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Estimating probability of failure in aerospace systems is a critical requirement for 
flight certification and qualification. Failure probability estimation involves resolving tails 
of probability distributions, and Monte Carlo sampling methods are intractable when 
expensive high-fidelity simulations have to be queried. We propose a method to use 
models of multiple fidelities that trade accuracy for computational efficiency. Specifically, 
we propose the use of multifidelity Gaussian process models to efficiently fuse models 
at multiple fidelity, thereby offering a cheap surrogate model that emulates the original 
model at all fidelities. Furthermore, we propose a novel sequential acquisition function based 
experiment design framework that can automatically select samples from appropriate 
fidelity models to make predictions about quantities of interest at the highest fidelity. 
We use our proposed approach in an importance sampling setting and demonstrate our 
method on the failure level set and probability estimation on synthetic test functions and 
two real-world applications, namely, the reliability analysis of a gas turbine engine blade 
using a finite element method and a transonic aerodynamic wing test case using Reynolds-
averaged Navier-Stokes equations. We show that our method predicts the failure boundary 
and probability more accurately and at a fraction of the computational cost compared 
with using just a single expensive high-fidelity model. Finally, we show that our sequential 
approach is guaranteed to asymptotically converge to the true failure boundary with high 
probability.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Flight certification by analysis is a new paradigm in which airworthiness certificates for aircraft and handling qualities 
compliance for aircraft subsystems can be obtained via calculations with quantifiable accuracy.1 This opens up possi-
bilities for leveraging physics-based high-fidelity models in aircraft design, certification, and qualification. However, the 
high computational costs associated with high-fidelity models necessitates the development of advanced mathematical 
methods that judiciously spend computational resources on problems where such models may have to be queried many 
(≥O(102) −O(106)) times.
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One such problem we are interested in is reliability analysis [36]. Specifically, we want to estimate probabilities of failure 
in aerospace subsystems, whose performance are governed by models that can be queried by perturbing some control 
parameter. Rigorous quantification of the probability of subsystem failure is a critical requirement for flight certification. 
Failure probability estimation (FPE) involves accurately resolving failure boundaries (contours or level sets) in the design 
space and tails of probability distributions. The popular Monte Carlo (MC) [15] sampling-based methods are intractable 
when expensive high-fidelity simulations have to be queried. Furthermore, the high dimensionality of the control parameters 
exacerbates the tractability issue. In this work we focus on a method that circumvents direct MC and instead seeks to 
develop a surrogate model of the mapping between the input parameters and the quantity of interest. Our hope is that a 
surrogate model can be constructed with far fewer queries to the expensive high-fidelity model, following which we use 
conventional variance-reducing sampling-based techniques for FPE.

Computational models typically include one or more customizable fidelity parameters that allow trading model accuracy 
for a gain in computational speedup. For example, the exact Navier–Stokes equations simulating fluid flows require numer-
ical mesh resolutions on the order of the fine Kolmogorov scale, which shares an inverse nonlinear power relationship to 
the flow Reynolds number [58], resulting in a large number of degrees of freedom that in turn makes the computational 
cost of evaluating such models intractable. However, filtering out the smaller scales, leading to simplified models such as 
Reynolds-averaged Navier–Stokes and large eddy simulations, significantly reduces computational cost for a (typically ac-
ceptable) loss of accuracy. In general, physics-based models governing conservation laws can be computationally simplified 
by using coarse-grained mesh resolutions and/or fewer solver iterations for convergence (in the iterative solver) to achieve a 
similar effect. We exploit the availability of models with tunable fidelities and propose multifidelity methods [57,21,23,56]
that can judiciously utilize the cost-accuracy trade-off in models to estimate rare-event probabilities in aerospace design.

Surrogate models for conservation laws can be efficiently constructed via reduced-order models [42,41,43,46] for state 
variables and general regression/interpolation techniques [44,45,37,38] for scalar quantities of interest (QoI). In this work we 
are interested in a setting where a data-driven surrogate model for the QoI is adaptively constructed; that is, starting with 
an initial seed sample set (observations of the QoI), the surrogate model is sequentially updated with new samples that 
are optimally chosen to improve the prediction of the failure boundaries in the design space. Furthermore, we account for 
the fact that our model of the subsystem has tunable fidelity parameters that trade predictive accuracy for computational 
cost. Therefore, our framework develops a surrogate model that is cost-aware while learning the relationships between 
the predictions between any two given fidelities. Additionally, the adaptive model construction chooses the appropriate 
control parameter and fidelity level to query at each step of the model-building process. For these reasons and since we are 
interested in reliability analysis with scalar QoI in this work, we use a Gaussian process (GP) [40] regression model to learn 
the mapping between the QoI and the augmented input-fidelity space.

The use of surrogate models for FPE is not new. Li and Xiu [26] show that a hybrid approach of using both surrogate 
models and high-fidelity function evaluations can lead to computationally cheap failure probability estimates. Moreover, 
they show that if the chosen surrogate model is of known accuracy, their proposed approach provides a consistent failure 
probability estimate (i.e., approaching the true function in the limit). Extending this work, Li et al. [27] show that the same 
hybrid approach can be used with importance sampling and a cross-entropy method to estimate biasing distributions. How-
ever, neither [26] nor [27] addresses the choice of high-fidelity model queries necessary to construct the surrogate model 
(that is, they do not actively train their surrogate model); furthermore they do not consider the availability of multiple-
fidelity models. Peherstorfer et al. [32] demonstrate the idea of using a surrogate model to construct biasing distributions 
for importance sampling (IS), but that does not include details on adaptively constructing the surrogate model.

In the context of using GP regression as surrogate models, a large body of work exists, of which we briefly review what 
we believe are most relevant to our work. Seminal work on using adaptive GP models for contour finding and FPE was 
performed by Ranjan et al. [39], who use Jones et al. [19]’s expected improvement framework to propose an improvement 
function that seeks to place points close (within a user-specified distance) to the target level set. They show that their 
acquisition function efficiently balances exploration and exploitation, and they prove that their approach asymptotically 
predicts the contour exactly. Bichon et al. [5] then modify the formulation of [39]; both [39] and [5] have essentially 
the same meaning. As we will show later, our framework uses the acquisition function from [5] (and hence indirectly 
[39])—which we consider single-fidelity acquisition functions—to develop multifidelity extensions. Indeed, our acquisition 
function can extend those beyond [5] and [39] to the multifidelity setting.

Other noteworthy works that propose an acquisition function for adaptive GP construction are as follows. Bect et al. [4]
propose a lookahead acquisition function using GP models, called stepwise uncertainty reduction. Echard et al. [10] use a 
sequential sampling strategy that greedily (myopically) seeks points with high probability of being in the failure domain. 
Picheny et al. [34] propose a weighted integrated mean-squared prediction error criterion, where the weight function is 
designed to be very high in regions where the GP mean is close to the target level set with high certainty, or when the 
GP uncertainty is high. Gotovos et al. [14] use GP to construct an acquisition function that picks the smallest distance to 
the target level set from one of the confidence bounds. They leverage the theoretical results of GP-upper confidence bound 
(UCB) [53] to derive a bound on the number of samples required to achieve a certain accuracy in resolving the level set. 
Dubourg et al. [9] use an adaptive Kriging surrogate model along with importance sampling to construct a quasi-optimal bi-
asing distribution. Similar to [26], they propose a hybrid approach for FPE that combines the use of both the true limit state 
function and its (cheap) surrogate prediction. Wang et al. [60] use GP to approximate the forward model. Then they use 
Bayesian experimental design to sequentially add points toward the contour estimation. They use Simultaneous perturbation 
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stochastic approximation (SPSA) [52] to appropriately optimize their stochastic acquisition function. More recently, Marques 
et al. [30] develop an entropy-based acquisition function that seeks to reduce the entropy of the failure contour. Further-
more, their method (CLoVER) allows for multiple information sources with varying costs of querying, and their acquisition 
function allows them to choose the information source. Their method, however, involves an integral in the input-dimension 
space, which can become intractable in higher dimensions. Recently, Cole et al. [7] improve upon [30] by developing a 
closed-form entropy expression for the contour that is (relatively) easier to optimize. While their method does not naturally 
include accounting for multiple information sources, they show that they outperform CLoVER on several problems.

