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ABSTRACT

Neural network PDE solvers have recently gained popularity.However, it faces
difficulty to deal with sharp discontinuity like shock waves in hyperbolic conser-
vation laws.In this paper we propose a characteristic-based neural network to solve
one dimension hyperbolic laws.The smooth solution can be derived by equation
of characteristic lines ,and shock waves are decided by simple ODE solver.This
method achieves a high accuracy with high efficiency. In the future it is hopeful
to apply this method to higher dimension problems.

1 INTRODUCTION

Hyperbolic conservation law is one of the important equations that represent fluid conservation
law . It is widely used in fluid mechanics, electromagnetic field theory and other fields,including
convection equation, Burger’s equation, Euler equations, etc. For nonlinear hyperbolic conservation
law equations, even smooth the initial value could result in complex local discontinuities . Therefore,
more special numerical methods are required to obtain high-precision approximate solutions.

Neural networks have been widely utilized as PDE solver due to its excellent capacity of approxima-
tion . One popular example is physics-informed neural network(PINN)Raissi et al. (2019) , which
approximates the PDE with neural network and utilizes auto-differentiation to construct loss func-
tion.The result of PINN does not guarantee physical nature ,therefore more targeted methods incor-
porating physics into problem formulating are developed.MüllerMüller (2023) constructs a neural
network with built-in symmetry that preserves the Lagrangian exactly.The prediction of trajecto-
ries is more reliable due to the inherent conservation of network.Other approaches attempt to com-
bine machine learning with traditional numerical methods like finite point methodMorand et al.
(2024)Chen et al. (2024), discontinuous Galerkin methodArora (2023),WENO Wang et al. (2020).

In fact, due to the discontinuities in hyperbolic conservation systems , it is challenging to directly
apply neural network to approximate solution,which will lead to paradoxical results and consider-
able error. To tackle this issue, some novel methods have been developed.Conservative physics-
informed neural network (cPINN) Jagtap et al. (2020)divides the original domain into small sub-
domains and apply PINN on each of them.To obtain conservation , constraints of flux on the in-
terface of subdomains are added to the overall loss function .Compared to PINN, cPINN performs
better on complex-shaped domains and equations with discontinuous solutions.Li et al.Liu et al.
(2023) proposed PINNs-WE(Physics-Informed Neural Networks with Equation Weight) to identify
the location of shock waves and adjust the loss function dynamically during the training. The Rank-
ine–Hugoniot (RH) relation is also incorporated to obtain conservation at discontinuous region.
NDNN(Non-Diffusive Neural Network)Lorin & Novruzi (2024) represent the position of discon-
tinuity lines by neural networks and decompose the global space-time region accordingly. This
method is capable of calculating complex phenomena like shock wave interaction and shock wave
generation in one dimensional hyperbolic conservation law.

The researches mentioned above adopt different approaches of establishing neural networks to tackle
the discontinuities , but all of them require formulation of complex loss functions (NDNN, cPINN)
or intricate tuning of parameters Liu et al. (2023) ,and the convergence is hard to guarantee under
complex circumstances like multiple shock waves.In fact, the features of hyperbolic conservation
law have not been fully explored .
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In this paper we propose a novel characteristic-based neural network(CBNN) to solve hyperbolic
conservation laws.In this method,the space-time region is divided into subdomains each influenced
by a part of the initial value function , and the solution on each subdomain is easily obtained us-
ing characteristic lines.The shock wave is determined afterwards by solving the ODE of R-H rela-
tion.The training process of each process is independent and convenient,and the shock wave is easily
derived by ode solver like Euler method. This method is robust and efficient dealing with diverse
type of discontinuities.

In section 2 we will introduce some preliminaries of one-dimensional hyperbolic conservation
laws,and apply CBNN to different type of discontinuities like shock wave interaction and shock
wave generation.Section 3 gives a theoretical proof of convergence and some numerical experiments
are conducted in section 4.Finally a brief conclusion is in section 5.

2 METHOD

2.1 PROBLEM SET UP

we consider the one-dimensional hyperbolic conservation law which has form as follows:{
ut + f(u)x = 0, x ∈ Ω, t ∈ [0, T ]
u(x, 0) = u0(x), x ∈ Ω

(1)

. This study assumes that f and the solution u is differentiable a.e. ,so the equation can be rewritten
as {

ut + λ(u)ux = 0, x ∈ Ω, t ∈ [0, T ]
u(x, 0) = u0(x), x ∈ Ω

(2)

where λ = f ′ denotes the derivative of f . One important feature of this problem is known as the
characteristic line.On the curve

dx

dt
= λ(u), (3)

the solution u remains a constant.If in a region Ω none of the characteristic lines intersect, the
solution in Ω can be expressed as

u = u0(x− tλ(u)). (4)

we use fully connected neural network uθ(x, t) to approximate each smooth region of the solution
,where θ denotes the parameters of the neural network.Our goal is to approximate the solution on
each subdomain separately by characteristic lines and calculate the position of shock waves after-
wards, thus deriving a correct weak solution.

