by its capability to
“self-correct” via informed correctors.

Table 2: FID scores (ImageNet 256)
for MD4 vs HollowDiff under various
corrector configurations.

Model + Corrector FID |

To further demonstrate the value of informed correctors, we I}{Ioﬁowgig (no gorfrectorg }83‘3‘
: H ollowDiff + unintormed corrector .

als(;) ;_eIStHa h}]g)?tfi setup Wkﬁere MD4 SCI‘V?FShZ'iS the pg;dlqtor HollowDiff + informed corrector 6.26

an ollowDiif acts as the cprrector. 1S combination  yry (no corrector) 6.28

improves FID to 5.78, exceeding the performance of both  MD4 + informed corrector 578

individual models (see table 1 for a full set of metrics).
Despite the hybrid setup using more total parameters

(400M) than the individual HollowDiff or MD4 model o~ 16 steps

(230M), it highlights the modularity and compatibility of our 6.5 Dl

corrector: it can be applied to stronger pretrained predictors = 138 steps

without need for joint training. This finding confirms that  g6.0

our corrector provides complementary gains outside of 2 55

architectural choice, and is broadly applicable to discrete =~

diffusion models in general. 5.0

Number of parallel updates. To investigate how the num- 4595 4 8 16 32 62
ber of parallel updates affect sample quality, we conduct an k

ablation test on k with the hybrid MD4 + informed corrector Figure 4: FID vs. number of in-

setting. Figure 4 shows the FID scores as a function of k,
across different total number of update steps (evenly split
between predictors and correctors). For each number of up-
date steps {16, 32,64, 128}, we find that one temperature

formed corrector updates & under var-
ious sampling budgets. Increasing k
initially improves efficiency but de-
grades sample quality for large k.

parameter 7 = {1.0,2.0, 5.0, 10.0} respectively works best
across all values of k.

We observe that for small NFE budgets, increasing k significantly improves sample quality up to a
point. For higher NFE budgets, performance is much less sensitive to k, and a small value (e.g., k=1
or k=2) already yields near-optimal FID. This aligns with the intuition that predictor steps dominate
performance at high compute budgets. When too many dimensions are updated simultaneously, their
mutual dependencies are ignored, leading to update collisions where corrections can contradict or
undo each other. This is observed empirically as in all cases, too large values of & (e.g., & > 32) lead
to worse FID.

6 Discussion

We proposed informed correctors and an accompanying training framework for learning and sampling
from masked discrete diffusion models. We showed that the uninformed forward-backward corrector
is not well-suited to the masked diffusion setting, since it does not leverage information about
the conditional likelihood of the generated tokens. Our approach, HollowDiff, produces superior
sample quality with fewer model evaluations than alternative discrete diffusion samplers both in the
synthetic setting and real-world datasets. Overall, our work serves to further enhance the capabilities



of diffusion models in discrete regimes and to bridge the sampling quality gap between discrete
diffusion models and other types of generative models.

Limitations and future work. Using the informed correctors for absorbing diffusion requires
the use of the hollow transformer architecture. As a result, we cannot apply the correctors directly
to arbitrary pretrained models. Learning the informed corrector also presents tradeoffs between
quality of the denoiser and that of the corrector. While the HollowDiff scheme represents a compact
algorithm for learning to generate and correct at the same time, practically, better performance is
achieved by learning separate predictor and corrector models and combining them. Future work could
investigate how this scheme can be made more efficient, potentially by architectural or algorithmic
improvements on hollow transformers.

Impact Statement. This paper aims to improve the efficiency and quality of discrete generative
models, which have broad applications in areas such as image synthesis, text generation, and molecular
design. Like many generative modeling techniques, the methods developed here could potentially
be misused for generating misleading or harmful content (e.g., deepfakes or disinformation). We
encourage responsible use and stress the importance of deploying generative models with appropriate
safeguards and monitoring.
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A Diffusion Objectives

A.1 Equivalence of objectives

For a complete picture, we include the derivation of the simplified objective in Shi et al. [12], Sahoo
et al. [16], Ou et al. [17] and show how it connects to the Campbell et al. [8] objective expressed
with CTMC transition rates. A similar treatment can be found in Shi et al. [12, App. H.1]. The
derivation highlights that while the two expressions are mathematical equivalent, they nonetheless
exhibit important differences in when it comes to estimation cost.