Our work differs from the aforementioned work that use GP models in the following way. We propose the use of 
multifidelity GP [40] models to efficiently fuse models at multiple fidelity, where the fidelity space can be continuous 
or discrete. Even though [30] allows for multifidelity models, their approach depends on a Kennedy–O’Hagan [22]-like 
framework (see also [35]), where they learn a linear correction factor between each fidelity level and the highest-fidelity 
model. This has two drawbacks: (i) when the fidelity space is continuous, the approach can become intractable, and (ii) even 
for discrete fidelity spaces, they have to query each fidelity at a regular grid to learn the discrepancies. Our approach does 
not face either of these limitations. The method proposed in [24] involves the fusion of unbiased estimators from multiple 
fidelity models; however, the authors do not consider the choice of input and fidelities to query for an adaptive construction 
of the surrogate model, as we do. An adaptive construction of the surrogate model potentially results in a more judicious 
choice of input-fidelity pairs to query and thus a more parsimonious use of the computational resources. Furthermore, as 
stated previously, we propose a novel acquisition function that can provide a multifidelity extension to any single-fidelity 
acquisition function,2 for example, [39,5]. Our acquisition function optimization allows for sequentially selecting samples 
from appropriate fidelity models to make predictions about QoI in the highest fidelity. We use our proposed approach in 
an importance sampling setting, similar to [32], where biasing distributions are constructed with the cheap multifidelity 
surrogate model, to predict failure probabilities. We demonstrate our method on several synthetic test functions as well as 
two real-world experiments, namely, the static stress analysis of a gas turbine blade and the transonic flow past an aircraft 
wing. Our main contributions are summarized as follows:

1. Introduction of a generalized multifidelity acquisition framework that extends existing single-fidelity acquisition func-
tions in GP-based approaches for reliability analysis.

2. Introduction of a framework that applies to both discrete and continuous fidelity spaces.
3. Theoretical demonstration that our estimates are unbiased and our surrogate model is asymptotically consistent.
4. Introduction of novel multifidelity synthetic test functions that can be leveraged to benchmark multifidelity methods in 

general.
5. Demonstration of our method on synthetic as well as real-world application problems.

The remainder of the article is organized as follows. In Section 2 we provide the background and preliminaries including 
details about FPE and multifidelity GP models. In Section 3 we provide details of our method and discuss key theoretical 
properties in Section 4. In Section 5 we show results of our method demonstrated on the synthetic test functions and a 
real-world stress analysis of a gas turbine blade. We provide concluding remarks in Section 6.

2. Background and preliminaries

Let x ∈X ⊂Rd be the uncertain input to the function f : X →R. We assume that evaluations of f (x) are computation-
ally expensive. We define the limit state function g : R → R that operates on f (x); and we define failure to occur, without 
loss of generality, when g( f (x)) < 0. The failure level set is then defined as

C = {x ∈X : g( f (x)) = 0}. (1)

For example, for a given failure threshold a ∈R, g(x) = f (x) − a.

Remark 1. We restrict our analysis to affine limit state functions of the form g(x) = ρ f (x) − a, ρ ∈ R, a ∈ R, in order 
to preserve the Gaussianity of their sample paths, when we place a GP prior on f . This is not a restrictive assumption, 
however, because for nonaffine limit state functions we simply place a GP prior on g(x) instead of f (x).

2.1. Failure probability estimation

Consider the probability space (S, F, P ) = (X , B(X ), P ), where S denotes the sample space that in our setting is 
X ⊂Rd; B(X ) denotes the Borel sets in X ; and P denotes a probability measure. We model the uncertain parameter x as 
a random variable in Rd and assume that x is distributed according to the distribution Px , which has density qx . The failure 

2 although ones with a closed-form expressions suit us better.
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hypersurface defined by C divides the parameter space into a failure set F = {x : g( f (x)) ≤ 0} and safe set F ′ := X \F . We 
are interested in estimating the probability of failure pF that is defined by

pF =
∫

x∈F
dPx =

∫
x∈X

I{x∈F}dPx =
∫
X

I{x∈F}qx(x) dx, (2)

where I{x∈F} denotes the indicator function that takes the value 1 when x ∈ F and 0 otherwise. MC methods are often 
used to estimate pF ; the idea is to draw N independent and identically distributed (iid) samples of x, {xi, i = 1, . . . , N}, 
xi ∼Px and approximate pF as

pF ≈ pMC
F = 1

N

N∑
i=1

I{xi∈F} , (3)

where xi is the ith realization of x. The MC estimator is unbiased, as shown below.

E[pMC
F ] = 1

N

N∑
i=1

E[I{xi∈F}]

= 1

N

N∑
i=1

∫
X

I{x∈F}qx(x) dx = 1

N

N∑
i=1

pF = pF .

The variance of the MC estimator is given by

V (pMC
F ) = pMC

F (1 − pMC
F )

N
.

Using the approach described by (3) requires a large number of samples in order to obtain a failure probability estimate 
of desired accuracy. For instance, consider pF = 10−3 and a root mean-squared error in the estimate of 10−4 (and there-
fore a variance of 10−8). Then the number of samples necessary to achieve this accuracy via MC is ≈ 105. This could be 
prohibitively expensive in the reliability analysis of complex engineered systems with expensive forward models. A com-
mon means to (partially) circumvent this shortcoming is to employ an auxiliary distribution that concentrates the samples 
around the failure region [20,54]; this approach is referred to as importance sampling. Equation (2) can be equivalently 
written as

pF =
∫

x∈X
I{x∈F}

qx(x)

q′
x(x)

q′
x(x)dx = EP ′

x

[
I{x∈F}

qx(x)

q′
x(x)

]
(4)

where q′
x is the density of the biasing distribution P ′

x . The key idea is that samples drawn from the biasing distribution are 
more likely to be from the set F . From (4), the IS estimate of pF can be written as

pIS
F = 1

N

N∑
i=1

I{xi∈F}w(xi) , (5)

where w(xi) = qx(xi)

q′
x(xi)

are the importance weights and xi ∼P ′
x . The estimator in (5) is also unbiased, provided that q′

x(x) > 0

whenever I{x∈F} × qx(x) > 0. Let Q ⊂X := {x ∈X : I{x∈F} × qx(x) > 0}. Then

E[pIS
F ] = 1

N

N∑
i=1

E[I{xi∈F}w(xi)]

= 1

N

N∑
i=1

∫
X

I{x∈F}
qx(x)

q′
x(x)

q′
x(x) dx = 1

N

N∑
i=1

∫
Q

I{x∈F}
qx(x)

q′
x(x)

q′
x(x) dx

= 1

N

N∑
i=1

pF = pF .

As mentioned previously, we will construct the biasing distribution via a surrogate model in order to keep the computational 
costs tractable. As we will show later, similar to the construction of our surrogate model, our biasing distribution is also 
adaptively improved. We now introduce the surrogate modeling technique via GP regression.
4
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2.2. Multifidelity Gaussian process regression

Crucially, we assume that f (x) is approximated by models f̂ (x, s), where x are common inputs to all the models and 
s ∈S ⊂R is a tunable fidelity parameter for each model. For the sake of simplicity, in this work we set s to be scalar valued 
and without loss of generality S = [0, 1], where s = 1 and s = 0 represent the model at the highest and lowest fidelity, 
respectively; therefore,

f̂ (x,1) := f (x).

Additionally, we assume there is known a cost function c(s) : S → R, which is monotonic increasing in s and models 
the computational cost of querying f̂ at a specific fidelity. Note that we assume c(·) is independent of x for the sake of 
simplicity, but our framework applies to more general c(x, s) as well. Overall, we are interested in computing (4) by querying 
f̂ , while keeping the overall cost lower than computing (4) by querying f (x) alone. Our multifidelity method depends on 
learning a GP model that maps the augmented input-fidelity space (x, s) ∈ X ×S to output quantities of interest f̂ (x, s).

Remark 2. We mention that by assuming a monotonic cost function c(s) and the fact that fidelity increases as s increases in 
[0, 1], we assume that a hierarchy of fidelities exists among the set of models. However, such a hierarchy is not a necessary 
condition for our method to be applicable. In the absence of any known hierarchy among the models, the highest fidelity 
can be chosen as arg max

s∈S
c(s). If c(s) is unknown a priori, it can be learned, for example, by placing another GP prior on it 

and making a few observations.