2.2 CLASSICAL SOLUTION

Let Ω = (a, b) and Γ be the range of influence of Ω.If the function λ(u0(x)) is continuous and non-
decreasing on Ω, the characteristics of the equation would not cross in the region, so there exists a
unique classical solution.According to the method of characteristics, we can construct the equation
as follows:

u(x, t) = u0(x− λ(u(x, t))t) (5)

. Given initial value u0 on Ω, a characteristics-based neural network is obtained to approximate
the smooth solution on region Γ, the parameters θ will be derived by minimizing the following loss
function:

L(θ) = 1

Nb

Nb∑
i=1

|uθ(x
i
b, t

i
b)− u0(x

i
b − λ(uθ(x

i
b, t

i
b))t

i
b)|2 (6)

Where xi
b(i = 1, 2, · · · , Nb) are training points sampled from the region of influence of Ω, which

can be expressed as

TΩ = {(x, t)|x ∈ [a+ λ(u0(a))t, b+ λ(u0(b))t], t ∈ [0, T ]} (7)

Therefore, uθ(x, t) is a approximation of the solution propagated from initial region Ω.
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2.3 RAREFACTION WAVE

If the function λ(u0(x)) is not continuous at some point x0 and λ(u0(x
−
0 )) < λ(u0(x

+
0 )),a rarefac-

tion wave is needed to connect the two adjacent classical solution.The rarefaction wave satisfying
entropy condition can be written as:

u(x, t) = λ−1(
x− x0

t
) (8)

Rarefaction wave and its adjacent classical solutions are continuous , so in the following analysis,
rarefaction wave and classical solution will be treated as smooth solution altogether.

2.4 ONE SHOCK WAVE

Shock wave starting at t = 0 is caused by discontinuity of initial value u0(x). Let x = x0 be
a discontinuity point of u0(x) ,if λ(u(x−

0 )) > λ(u(x+
0 )),a shock wave emerges at x = x0 and

propagates following the R-H condition.Denote the position of shock wave at time t by s(t), s(t)
satisfies the following ODE:

ds(t)

dt
=

f(u(s(t)−, t)− f(u(s(t)+, t)

u(s(t)−, t)− u(s(t)+, t)
(9)

Assume Ω1 = (a, x0),Ω2 = (x0, b) are two adjacent regions and a shock wave starts at x = x0.
According to 3.1 and 3.2, we can separately derive the smooth solution propagated from Ω1 and
Ω2,denoted by u1and u2. TΩ1 and TΩ2overlap and both contain the curve of shock wave.The position
of shock wave could be derived by forward Euler method:

s(tn+1)− s(tn)

∆t
=

f(u1(s(tn), tn))− f(u2(s(tn), tn))

u1(s(tn), tn)− u2(s(tn), tn)
(10)

Then the solution could be revised as

u(x, t) =

{
u1(x, t), x < s(t), (x, t) ∈ Ω× [0, T ]
u2(x, t), x > s(t), (x, t) ∈ Ω× [0, T ]

(11)

2.5 SHOCK WAVE INTERACTION

Shock waves may intersect and combine into a new shock wave. Assume shock waves s1(t) sepa-
rates smooth solution u1(x, t) and u2(x, t) ,shock wave s2(t) separates u2(x, t) and u3(x, t),s1(t)
and s2(t) intersect between time stamp tk and tk+1,in other words,

s1(t) < s2(t), t = tk

s1(t) ≥ s2(t), t = tk+1

Using linear interpolation, the approximated position and time of shock wave interaction are

x∗ =
s2(tk)s2(tk+1)− s2(tk)

2 − s1(tk)s1(tk+1) + s1(tk)
2

(s1(tk+1)− s1(tk))− (s2(tk+1)− s2(tk))

t∗ =
tk+1(s1(tk)− s2(tk)) + tk(s2(tk+1)− s1(tk+1))

s1(tk)− s2(tk) + s2(tk+1)− s1(tk+1)

(12)

The generated new shock snew(t) wave starting at (x∗, t∗) follows the R-H rule:
dsnew(t)

dt
=

f(u1(s(tn), tn))− f(u3(s(tn), tn))

u1(s(tn), tn)− u3(s(tn), tn)
(13)

The same method in 3.3 could be applied.