We start from Campbell et al. [8]’s continuous time discrete diffusion ELBO objective. For clarity,
we use variable names z, y, and 2 in a way that indicates temporal order:

L) = /eq(y)n(ZIy) {2, Bl = {3, Ruly.2) }log(RY (= y))] dt

where R;(y) £ —Ry(y,y) = > 2rzy Bi(y, 2"). Here r¢(z]y) represents the probability of transition-
ing from state y to state 2, given that we know a transition happens at time ¢:

Ri(y,2)
y#Fz
re(z | y) = {ORt(y) -

We can rewrite the objective with a label switching trick:

L(0) = / E o (20)qe (y]z0)r+ (=11) [éf(y) — Ry(y) log(R! (z,y))} dt

=/qu<zo>qt(y|mo> RY(y) =Y Rily, z)log(R{(z,y))| dt
27y

~ [ Euntton) | X R w2 = 3 Ruly.2) g 0) | e

| 7Y 27y

~ [ Eaen | X (s | 000 R :2) — auly | 20) el ) o) |

| ¥ z#y

= / Eqoen) [ D0 D {0y | 20) R (5, 2) = au(= | o) Ralz, ) log(RE (9, 2)) } | dt. (19)

| v =%y

Note that we switched the labels y and z on the last line, which is the key trick that simplified our
derivation. Proceeding from line (19) becomes straightforward:

L(9) Z/quuo)qt(mmo) Z{Rf(y,Z)—Rt(&y)mlog(ﬁf?(yﬂ))} dt

| 27y
= /quuo)qt(mmo) S { B y,2) — Ruoly, o) 0g(Rl (y,2)) } | t, (20)
| =#Y
where Rt‘o(y, x) = Ri(z,y) Z:gm is the true reverse transition rate conditioned on x(, and we

renamed z to x to preserve alphabetical order of the variables for readability. Now we have a simple
Monte Carlo estimator for this objective: we just need to sample y from the marginal distribution

and then evaluate the parameterized transition model ]%f (y, x) for all neighbors x of y, which can be
done using only one model evaluation.
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A.2 Simplifying the Score Function for Masked Diffusion

The relationship between the (concrete) score function and denoising distribution can be simplified in
the case of masked diffusion. We first start with the relation between the denoising distribution and
score function in [8]:

- Qt($> _ Z Qt\o(ﬂﬁ | o)

. 21
qro(y | xo)qop(xo 9) @b

Zo

For a state 2 where 2¢ # MASK, consider the score from M4 (z) to x:

Ve _ oz | xo) .

s;(M%(x))e = ;O mpmt@m | M¢(x)) (22)
_N 9@ T0) o a
B %: qtjo(MASK | xg)polt(xo | M*()) (23)
N Qt|0($d | 5Ud) 0 d a
= Gro(Mask [y Por@” [ M7 (@) (24)
- %pgﬁ(md | Md(m)) (25)

where o represents the survival probability of any non-mask token at time ¢, which is assumed to be
constant for all dimensions and token values. Going from (23) to (24) we used the fact that 2¢ = xd if
2% # MASK. This formula tells us that in the case of masking diffusion, the score function between
mask and non-mask tokens is just a constant factor away from the denoising distribution.

In this work, we use a hollow transformer £ that outputs a D x S array, and we use f%(x, t)d,s to
represent pgl (2% = s | M?(x)). We can also omit the ¢ dependence of the network here because in

absorbing state diffusion the true go|¢(z | M%(x)) does not depend on ¢ (proof omitted).

A.3 Deriving the HollowDiff Objective

The hollow transformer provides us with a way to optimize the optimize the Campbell et al. [§]
objective (18) directly:

T
—logp(zo) < L(6) = /O Eq.o(lao)r: (21y) [Rf(y) — Ri(y) log(R{ (=, y))}} dt +C, (26)
T
= / eq‘o(ykrg) [Z Rt('xa y)sa(y)r - Z Rt(ya Z) lOg(Rf(Z, y))}:| dt +C
0 TH#Y 2£y
(27)
T
= / eq‘o(ykrg) [Z Rt(xa y)sa(y)x - Z Rt(ya Z) IOg(Sf(z)y)}] dt + C.
0 TH#Y 2£y
(28)

Notice that we can further simplify the second term by leveraging the sparsity structure of the forward
process:

> Ry, 2)log(sf(2)y) = > Ruly, M4 (y))log(s{ (M*(y)),), (29)
=7y deM(y)
= Y Ruly. M @) log(;=— 1" ®)ae). (30)
deM(y) !
= —2L 3" log(f(y)aye) + C. (1)
tdEﬂ(y)

where «} represent the time derivative of a;. Note that here we used the hollow property f O()a =
f(M9(y))a, which allows us to evaluate the sum over d € M (y) using only one function evaluation
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of f. Similarly we can write out the first term, which conveniently reduces to a constant due to the
structure of the forward proceSS'