We assume that we can make evaluations of the function f̂ at a given x and fidelity level s. That is,

ŷi = f̂ (xi, si), i = 1, . . . ,n. (6)

The key idea then is to specify GP prior distributions on the f . That is, f̂ (x, s) ∼ GP
(
0,k((x, s), (x′, s′))

)
. The covariance 

function (or kernel) k captures the correlation between the observations in the joint (x, s) space; here we use the product 
composite form given by k((x, s), (x′, s′)) = kx(x, x′; γ x) × ks(s, s′; γ s), where γ x ∈ Rd+ and γ s ∈ Rd+ parameterize the co-
variance functions for x and s, respectively. We estimate the GP hyperparameters � = {γ x, γ s} from data by maximizing the 
marginal likelihood. We choose an anisotropic Matérn-type kernel for both kx and ks . The posterior predictive distribution 
of the output Y , conditioned on available observations from the oracle, is given by [40]

Y (x, s)|Dn,� ∼ GP(μn(x, s),σ 2
n (x, s)), Dn := {(xi, si), ŷi}n

i=1

μn(x, s) = k�
n [Kn]−1yn

σ 2
n (x, s) = k((x, s), (x, s)) − k�

n [Kn]−1kn,

(7)

where kn is a vector of covariance between (x, s) and all observed points in Dn; Kn is a sample covariance matrix of 
observed points in Dn; I is the identity matrix; and yn is the vector of all observations in Dn . Equation (7) is then used as 
a surrogate model for f in FPE. Note that μn and σ 2

n are the posterior mean and variance of the GP, respectively, where the 
subscript n implies the conditioning based on n past observations. Our surrogate model for the limit state function then is 
given as

g̃n(x, s) := g(μn(x, s)).

Remark 3. Note that we assume our models at all fidelities are deterministic and observations are noise-free. Estimating 
failure probabilities with noisy observations is an interesting problem, but outside the scope of our work.

Remark 4. For the remainder of this manuscript, we assume that the high fidelity model f̂ (x, 1) = f (x) is our ground truth. 
On the other hand, our approach naturally extends to situations involving disparate information sources, where the ground 
truth could be a physical experiment.

An important component of our proposed method is that the data required to build the surrogate model is adaptively 
selected. This ensures that the inputs and fidelities are judiciously chosen to be tailored to our specific goals. We call this 
adaptive approach “sequential experimental design,” which we discuss next.

2.3. Acquisition-based sequential experiment design

We use principles from Bayesian optimization (BO) [50,12,51] to sequentially update the GP to improve our knowledge 
about our goal—in this case, estimation of C and the subsequent FPE. Akin to BO, we proceed by defining an acquisi-
tion function α(x, s), in terms of the GP posterior that is optimized (typically maximized) to select—given previous n
5
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Algorithm 1: Generic acquisition-based sequential design.

1 Given: Dn = {(xi , si), ̂yi}n
i=1, total budget q, and GP hyperparameters �

Result: (xq, ̂yq)

2 for i = n + 1, . . . , q, do
3 Find xi , si ∈ arg max

(x,s)∈X×S
α(x, s) (acquisition function maximization)

4 Observe ŷi = f (xi , si)

5 Append Di =Di−1 ∪ {(xi , si), ̂yi}
6 Update GP hyperparameters �

Table 1
Parametric representation of existing acquisition functions via our framework (8).

ω h(x, s) vn(x, s) Acquisition function

{a, η} δ2(x, s) − min{(y(x, s) − a)2, δ2(x, s)} E Ir(x, s) Ranjan et al. [39], see (13).
{a, η} δ(x, s) − min{|(y(x, s) − a)|, δ(x, s)} E Ib(x, s) Bichon et al. [5], see (15).

observations—the next point xn+1 at sn+1, and the process continues until a budget for computation is reached; see Al-
gorithm 1. The choice of α(x, s) is key to the performance of the quality of the sequential point selection, which we discuss 
in the next section.

Naturally, the acquisition function is designed according to the specific needs of the sequential process. Classical acqui-
sition functions for optimization include the probability of improvement (PI) [25], the expected improvement (EI) [19,31], 
and the GP upper confidence bound (UCB) [53]; these approaches work with a probabilistic estimate of the optimum via 
the GP. Other acquisition functions for optimization include entropy-based approaches [61,16,59]. Similarly, acquisition func-
tions for active learning (purely learning the function f (x)) also exist [28,6]. Therefore, acquisition functions to learn a level 
set (e.g., failure boundary) can also be defined, such as the expected level set improvement of Ranjan et al. [39] and Bi-
chon et al. [5], entropy-based approaches of Cole et al. [7] and Marques et al. [30], stepwise uncertainty reduction by Bect 
et al. [4], and other methods as in Picheny et al. [34].

In all the aforementioned approaches for failure level set estimation, we point out that application to multifidelity mod-
els is not straightforward. Although in [30] the authors show their applicability with multiple information sources, that 
requires learning individual discrepancies between models at each fidelity and the highest fidelity model. This can be com-
putationally demanding in high-dimensional problems or when some of the lower-fidelity models are not necessarily cheap 
(compared with the highest-fidelity models). Consequently, such methods are restricted to discrete fidelity spaces with small 
cardinality. Furthermore, outside of the reliability literature, autoregressive approaches such as that of [22] and [33] suffer 
from the same limitation. Therefore, in this work we propose a new acquisition approach that applies to both discrete 
and continuous fidelity spaces. Additionally, our approach can extend any existing acquisition function to the multifidelity 
setting, as we will show later. We provide more details in the following section.

3. Proposed method

3.1. Multifidelity acquisition functions

Drawing from the work of Renganathan et al. [44], where they propose an acquisition function for time-dependent 
problems with a finite horizon, we define a multifidelity value function framework that we use to develop our multifidelity 
acquisition function. Given the data from n observations Dn , we define the value function υ by

υn(x, s;ω) := Ey∼Y |Dn [h(y(x, s);ω)] , (8)

where h is a scalar-valued function, ω ∈Rp parametrizes h, Y |Dn is the GP posterior given n observations, and y(x, s) is a 
sample path realized from Y |Dn . The reasoning behind defining a value function as in (8) is as follows:

1. we can quantify the utility/value at the highest fidelity (our ground truth) by simply setting s = 1, i.e.

υn(x,1;ω) : utility at the highest fidelity

2. computing this utility is cheap because it depends only on the posterior multifidelity GP
3. (8) generalizes several of the existing (single-fidelity) acquisition functions in GP-based reliability analysis, and finally
4. as we will show below, (8) allows a multifidelity extension of any given single fidelity acquisition function.

For example, some of the existing single fidelity acquisition functions for GP-based reliability analysis can be expressed as 
special cases of (8) as shown in Table 1, where a is the failure threshold and δ2(x) = ησ 2(x), η ∈ R+ defines the width 
6



S. Ashwin Renganathan, V. Rao and I.M. Navon Journal of Computational Physics 472 (2023) 111698
of the uncertainty band around the GP posterior mean prediction. Then, the generalized multifidelity acquisition function is 
defined as

α(x, s) =
∫

max
x′∈X

⎡
⎢⎣ υ(x′,1;ω)︸ ︷︷ ︸

value at highest fid.

| Dn︸︷︷︸
prev. obs.

⋃
{ (x, s), y︸ ︷︷ ︸

candidate obs.

}
⎤
⎥⎦ qy(y|Dn) dy, (9)

where qy(y|Dn) is the probability density of the GP posterior distribution conditioned on Dn . Notice that in the inner 
maximization we use υ(·, 1); this indicates that we place our value on the highest fidelity. In essence, (9) computes the 
expected value of the maximum value function at the highest fidelity due to a candidate input-fidelity pair (x, s), where the 
expectation is with respect to the posterior GP. We write (9) more concisely as

α(x, s) =En

[
max
x′∈X

υn,1(x′,1;ω)

]
. (10)

In (10), note that υn,1 = υ|Dn
⋃{(x, s), y}, which is the value function given the union of Dn and the n + 1th observation 

being drawn from the GP posterior Y |Dn . In general, (10) is not guaranteed to admit a closed-form expression. Hence we 
make the MC approximation

α(x, s) ≈ α̂(x, s) := 1

N

N∑
j=1

max
x′∈X

υ
j

n,1(x′,1), (11)

where υ j
n,1(x′, 1) = υ(x′, 1)|Dn

⋃{(x, s), y j} with the N iid samples {y j, ∀ j = 1, . . . , N} drawn from Y |Dn at (x, s).

The inner maximization in (11) can be approximated by evaluating the value function υn,1 on a discrete set X̂ and the 
maximization approximated as (for x̂i ∈ X̂ )

max
x′∈X

υ
j

n,1(x′,1) ≈ max
i

υ
j

n,1(x̂i,1).

As noted above, the value function is a function of the GP only, and hence its evaluation on X̂ is computationally cheap. 
We now sequentially choose points by maximizing the cost-normalized acquisition function defined as

(xn+1, sn+1) = arg max
(x,s)∈X×S

α̂2(x, s)

c(s)
. (12)

In (12), since we normalize the acquisition function by the cost of evaluations c(s), the optimization penalizes decisions at 
high s, preventing expensive high-fidelity evaluations unless they offer a significant increase in the maximum value function 
compared with lower fidelities. For this reason, we consider our approach cost-aware and thus name it CAMERA: cost-aware, 
adaptive, multifidelity, efficient reliability analysis. We now discuss the choice of the value function.

3.2. Choice of value function

As previously mentioned, we propose a multifidelity acquisition function that provides a framework to extend exist-
ing acquisition functions, defined for a single-fidelity setting, toward a multifidelity setting. Therefore, while the choice of 
the value function can be practically any existing acquisition function, for the experiments in this work we choose the 
improvement-based acquisition functions for contour estimation by [39] and [5]. Ranjan et al. [39] propose the following 
improvement function, which we extrapolate to the multifidelity setting as

Ir(x, s) = δ2(x, s) − min{(y(x, s) − a)2, δ2(x, s)}, (13)

where a is the target level and δ2(x, s) = ησ 2(x, s), η ∈ R+ defines the width of the uncertainty band around the GP 
posterior mean prediction. The intuition behind (13) is that improvement is defined as getting points closer to the target 
level set or in places where the uncertainty of the GP predictions is large, while still being within a certain confidence region
of the GP prediction. Consequently, Ir(x) = 0, when (y(x) − a)2 > ε2(x) and therefore regions far away from the potential 
contour locations are avoided. Bichon et al. [5] modify (13) as

Ib(x, s) = δ(x, s) − min{|(y(x, s) − a)|, δ(x, s)}, (14)

which results in a closed-form expression for the expected improvement

E Ib(x, s) =δ(x, s)
[
	(z+) − 	(z−)

]− σ(x, s)
[
2φ(z) − φ(z−) − φ(z+)

]
+ (μ(x) − a)

[
2	(z) − 	(z−) − 	(z+)

]
,

(15)
7
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where z = a−μ(x,s)
σ (x,s) , z± = a±−μ(x,s)

σ (x,s) , and a± = a ± δ(x, s). Note that (13) and (14) practically have the same meaning, but (14)
leads to a more convenient analytical form upon taking the expectation, as opposed to that in (13). We therefore propose 
to specify our value function, also extending it to the multifidelity setting, as

υ(x,1) = E Ib(x,1), (16)

and define our acquisition function as follows:

α(x, s) =Ey∼Yn

[
max
x′∈X

E Ib(x′,1)|Dn

⋃
{(x, s), y}

]
, (17)

which essentially quantifies the average value of the maximum E Ib at the highest fidelity (s = 1) due to a candidate decision-
fidelity pair (x, s). Note that we extend the acquisition function in [5] to general multifidelity cases, where the fidelity space 
could be continuous or discrete. The acquisition function in (17) is then plugged into Algorithm 1 to obtain a final surrogate 
model g̃q(x, 1) of f̂ (x, 1).

3.3. Importance sampling

The last step of our approach is the estimation of the failure probability. The multifidelity surrogate model that is 
adaptively constructed is now used to construct a biasing distribution. This distribution is then used to generate a sample 
set using which the failure probability is estimated.

Let q′ (n)
x be the density of the biasing distribution, P ′ (n)

x , after n rounds of updating our multifidelity surrogate model. 
Then, the importance sampling estimate is given by

pIS
F = 1

N

N∑
i=1

I{xi∈F}
q(xi)

q′ (n)
x

, (18)

where xi, i = 1, . . . , N are iid samples drawn from P ′ (n)
x .

3.4. Overall CAMERA algorithm

We are now ready to summarize our overall algorithm. We use a Gaussian mixture model (GMM) [18] to learn the 
biasing density q′ (n)

x from a sample set generated from the GP. For all the cases, we set the number of components of the 
GMM to 25 and restrict the covariance matrix to be diagonal. A few trials indicated that these settings are sufficient to get a 
good approximation to the biasing density across all the experiments. The expectation-maximization algorithm [8,62] is used 
to learn the hyperparameters of the GMM. Once fit, this distribution is sampled to generate a biasing set that is evaluated 
on the high-fidelity model f̂ (·, 1) to compute the IS estimate of failure probability. The exact steps are summarized in 
Algorithm 2.

Note that M in step 6a in Algorithm 2 can be picked arbitrarily large since it does not involve any high-fidelity model 
queries, only the surrogate model. On the other hand, N must be tractable since it involves high-fidelity queries. Instead of 
directly setting M , we first uniformly sample X with 107 samples and filter out the sample set to obtain X ′ as in step 2 
using the surrogate model.

4. Theoretical properties

Recall that our surrogate-based IS estimator is unbiased. We now show that our adaptive surrogate model is consistent; 
that is, with high probability the predicted level set converges to the true level set asymptotically. We first demonstrate that 
the points selected by maximizing our multifidelity acquisition function (12) asymptotically reduce the GP posterior variance 
to 0 everywhere; see Lemma 2 and Lemma 3. Then, in Theorem 1, we show that our surrogate model is asymptotically 
consistent.

We begin by making a smoothness assumption on our unknown function f , followed by an assumption on the limit 
state function.

Assumption 1. We assume that the sample paths drawn from the GP prior on f are twice continuously differentiable. Such a GP is 
achieved by choosing the covariance kernel to be four times differentiable [13, Theorem 5], for example, the squared-exponential or 
Matérn-class kernel. Then, the following holds (for L ∈R+):

Pr
[| f (x) − f (x′)| > L‖x − x′‖]≤ e−L2/2.

Assumption 2. The limit state function g is an affine function of f , defined as g( f (x)) = ρ f (x) − a. W.l.o.g., we pick ρ = 1.
8
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Algorithm 2: CAMERA: Cost-aware Adaptive Multifidelity Efficient Reliability Analysis.

1 Input:

• Surrogate model: Multifidelity GP posterior of f , GP(μn(x, s), σ 2
n (x, s)) and observed data Dn .

• Cumulative cost Cn =∑n
j=1 c(s j), total budget B .

• High-fidelity sample size N .
• Biasing sample size M .

Result: pIS
F

2 while Ci ≤ B, ∀ i = n + 1, . . ., do

1. Find xi , si ∈ arg max
(x,s)∈X×S

α̂(x, s)/c(s) # acquisition function maximization

2. Observe ŷi = f (xi , si) # new multifidelity observation
3. Cumulative cost Ci = Ci−1 + c(si)

4. Append Di = Di−1 ∪ {(xi , si), ̂yi} # append data set
5. Update GP hyperparameters � # recompute GP hyperparameters

end
Let q > n be the last iteration of updating the surrogate model.

6. Fit a biasing distribution P ′ (q)
x with density q′ (q)

x

(a) Obtain a sample set of cardinality M , using the multifidelity surrogate model at s = 1:

X ′ = {xi ∈ X : g̃q(xi ,1) − a = μq(xi,1) − a ≤ 0, i = 1, . . . , M}.
(b) Fit a GMM with X ′ to obtain the biasing distribution P ′ (q)

x with density q′ (q)
x .