> Ri(x,y)s S>> R )W) (32)
TFY dEM(y) z:x?£MASK,
2\ _y\

Wl (33)

= l—at Z Z f()d,z‘i:_

deEM(Y) z:z?#£MASK,
2\d— \d
Here we are using the fact that f?(y)4 is a vector representing the distribution over the non-mask
tokens and therefore sums to 1. Putting these back together, we have:

T 7

£0) = [ B[ T 108 )y} at+C, G4
o deM(y)

which is very similar to the MD4 loss (5) of Shi et al. [12], except that the sum over all mask positions

is replaced with the sum over all non-mask positions and the coefficients are different.

In practice, we want to maximize learning signals for the model. Since the objective (34) only uses
the non-mask dimensions of y, we propose to combine it with the MD4 objective which uses the
mask dimensions instead. These two simplified objectives are mathematically equivalent and have the
same optima , but can suggest different stochastic gradient estimates. The combined objective is then

T 1 o ol
L(0) = / 3Ea0(vlz0) [Of > 108 Wawg) + T D log(/* () a.eg) }| At + C,
0 " deM(y) " deMy)

(35)
where we have changed the index in the first term from y? to ¢ for consistency, since y? = ¢ when
d is an unmasked dimension. Note that the HollowDiff objective leads to a lower-variance stochastic
gradient estimator, as it leverages more learning signal for a single sample of y. We confirm this
empirically via loss curves in appendix D.2.

B Informed Corrector

We explore informed corrector updates that leverages the hollow transformer architecture. Specifically,
we consider the Gibbs operator'

qt(z a? | ) ZCH\O \ To (10|t($o | z\ ) = Oét(10|t(55d | x\d)]]'{wd';éMASK} +(1 - at)]l{wd:MASK}'

(36)
To approximate this operator, we can use the learned network f? (x)q4,; in the place of qo‘t(xd =

i | 2\%), since the hollow transformer architecture blocks out information of 2 on the dth output
dimension.

In order to reach the stationary distribution ¢;(x), we need to repeat the Gibbs update, iterating over
all dimensions d. This is very inefficient in realistic settings. Instead, we choose to prioritize updates
on the “most unconfident” dimensions, where ¢ is most likely to be affected by the compounding
errors in the simulation of the backward process. To achieve this, we rank the dimensions according
to the confidence score ¢y and perform k updates at the same time.

One observation is that changing the mask configuration does not actually do anything useful for us,
since the mask configuration does not contain any information. This suggests that we should instead
consider the distribution conditioning on the mask configuration:

qu(x? | 2\, 2" # MASK) = Z giyo(x? | 23, 2? # MasK)go(f | 2\, 27 # Mask)  (37)

= Z ﬂ{xd;eMAsK} {zd=ad }QO|t($6l | x\d) (3%)
g
= ]1{a:d7ﬁMASK}qO|t(xd | x\d)- (39)
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Repeatedly applying this operator on the non-masked dimensions creates a Markov chain with the
stationary distribution equal to g; (= | M;) £ g;(x | 2™t = MASK) where M is the set of masked
indices after the predictor update.

This translates to a straightforward procedure: find the non-mask dimensions with the lowest scores,
and then sample from the model predictions pgl t(:z:d | 2\?) of that dimension. For real-world datasets,
we found that doing an argmax update in the end, where all dimensions are updated to the token
that maximizes the conditional likelihood can be helpful for sample quality. We set the number of
correctors C' = 1 for the majority of our experiments. The algorithm is outlined in algorithm 1 below.

Algorithm 1 Backward process with informed corrector steps

Require: f,¢,,;,, 0, temperature 7;
Require: number of updates k , number of predictor steps P, number of corrector steps C.
1: Initialize time ¢ < 1
2: Initialize sample = + MASK®
3: Set predictor step size At < (t — tyin)/P
4: for step = 1to P do

5. Compute denoising probability p[d, i] = f%(z)[d, ]
6:  Apply predictor step © < PREDICTORUPDATE(x, p, t)
7:  Update time ¢t < ¢t — At
8: for cstep =1to C do
9: Find most likely alternative tokens ¢ = arg max,a_,a log pg‘t(m’d | 2\9)
10: Compute confidence score c[d] = logpglt(xd | z\4) — logpg‘t(x’d | 2\), Vd ¢ M(x)
11: Sample Gumbel noise g[d] ~ Gumbel(0, 1)
12: Compute ranking criterion r[d] = —c[d] + T¢]d]
13: // Update the top-k dimensions
14: for cnt =1to k do
15: Get dimension of transition d* = SORTED(7)[D — ¢nt|
16: Update state 2% Categorical(pglt(xd* | 2\47))
17: end for
18:  end for
19: end for