7. Obtain a biasing sample set

X ′
biasing = {xk ∼ Ī′q

x , k = 1, . . . , N}.
8. Compute indicator function (with high fidelity samples) and IS weights

III = {I{xk∈F}}, w =
{

qx(xk)

q′ (q)
x (xk)

}
, k = 1, . . . , N,

9. compute the IS failure probability estimate

pIS
F = III�w

N

First, we show that our proposed two-step lookahead acquisition function will never choose the same point twice. We 
present this in Lemmas 1 and 2.

Lemma 1. Without the max operator in (9), the multifidelity acquisition function reduces to the value function. That is,

Ey[υ(x′,1)|Dn

⋃
{x, y}] = υ(x′,1)|Dn.

Proof. Let us write

Ey[υ(x′,1)|Dn

⋃
{(x, s), y}] = Ey(x,s)[υn(x′,1)|y(x, s)],

where υn(·, ·) = υ(·, ·)|Dn . Using the definition of the value function, we have

Ey(x,s)[υn(x′,1)|y(x, s)] =Ey(x,s)[Ey(x′,1)[h(y(x′,1),ω)]|y(x, s)]
=Ey(x,s)[Ey(x′,1)[h(y(x′,1),ω)|y(x, s)]]
=Ey(x′,1)[h(y(x′,1),ω)]
=υn(x′,1). �

(19)

Lemma 2. ∀i, j ∈ {1, . . . , n}, (xi, si) �= (x j, s j), where (xi, si) and (x j, s j) are the input-fidelity pairs that maximize α(x, s)|Di−1 and 
α(x, s)|D j−1 , respectively, and hence are points previously observed by the algorithm.

Proof. For a given (x, s) ∈ X × S , let σ 2
n (x, s) = 0; in other words, a noise-free observation was previously made at (x, s). 

Then,
9
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α(x, s) =Ey(x,s)[max
x′∈X

υ(x′,1)|{(x, s), y(x, s)}] = max
x′∈X

υ(x′,1)|{(x, s),μn(x)} = max
x′∈X

υ(x′,1),

which follows from the fact that y(x, s)|(σ 2
n (x, s) = 0) = μn(x, s) and that the value function conditioned on a previously 

observed point is unchanged. Now consider a candidate point (i.e., an unobserved point) (x′′, s′′) ∈ (X ×S)\(x, s),

α(x′′, s′′) =Ey(x′′,s′′)[max
x′∈X

υ(x′,1)|{(x′′, s′′), y(x′′, s′′)}] ≥ max
x′∈X

υ(x′,1) = α(x, s),

where the inequality follows from Jensen’s inequality [47, Ch. 3] and we have also used Lemma 1. Furthermore, the equality 
holds only if (x, s) = (x′′, s′′) or σ 2

n (x, s) = 0 = σ 2
n (x′′, s′′), and therefore (x, s) �= (x′′, s′′), since (x′′, s′′) is unobserved and 

hence σ 2
n (x′′, s′′) > 0. �

Now, using Lemma 2, we will show that the multifidelity acquisition strategy reduces the GP posterior variance to 0 at 
s = 1, ∀x ∈X .

Lemma 3. Let {xi}, i = 1, . . . , n be a sequence of points selected via our multifidelity acquisition strategy. Then,
limn→∞ supx∈X σ 2

n (x, 1) = 0.

Proof. W.l.o.g., let k((x, s), (x, s)) = 1. Recall that the posterior variance of the GP is given by

σ 2
n (x, s) = k((x, s), (x, s)) − k�

n K−1
n kn.

Note that as n → ∞, and if Lemma 2 holds, then kn → K:,i
n , where by K:,i

n we mean the ith column of Kn , i ∈ [n], and 
therefore k�

n K−1
n = ei , where ei is an n-vector with 1 at the ith location and 0 elsewhere. Then

lim
n→∞σ 2

n (x,1) = 1 − K:,i �
n ei = 1 − k((xi,1), (xi,1)) = 0. �

We are now ready to show that with high probability, the predicted failure level set via our multifidelity surrogate 
model converges to the true failure level set. For this purpose we assume a discrete set C̃ ⊂ C and show that the absolute 
difference between the surrogate prediction at C̃ and the true failure level set is bounded with high probability.

Theorem 1 (Asymptotic consistency). Let δ ∈ (0, 1) and Assumptions 1 and 2 hold, with L2 = 2 log
(

2
δ

)
. Let C̃ denote a discretization 

of C with |C̃| < ∞, where we evaluate the true failure boundary. Let ε ≥ 0, and an =
√

2 log(bn|C̃|)/δ, where 
∑∞

n=1 1/bn = 1. Then 
the predicted failure level set converges to the true failure level set with high probability; that is, the following holds:

Pr
[
∀x ∈ X , lim

n→∞ |g( f (x,1)) − g(μn−1(x,1))| ≤ ε
]

> 1 − δ.

Proof. The proof is based on [53], but we differ in the choice of constants. We first present a simple identity that bounds 
the probability that a Gaussian random variable is greater than some value. Given r ∼ N (0, 1) and c > 0, consider the 
following:

Pr(r > c) =
∞∫

c

1√
2π

e−r2/2dr = e−c2/2

∞∫
c

1√
2π

e−(r−c)2/2e−c(r−c)dr

≤e−c2/2

∞∫
c

1√
2π

e−(r−c)2/2dr ≤ 1

2
e−c2/2,

(20)

where the second line is due to the fact that 0 ≤ e−c(r−c) ≤ 1 for r ≥ c and c > 0 and the last line from the fact that the 
integrand is the density of N (c, 1). Using this result and the prior assumption that the unknown function f has a GP prior, 
we state, with c = an and a fixed xi ∈ C̃ ,

Pr [|g( f (xi,1)) − g(μn−1(xi,1))| > anσn−1(xi,1)] ≤1

2
e−a2

n/2 = δ

2bn|C̃| . (21)

Applying the union bound ∀i, we get
10
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Pr
|C̃|⋃
i=1

|g( f (xi,1)) − g(μn−1(xi,1))| >anσn−1(xi,1) ≤

C̃∑
i=1

Pr [|g( f (xi,1)) − g(μn−1(xi,1))| > anσn−1(xi,1)]

≤
C̃∑

i=1

δ

2bn|C̃| = δ

2bn
.

Now we apply the union bound ∀n:

Pr

[
∀x̃ ∈ C̃,

∞⋃
n=1

|g( f (x̃,1)) − g(μn−1(x̃,1))| > anσn−1(x̃,1)

]
≤

∞∑
n=1

δ

2bn
= δ

2
. (22)

We would like to extend the proof to a general x ∈ X . For some x ∈X , let x̃ denote a point ∈ C̃ that is nearest (in Euclidean 
distance) to x. Then, per Assumption 1 and by setting L2 = 2 log

(
2
δ

)
, the following statement holds:

Pr

[
|g( f (x,1)) − g( f (x̃,1))| >

√
2 log

(
2

δ

)
‖x − x̃‖

]
≤ δ

2
. (23)

Combining (22) and (23), the following statement holds:

Pr

[
∀x ∈X ,∀n, |g( f (x,1)) − g(μn−1(x̃,1))| ≤ anσn−1(x,1) +

√
2 log

(
2

δ

)
‖x − x̃‖

]
> 1 − δ.

From Lemma 3, the limn→∞ supx∈X σn−1(x, 1) = 0, and thus

Pr
[
∀x ∈ X , lim

n→∞|g( f (x,1)) − g(μn−1(x̃,1))| ≤ ε
]

> 1 − δ,

where ε =
√

2 log
(

2
δ

)
‖x − x̃‖. �

5. Numerical experiments

We first demonstrate our proposed method on synthetic test functions of varying dimensions in Section 5.1 and then on 
two real-world applications: a gas turbine blade stress analysis test case using finite element analysis in Section 5.2 and a 
transonic wing aerodynamics test case using a finite volume method in Section 5.3. Our goal is to compare the multifidelity 
predictions of the failure probability against the predictions with the high-fidelity model only. For the synthetic test cases 
and the gas turbine blade test case, we estimate the true failure probability using a naive MC with a set of points drawn 
uniformly at random from X ; note that we use this estimate as the ground truth. Then we compute the failure probability 
error as |pF−pIS

F |
pF

. For the transonic wing test case, the true failure probability is unknown and is prohibitive to compute; 
we therefore report only the comparative predictions between single fidelity and multifidelity.

For all the experiments, we provide a set of seed points Dn = {(xi, si), yi, i = 1, . . . , n}, selected via a randomized Latin 
hypercube design, to start the algorithm. Note that we start both the single-fidelity and multifidelity runs with the same 
budget of information; therefore, for any given experiment, the n for single-fidelity and multifidelity runs are different 
in order to maintain the same total computational cost with which we start the experiment. Naturally, whereas for the 
multifidelity experiments the seed points are distributed uniformly in S , for the single-fidelity experiments the seed points 
are constrained to S = {1}. All the synthetic experiments are repeated a total of 20 times with randomized starting seed 
points. The turbine stress analysis test case is repeated only 5 times, keeping in consideration the higher computational cost 
of this experiment. There is no repetition in the transonic wing test case because that would be computationally prohibitive.

For all the experiments, the following cost model is assumed:

c(s)/c0 = c2 + exp (−c1 × (1 − s)) ,

where c0 is a normalizing constant that is required to ensure that the acquisition function optimization is not biased by the 
actual costs of the models; note that c0 is also the cost of the high-fidelity (s = 1) model, for which we fix c0 = 500. The 
c1 > 0 determines the steepness of the cost model; we set c1 = 10 for all the experiments. Finally, c2 > 0 is a constant to 
ensure that the cost model is bounded away from zero and is roughly the cost of the lowest-fidelity model ( f̂ (·, 0)); we 
fix c2 = 0.1. We note that our cost model—by virtue of setting c1 = 10—is designed to emphasize the disparity between 
11
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Fig. 1. Multifidelity cost model c(s) with c1 = 10, which emphasizes the cost disparity across fidelities as one approaches s = 1.

the computational costs of lower- and higher-fidelity model queries; see Fig. 1. In Fig. A.17 we show the effect of the cost 
model with varying c1 and discuss its effect on the predictions.

We evaluate our predictions qualitatively for the 2D cases, in other words, by comparing the failure level sets estimated 
via the final GP mean μq(x, 1) against the true level sets in contour plots. For all the synthetic cases (including the 2D cases), 
we then compute the error in failure probability, as mentioned previously. The true failure probability is estimated via a 
naive MC with N = 106 points sampled uniformly from X . For the turbine case, we first evaluate the high-fidelity model 
at a total of 150 parameter snapshots and use the observed QoIs to construct a radial basis function (RBF) interpolant. We 
then perform a naive MC on the RBF interpolant to obtain the true pF . We begin by discussing the synthetic experiments 
in the next section.

5.1. Synthetic experiments

We introduce several new multifidelity test functions that can be used to benchmark multifidelity methods beyond 
the scope of this work. Specifically, we introduce the 2D multifidelity multimodal function [5], the 2D multifidelity four-
branches function [49], and the 3D multifidelity Ishigami function [17]. Additionally, we use the 6D multifidelity Hartmann 
function provided in [55]. The specifics of these test functions are discussed as follows.

5.1.1. 2D multimodal function
We extend the test function in [5] to multifidelity setting as shown in (24),

f (x, s) = (x2
1 + 4)(x2 − 1)

20
− s × sin

(
5x1

2

)
− 2, (24)

where x = [x1, x2], the domain X = [−4, 7] × [−3, 8], and the second term in the right-hand side introduces a fidelity 
dependence. This simple extension results in a correlated fidelity dependence, which is continuously differentiable in X ×S; 
see Fig. 2 for snapshots.

5.1.2. 2D multifidelity four-branches function
A system with four distinct component limit-states [49] is a commonly used test problem in reliability analysis to 

demonstrate the efficacy of the algorithms in the presence of multiple failure regions. Here, in contrast to (24), we introduce 
fidelity by making a coordinate transformation as xi = x′

i − a0 × s, where a0 ∈R. The response function can be written as

f (x, s) = min

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3 + 0.1(x′
1 − x′

2)
2 − x′

1+x′
2√

2
,

3 + 0.1(x′
1 − x′

2)
2 + x′

1+x′
2√

2
,

x′
1 − x′

2 + 7√
2
,

x′
2 − x′

1 + 7√
2
.

(25)

and x′
i = xi − 5.0 × s, i = 1,2,3, (26)

where x = [x1, x2] and X = [−8, 8]2. The multifidelity extension we provide offers a translation of the level sets across 
fidelities, where we set a0 = −5.0, and is shown in Fig. 3.
12
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Fig. 2. Multifidelity multimodal function; the thick black line represents the limit state level set g( f (x, ·)) = 0.

Fig. 3. Multifidelity four-branches test function. The thick black line represents the failure boundary g( f (x)) = 0.

5.1.3. 3D multifidelity Ishigami function
We modify the 3D Ishigami test function [17], similar to the four-branches function, by introducing a shift in the variables 

using the fidelity parameter s, as shown in (27). Note that the input x is normalized to be in [0, 1]3 before introducing the 
translation:

f (x, s) = sin(x1 − s) + 7.0 sin2(x2 − s) + 0.1x4
3 sin(x1 − s), (27)

where x = [x1, x2, x3] and X = [−π, π ]3. The resulting function is shown for two slices x3 = −π and x3 = 0 in Fig. 4.

5.1.4. 6D Hartmann function
For a higher-dimensional test function, we use the “augmented” Hartmann 6D function introduced in [3] and restated 

below:

f (x, s) = − (β1 − 0.1 ∗ (1 − s)) ∗ exp

⎛
⎝−

6∑
j=1

A1 j(x j − P1 j)
2

⎞
⎠−

4∑
i=2

βi exp

⎛
⎝−

6∑
j=1

Aij(x j − Pij)
2

⎞
⎠ , (28)

where x = [x1, . . . , x6] and X = [0, 1]6 and

A =

⎡
⎢⎢⎣

10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

⎤
⎥⎥⎦

and
13
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Fig. 4. Multifidelity extension of the Ishigami [17] test function.

Fig. 5. Histograms of the high-fidelity output f̂ (·, 1) of the multifidelity 3D Ishigami (left) and 6D Hartmann test functions. Vertical lines indicate failure 
thresholds.

P =

⎡
⎢⎢⎣

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

⎤
⎥⎥⎦ .

For the 2D test functions previously discussed, the failure threshold was set as a = 0. For the Ishigami and Hartmann 
functions, we show the histogram of the output at s = 1 along with the failure thresholds (vertical lines), which are set to 
a = −9.0 and a = −2.0, respectively, in Fig. 5; these thresholds were chosen particularly to make the failure probabilities on 
the order of 1%.

The results of the 2D test functions are shown in terms of the predicted contours in Fig. 6 and Fig. 7; in both figures, 
whereas the true level set is plotted in the red dashed-dotted line, the background (filled contours) shows the final GP 
posterior mean μq(x, 1) with the predicted level set as the thick black line. We hope that readers are able to visually 
compare the predictions against the true failure boundary. Note that in both figures we show only the predictions of one 
of the twenty random repetitions. Whereas for the multimodal function the predictions from the single- and multifidelity 
approaches are similar, the multifidelity achieves this prediction with a computational cost that is more than 45% cheaper. 
For the four-branches test function, the prediction of the multifidelity approach is visually much better than that of the 
single-fidelity approach, albeit using only half the computational cost.