20: // Deterministic update at the last step
21: Find most likely values for each mask dimension x

22: Return z

d ¢ argmaxq pglt(xg | ) forall d € M(x)

C Hollow Transformer Architecture

C.1 Hollow Transformer Architecture Details

We build upon the hollow transformer in [33] and design a class of hollow transformers that is more
parameter efficient and expressive. First, we divide the computation into two streams, the content
(causal) stream and the query (mixing) stream. The content stream consists of two transformers with
causal self-attention in opposite directions, whereas the query stream attend to the content stream and
outputs the final result. By design, non of the attention mechanisms allow a token at position d to
attend to a token that has access to information of z¢.

We differ from the original hollow transformer in that we introduce a third stream to combine
information of the forward/backward causal streams. Specifically, we have the attention layers Fj,
B;, My, that implement multi-head attention with different causal structures. The updates of these
attention streams are respectively (ignoring multilayer perceptron layers):

F, + Attention(Q = F!, KV = F=%), (40)
B, « Attention(Q = B, KV = B%), (41)
Mg, | « Attention(Q = h(MZ, F . B ), KV = (FS, BZ%)), (42)
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where we insert a mixing layer for every m forward/backward layers. Notably, the new mixing layer
M, acts like a “query stream” while the forward and backward layers F; and B, act like “content
streams” [45]. To prevent information leak and preserve the “hollowness,” we offset the inputs by
one position when initializing the forward/backward layers:

F = Embed(Pad(z%"!)), B{ = Embed(Pad(z*1)), (43)

and we initialize the mixing layer to zero. Due to the attention structure, each position M¢ of the
mixing layer can have access to all the other positions z\? in the input z, and therefore it cannot
attend to itself at other positions to preserve hollowness. We double the feature dimension of the
mixing layer and set the update function / to:

(M, Fi, Bi) = Ml + Concat(Fy,,,, By.,,). (44)

Finally, we use the output from the last mixing layer to compute the output logits.

Weight tying. Since the forward and backward content streams carry out the same type of com-
putation, we use a weight-tied network where all weights are shared between F; and B;, which
significantly decreases the parameter count of our network and makes training and evaluation faster.
In practice, we have not observed significant downgrade in performance of the weight-tied network
on ImageNet.

D Experiments

The main experiments in this paper are performed on a v3-128 TPU pod and a v3-8 TPU machine
with Google cloud.

D.1 Hidden Markov Modeling
D.1.1 Hyperparameter Selection

We select the hyperparameters for the correctors in the Markov chain experiments with grid search. For
the informed corrector, the number of parallel updates & is swept over the values {1, 2,4, 8,16}, and
the temperature hyperparameter is swept over {0.01,.1,.5, 1., 2., 4.}. For the uninformed corrector,
the corrector step size is swept over {0.01,0.1,0.5,1.0,1.5,2.0, 3.0, 4.0, 5.0}.

D.2 Text8

The experiments on the Text8 dataset were performed on a machine with 8 NVIDIA H100 GPUs .

Training loss Test loss
2.5 2.0
Training Objective
L
4 Lp 4
s 2.0 1.8
Q

1.5

104 10° 106 10° 10°
Steps Steps

Figure 5: Loss curve on Text8 dataset [44]

We followed the standard dataset split and trained our models on text chunks of length 256 for 1
million steps with batch size 512. We train two models: one with the masked loss £ 4 and the other
with HollowDiff loss Lyp on the text8 dataset of Mahoney [44]. The model consists of 12 standard
transformer layers, and we add one mixing layer at the end to combine the forward and backward
streams. We empirically confirmed that the model trained with our proposed HollowDiff loss function
Lyp is more efficient (see fig. 5).
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D.2.1 Example samples

We show some generated samples taken using informed correctors and MD4 in table 3.

Table 3: Comparison of unconditional samples from informed corrector and MD4 trained on Text8.
Samples are generated with 256 NFEs. Words not contained in the training set vocabulary are marked

in red.