We use the contours to provide a visual interpretation of the results, since they are feasible for the 2D cases. For a quan-
titative evaluation, however, we also show the error in computing the failure probability. The absolute errors in computing 
14
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Fig. 6. Results of the 2D multimodal test function; red dash-dotted line represents the true level set. Cost for multifidelity prediction is 30, 010 and for 
single-fidelity prediction 55, 000. Both figures share the same colormap. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

the failure volume are shown in Fig. 8 for all the synthetic test functions. We run both the single- and multifidelity exper-
iments for 100 iterations after providing them with seed samples, as previously mentioned. In all four cases, we observe 
that the multifidelity approach is able to predict the failure volume with greater accuracy compared with the single-fidelity 
approach, for a certain computational budget. In order to establish the utility of the adaptive nature of our proposed algo-
rithm, we also compare our predictions with a “non-adaptive” Latin hypercube design. In Fig. 8, we show the predictions 
from a non-adaptive design (horizontal dashed line) with a total budget of the n seed points plus the 100 used in each 
experiment. This way, we keep the budget consistent with each experiment and repeat this 20 times to randomize the se-
lection of the Latin hypercube points; Fig. 8 shows the average of the repetitions. We observe that the non-adaptive design 
leads to a worse prediction of the failure probability compared to CAMERA for the same budget. This is intuitive because a 
(space-filling) Latin hypercube design may provide good coverage of X but can fail to resolve the failure boundary which is 
critical to fitting a good biasing density and hence to a good estimate of the failure probability. On the other hand, CAMERA
attempts to adaptively select points that would best predict the failure boundary at the highest fidelity level.

In addition to the FPE, we are interested in observing how the CAMERA algorithm balances the trade-off between accu-
racy and cost across the fidelity space. In this regard, we show the distribution of the number of queries to models at each 
fidelity level, across all the 100 adaptive selections, in Fig. 9, where all the 20 repetitions are overlaid on top of each other. 
We observe that when there is high correlation between the low and high-fidelity models, then the algorithm exploits this 
to obtain most samples from the lowest fidelity model, e.g., Multimodal, Four branches, and Ishigami functions. For these 
test functions, only a few queries at the intermediate fidelities were necessary. Most of the evaluations are at s = 0 (lowest 
fidelity) and s = 1 (highest fidelity). In the case of the Ishigami test function, which also has the rarest failure probability, 
the algorithm has most queries at s = 1, with queries at intermediate fidelity levels almost uniformly distributed. Due to 
the lack of sufficient correlation between the high and low fidelity levels, the algorithm is unable to exploit the cheaper 
information as in the other experiments. However, notice that across all the experiments, the highest fidelity model is 
queried only about 25% of the time. When sufficient correlations exist, the lowest fidelity model is queried 50-75% of the 
time. This demonstrates the efficiency of the method in exploiting correlations between models at multiple fidelities. Finally, 
notice that the distribution of the number of queries is roughly consistent across all the repetitions. This demonstrates the 
robustness of our algorithm amidst the randomness of the seed point selection.

5.2. Turbine reliability analysis with discrete fidelity space

We now demonstrate our method on the structural analysis of a gas turbine blade at steady-state operating conditions. 
Gas turbines have a radial arrangement of blades downstream of the combustor. Hence, these blades are subject to very high 
pressures and temperatures that can cause concentrated zones of high stress that can in turn lead to structural deformation 
and potential catastrophic damage of the engine parts. Therefore, we are interested in the probability that the maximum 
stress acting on the thermal blade exceeds a certain threshold. The variables are defined as follows.
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Fig. 7. Results of the 2D four-branches test function; red dash-dotted line represents the true level set. Cost for multifidelity prediction is 30, 005 and for 
single-fidelity prediction 55, 000. Both figures share the same colormap.

x1 : Pressure-side loading

x2 : Suction-side loading

s : mesh resolution.

In this regard we vary the pressure-side and suction-side pressures as boundary conditions, as shown above, while ignoring 
thermal effects, to observe the maximum von Mises stress acting on the blade; that is, f (x) = maxz u(z), where u(z), z ∈ ∂z
is the Von Mises stress distribution on the blade surface ∂z. Note that we negate the output, f (x) ×−1, to comply with our 
definition of failure. The material properties are fixed to the following constants: Young’s modulus 227E + 9 Pa, Poisson’s 
ratio 0.27, and coefficient of thermal expansion 12.7E −6. The governing equations are solved using a finite element method 
using Matlab’s PDE toolbox. The computational mesh density is determined via a minimum element size which also serves 
as the fidelity parameter. Specifically, we use the minimum mesh element sizes {0.05, 0.025, 0.01}, which correspond to 
fidelities S = {0.0, 0.5, 1.0}, respectively; note that this case corresponds to a discrete fidelity space. The mesh resolutions 
for the specified three fidelity levels are shown in Fig. 10. As previously mentioned, the maximum von Mises stress is the 
quantity of interest in this experiment; see Fig. 11 for a couple of snapshots of the von Mises stress distribution and blade 
deformation corresponding to two different pressure loadings.

The suction-side x1 and pressure-side x2 pressures are varied in the following ranges: x1 ∈ [201160, 698390], x2 ∈
[301460, 598020]. A total of n = 40 solution snapshots are generated and supplied as seed points for the multifidelity 
run; the equivalent n for the single-fidelity run is determined to match the multifidelity seed budget. Both experiments are 
then run for 100 iterations and are repeated 5 times with randomized seed points.

The contour plots of maximum von Mises stress are shown in Fig. 12 for each of the three fidelities considered. The 
failure boundary is set as the level set corresponding to 95% of the maximum von Mises stress across a total of 150 high-
fidelity simulations that were computed offline. This is shown by the thick black line in Fig. 12 (far right) and corresponds 
to a probability of failure of 0.004236. Notice that for the low-fidelity case (s = 0.0) this level set is outside the domain of 
f̂ (x, 0.0) and for the medium-fidelity case (s = 0.5) this level set is at the top-left corner of the domain. Therefore, this test 
case poses a unique challenge of the fidelity levels leading to very different function domains; for example, according to the 
low-fidelity model, the probability of failure is 0.

To evaluate our algorithm, we compute the predicted failure probability via IS at the end of each iteration and take 
the absolute difference from the true failure probability. This is plotted against the cumulative computational costs for 
the single- and multifidelity cases in Fig. 13. From the figure, notice that for any given cumulative cost, the multifidelity 
approach results in a failure probability error that is better than or equal to the single-fidelity approach. Because of the 
availability of only three discrete fidelity levels and the assumed cost model, the discrepancies in the cost between low and 
high fidelities are very pronounced; the single fidelity curve starts at a cumulative cost of ≈ 550 (which is the cost of a 
high-fidelity query) and the multifidelity curve starts at a cumulative cost of ≈ 50 (which is the cost of the lowest-fidelity 
query). Notice that, for the chosen budget of evaluations, CAMERA converges to a slightly higher failure probability error 
than the high-fidelity; however, this discrepancy (O(0.01%)) can be considered negligible.
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Fig. 8. Error in computing the failure probability for the synthetic test functions.

On the right of Fig. 13, we show the distribution of the number of queries at each fidelity level. Notice that the algorithm 
is able to exploit the lowest fidelity model while keeping the high-fidelity queries at ∼ 20%, owing to the strong correlations 
between the fidelity levels for this experiment. The consistency across repetitions is also present, similar to what was 
observed in the synthetic experiments.

5.3. ONERA transonic wing

The ONERA-M6 wing [48] is an analytical (shape prescribed using mathematical equations) wing created in the 1970s 
by the French Aerospace Laboratory for the purposes of understanding three-dimensional airflow in transonic speeds and 
high Reynolds numbers.3 It is a semi-span, swept wing with no twist, and at transonic Mach numbers is characterized by 
local supersonic flow, shocks, and turbulent boundary layer separation. Therefore, this wing has been frequently used for 
benchmarking computational software for compressible turbulent flow [29]. Because of its relevance in the commercial and 

3 https://www.onera .fr /en /news /onera -m6 -wing -star-of -cfd.
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Fig. 9. Number of model queries versus fidelity for the synthetic test functions. Plots show the 20 repetitions overlaid on top of each other.

Fig. 10. Mesh resolutions for the three discrete fidelities considered.
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Fig. 11. Von Mises stress distribution and deformation on the gas turbine blade, under two different pressure loading boundary conditions.

Fig. 12. Contours of maximum von Mises stress. The failure boundary (thick black line) is outside the range of the low-fidelity approximations f̂ (x, 0.0) and 
f̂ (x, 0.5).

Fig. 13. Results of the reliability analysis of the turbine blade. Left: failure probability error versus cumulative cost. Right: distribution of the number of 
queries at each fidelity level; plot shows all 5 repetitions overlaid on top of each other.
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military aircraft flight regimes, which make it an important candidate for reliability analysis, we use it as one of the test 
cases in this work.

The wing, shown in Fig. 14a, is surrounded by a fluid domain that is a quadrant of an ellipsoid, as shown in Fig. 14b. 
The two external sides of the fluid domain are designated as “freestream” boundary conditions, with a prescribed ambient 
temperature, flow speeds, and angle of attack (that is, the incidence angle between the flight direction and the wing mean 
aerodynamic chord). The fluid domain is discretized with a mesh of approximately 56, 000 hexahedral elements with local 
refinement to resolve boundary layers, shocks, and shear layers. The three-dimensional compressible RANS equations are 
solved with a finite-volume method with second-order spatial discretization and Euler implicit discretization. The turbulence 
closure is provided by the Spalart–Allmaras [1] turbulence model. All the simulations are performed with the open-source, 
finite-volume-based multiphysics code SU2.4 [11]

For the reliability analysis, we consider the following input parameters:

x1 :Reynolds number

x2 :Mach number

x3 :Angle of attack

s :Iterations to converge.

Therefore, x = [x1, x2, x3], and our f (x) is the wing load factor L/W , where L is the net aerodynamic force acting perpen-
dicular to the flight path and W is the weight of the aircraft. Note that the maximum wing load factor obtainable during 
flight is limited by the structural strength of the aircraft wing [2, Ch. 4], and hence we want to ensure the L/W does not 
exceed a certain safety threshold, over a range of operating conditions.

The fidelity parameter s is the number of iterations allowed for the solver to converge; fewer iterations result in a 
faster (and hence cheaper) solution that is considered low fidelity and vice versa. We set the following bounds on the 
control and fidelity parameters: x1 ∈ [5 × 106, 11 × 106], x2 ∈ [0.7, 0.85], x3 ∈ [1, 3], and S ∈ [0, 1] (which is normalized 
and corresponds to the number of iterations ∈ [500, 5000]). Note that we round any fractional values for the number of 
iterations, recommended via our algorithm, to the nearest integer. We show the pressure coefficient distribution on the 
wing for the different values of s in Fig. 15. As in the turbine test case, we negate the output of the function f and set the 
failure threshold a = −7.5 and therefore are interested in estimating the probability that g(x) = f (x) − a ≤ 0.

We begin our algorithm with n = 100 seed points obtained via running the simulations at a Latin hypercube design of 
experiments across the joint X ×S space, and we run the algorithm for 100 iterations. For the single-fidelity run, n is set 
to keep the total cost of seed points identical to that of the multifidelity run. We keep the same cost model as in Fig. 1. 
Note that for this experiment we compute the failure probability only once—at the conclusion of running Algorithm 2 for 
100 iterations. Furthermore, we do not repeat the experiment with randomized seed points. We fix N = 400 high-fidelity 
samples to evaluate pIS

F .
We show the results in Fig. 16, where pIS

F and V (pIS
F ) are used to construct the confidence intervals. While we do not 

know the pF (truth) for this case, we see that the predictions from CAMERA are with smaller confidence intervals compared 
with using the high-fidelity model only. The overall cumulative cost of the high-fidelity run is 44,667 compared with only 
38,614 for CAMERA, thereby establishing the cost-effectiveness of the method.

6. Conclusion

In this work we address the problem of failure probability estimation for complex engineered systems with a computa-
tionally expensive model. Additionally, we account for the fact that the expensive model has tunable fidelity parameters that 
can trade computational cost for predictive accuracy. We propose an approach based on Gaussian process models that can 
learn the correlations between the different fidelities, given a continuous or discrete fidelity space, and therefore predict the 
high-fidelity function with potentially fewer queries to the expensive high-fidelity model that are supplemented by cheaper 
low-fidelity model queries. Further, we propose an acquisition-based sequential experiment design approach to adaptively 
build the multifidelity surrogate model, so that only the most useful fidelities and inputs are queried. The main highlight of 
our proposed acquisition function is that it provides a generalized multifidelity framework that can extend existing (single-
fidelity) acquisition functions to the multifidelity setting and furthermore applies to both discrete and continuous fidelity 
spaces. Additionally, we demonstrate that our surrogate modeling approach is asymptotically consistent, meaning that the 
predicted failure level set approaches the true level set with high probability as the number of iterations approaches infinity. 
We also show that estimates of the failure probability, predicted by using only the developed multifidelity surrogate model, 
produces very high accuracy at a lower computational cost, compared with using the high-fidelity model only. Furthermore, 
using the multifidelity surrogate model with a single batch of (non-adaptive) Latin hypercube design results in poor esti-
mates of the failure probability, compared to the proposed adaptive approach. This confirms the need for adaptive training 
of surrogate models for failure probability estimation.

4 https://su2code .github .io/.
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Fig. 14. Fluid domain and boundary conditions for the ONERA transonic wing.

Fig. 15. Surface pressure coefficient distribution for the ONERA wing at 3 different levels of convergence and fixed boundary conditions.
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Fig. 16. Predicted pIS
F via CAMERA and using the high-fidelity model only.

With the sequential surrogate model building approach, we observe that the predicted failure level sets are very close 
to the true level set. Furthermore, we observe that in the presence of multiple fidelity models, our approach performs even 
better by requiring only ≈ 50% of the computational budget. In terms of predicting the failure probability, our approach 
shows a decrease in the prediction error with increasing evaluations of the models, while the multifidelity approach always 
outperforms the single-fidelity case. In addition to the synthetic cases, we demonstrate our method on a real-world turbine 
reliability case, with discrete fidelities, where the failure probability is ≈ 0.4%, and a transonic wing test case. We observe 
results consistent with the synthetic cases where we are able to obtain very high accuracy in failure probability error, with 
the multifidelity approach significantly outperforming using the high-fidelity model only. Overall, our experiments reveal 
that our approach can lead to cost-effective yet accurate predictions for reliability analysis, for example, using only N = 400
high-fidelity samples for estimating pIS

F in the transonic wing example.
We anticipate conducting follow-up studies of this work in several directions. First, the CAMERA algorithm can be 

modified to adaptively provide an estimate for pIS
F ; currently, it is estimated at the conclusion of the adaptive surrogate 

model construction. This is useful for real-world applications, where running expensive high-fidelity simulations in multiple 
batches is less risky and therefore more practical. Along the same lines, we plan on evaluating the performance of our 
sequential experiment design of adaptive surrogate model construction, in making batch evaluations at every step. Further-
more, whereas we have demonstrated our approach in estimating pF in O(10−4), it would be interesting to evaluate the 
approach on problems with smaller orders of magnitude in pF .
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Fig. A.17. Impact of the choice of cost model on the algorithm performance.

Appendix A. Impact of the choice of cost model

We vary the choice of the constant c1 in the cost model to observe its impact on the algorithm performance. Recall that 
c1 determines the rate of change of the computational cost of the models with respect to fidelity. In this regard, smaller 
values of c1 result in “flatter” cost models, as shown in Fig. A.17a. We use the Ishigami test function to evaluate the impact 
of the choice of cost model on the performance of CAMERA, whose results, with 20 repetitions with randomized seed 
points, are shown in Fig. A.17b. We observe no appreciable difference in the algorithm performance between a choice of 
c1 = 10 and c1 = 5. At c1 = 1.0, CAMERA still outperforms the high-fidelity-only run, although suffering a higher failure 
probability error at lower cumulative costs. As c1 approaches 0, the performance approaches that of the high-fidelity-only 
run, as expected. Therefore, we conclude that the choice of the cost model, while expected to impact the performance of 
the algorithm, does not necessarily offer an undue advantage to the algorithm. This experiment justifies the use of c1 = 10.0
in all of our experiments.

Appendix B. Expected improvement acquisition function of [39]

The closed-form expression for the expected improvement acquisition function by Ranjan et al. [39], obtained by setting 
δ2(x, s) − min{(y(x, s) − a)2, δ2(x, s)} and ω = {a, η} in (8), is given by

E Ir(x, s) =
[
δ2(x, s) − (μ(x, s) − a)2 − σ 2(x, s)

] (
	(z+) − 	(z−)

)+
σ(x, s)2 (z−φ(z−) − z+φ(z+)

)
2 (μ(x, s) − a)σ (x, s)

(
φ(z−) − φ(z+)

)
.

(B.1)
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