Informed corrector

MD4

n of european population cities

in northern indonesia the german
integration of the societies in
the united states the expansion

of the province with the public
education reform of one eight zero
three the kingdom was held in one
eight three five by the pe

e two nine one zero one zero three
zero two two four seven one zero
zero three one three three five
one one six four of the european
union or trade union for it is the
leniency of the netherlands five
seven seven germany and three of
the country s two five

canadian publishing corp was
created in one nine eight

seven and helped to use it two
days later it was designed or
investigated according to the
databases the date was also called
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D.3 Tokenized ImageNet

D.3.1 Training Details

Our model is adapted from that proposed by Sun et al. [33] and consists of 24 standard transformer
layers. We use an embedding dimension of 784 and hidden dimension of 2048. We add 3 mixture
layers (1 after every 8 transformer layers) to the model to facilitate information exchange between
the forward and backward streams. We train the model using AdamW [46] with an initial learning
rate of le-4 and a batch size of 512. We use a linear learning rate warmup in the first 100 steps. We
adopt a stepwise learning rate schedule, dropping the learning rate to 3.3e-5 at 2.11 x 10° steps and
to le-5 at 2.4 x 10 steps. We stop the training at 2.5 x 10° steps. The ImageNet experiments are
done on v3-128 TPU pod machines on Google cloud and training takes 100 hours of wall clock time.
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D.3.2 Hyperparameter Selection

We select the hyperparameters for the samplers in the ImageNet experiments with grid search. For
the informed corrector, the number of parallel updates & is swept over the values {1, 2,4, 8,16}, and
the temperature hyperparameter is swept over {.1, 1., 2., 10.,1000.}. For the uninformed corrector,
the corrector step size is swept over {.5, 1., 2., 4.}. For maskgit, the temperature hyperparameter is
swept over {0.5,1.,2.,4.,8.,10.,12.,16., 20.,40.}.

D.3.3 Other Sampling Details

Final argmax update. We found empirically that applying a final update of the form

. \d
) = argmax pf),(af | 2,") (45)
T
foralld € {1,..., D} improves the results for the single network informed corrector experiments.

Our intuition is that this final update helps eliminate remaining noise and local errors from all
positions. When the base denoising model is stronger than the corrector model, as is the case when
the informed corrector is applied on top of MD4 predictors, this special update becomes unnecessary.

D.3.4 Ablation on confidence metrics.

We compared two confidence scoring schemes used in the informed corrector: the log-likelihood of the
predicted token and the margin between the top-1 and top-2 logits. As shown below (appendix D.3.4),
the margin-based confidence yields slightly better FID scores in both settings.

Model Confidence Type FID |
HollowDiff + informed corrector  log-likelihood 6.45
HollowDiff + informed corrector margin 6.26
MD4 + informed corrector log-likelihood 5.85
MD4 + informed corrector margin 5.78

Table 4: Comparison of log-likelihood vs margin-based confidence scores.

D.3.5 Generated Image Examples

We show some ImageNet samples taken using HollowDiff with informed correctors in figs. 6 to 8.
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Figure 6: Example informed corrector generations for the classes Pomeranian (259) and jack-o’-
lantern (607).
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Figure 7: Example informed corrector generations for the classes timber wolf (269) and home theater
(598).
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Figure 8: Example informed corrector generations for the classes seashore (978) and bolete (997).
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction clearly state the key contributions of the paper.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper includes a dedicated discussion of limitations in Section 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The assumptions underlying the Markov chain formulation, factorized transi-
tion rates, and score function approximations are clearly stated. Proofs or derivations are
complete and included in the appendices.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper describes the experimental setup in sufficient detail for reproducibil-
ity. Appendix C outlines the hollow transformer architecture, while Algorithm 1 gives a
step-by-step breakdown of the informed corrector sampling procedure. Hyperparameters
are provided or referenced for the key experiments, enabling reproduction of results relevant
to the main claims.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We plan to release the full codebase, including training scripts, model weights,
and instructions for reproducing all main experimental results, upon acceptance. The datasets
used (Text8 and ImageNet) are publicly available.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper describes the experimental settings for all evaluated tasks in suffi-
cient detail. Details to the experiments are provided in Appendices B—D.

Guidelines:

* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For the synthetic Markov chain experiments (Figure 2), the paper reports means
and standard deviations. For large-scale ImageNet evaluations, we follow common practice
in the generative modeling literature and report single-run FID, IS, and precision/recall
scores. While we do not include error bars for these metrics, this aligns with standard
conventions in prior work.
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8.

10.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Details on machine types and training time are described in the appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

 The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and affirm that our research
adheres to its principles.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]

Justification: While the paper is primarily foundational in nature, we acknowledge the
broader context in which improvements to generative models operate.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any pretrained models or datasets that pose high
risk for misuse. The primary contribution is methodological.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper uses the Text8 dataset and the ImageNet 256x256 dataset, both of
which are publicly available and widely used in the community.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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13.

14.

15.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: he paper does not release any new datasets, pretrained models, or other assets
at submission time.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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