2.6 SHOCK WAVE GENERATION

On Ω = (a, b) where min
x∈Ω

λ′(u0)u
′
0(x) < 0, the shock wave starts at t∗ = − 1

min
x∈Ω

λ′(u0)u′
0(x)

and

locates on the characteristic of initial point x0 = argmin
x∈Ω

λ′(u0)u
′
0(x).

Therefore, after calculating the smooth solution of time t ∈ [0, t∗], the remaining solution can be
solved utilizing the similar method in section 3.3.The initial value is uθ(x, t

∗),shock wave emerges
at location x = x0.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 THEORETICAL RESULT

In this section, we present some analysis for convergence of CBNN. Firstly, we consider the error
of approximating classical solution in section 3.1.First we make an assumption as follows:
Assumption 1. On Ω = (a, b),initial value u0 is monotone and differentiable .

In fact, by dividing Ω into subintervals where u0 is monotone, and apply the following theorem, the
same conclusion can be derived.
Lemma 1. Assuming the exact solution is ũ, the mean square error of neural network solution uθ

on sample points can be controlled by loss function :

MSE(uθ) =
1

Nb

Nb∑
i=1

|uθ(x
i
b, t

i
b)− ũ(xi

b, t
i
b)|2 ≤ L(θ) (14)

Proof. Without loss of generality we assume u′
0 ≥ 0, then λ′(x) ≥ 0.At position (x, t),define

G(x,t)(u) := u− u0(x− λ(u)t),

ũ(xi
b, t

i
b) is the unique root of G(xi

b,t
i
b)
(u),by Rolle’s theorem,

|G(xi
b,t

i
b)
(uθ(x

i
b, t

i
b))|

=|G(xi
b,t

i
b)
(uθ(x

i
b, t

i
b))−G(xi

b,t
i
b)
(ũ(xi

b, t
i
b))|

=|uθ − ũ|(G′
(xi

b,t
i
b)
(ξ))

=|uθ − ũ|(1 + tu′
0(x− λ(ξ)t)λ′(ξ))

≥|uθ − ũ|

(15)

Sum up for all sample points (xi
b, t

i
b),

MSE(uθ)

=
1

Nb

Nb∑
i=1

|uθ(x
i
b, t

i
b)− ũ(xi

b, t
i
b)|2

≤ 1

Nb

Nb∑
i=1

|G(xi
b,t

i
b)
(uθ(x

i
b, t

i
b))−G(xi

b,t
i
b)
(ũ(xi

b, t
i
b))|2

=L(θ)

(16)

Theorem 1 implies a L2 convergence for CBNN for calculating smooth solution.Note that our
method is a uniform approximate on the time-space region ,so the error does not accumulate over
time.Additionally, as number of shock waves increases, the accuracy and training efficiency are still
guaranteed , which is a crucial advantage compared to Lorin & Novruzi (2024).

4 NUMERICAL EXPERIMENTS

4.1 ONE SHOCK WAVE

we consider Burgers equation ut + uux = 0 on Ω = [−1, 1]× [0, 1], with initial value

u0(x) =

{
x, x < 0,
−2, x > 0.

(17)

On the left and right side of shock wave ,the solution are u1 = x
t+1 and u2 = −2 respectively. The

weak solution can be written as

u(x, t) =

{
x

t+1 , x < 2
√
t+ 1− 2(t+ 1),

−2, x > 2
√
t+ 1− 2(t+ 1).

(18)
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Figure 1: uθ for single shock wave,the L2 error is 2.64e− 4

The MSE on sample points is 2.64e-4,the algorithm calculate the position of shock wave success-
fully.

For rarefaction wave ,we consider Burger’s equation ut + uux = 0 on (−1, 1)× [0, 1]with discon-
tinuous initial value:

u0(x) =


x,−1, x < 0,
1, 0 < x < 1

2 ,
−2, 1

2 < x < 1.
(19)

A rarefaction wave emerges at x = 0 and connects the smooth solutions on both sides.The shock
wave starting from x = 1

2 encounters the rarefaction wave and smooth solution successively. The
shock wave position of (21) is

s(t) =


1
2 − 1

2 t, 0 ≤ t < 1
3 ,√

3t− 2t, 1
3 ≤ t < 3

4√
5(1 + t)− 2(1 + t), 3

4 ≤ t ≤ 1

(20)

The MSE on sample points is 3.12e-4.

Figure 2: The result for rarefaction wave,the L2 error is 3.12e-4

4.2 SHOCK WAVE INTERACTION

As for the case shock waves collide and evolve into a new shock wave, we consider Burger’s equation
on (−2, 1)× [0, 1] with initial value as follows:

u0(x) =

{
2,−2 < x < −1,
x,−1 < x < 0,
−1, 0 < x < 1.

(21)

Three neural networks approximate two constant regions and a smooth region between them respec-
tively, the total mean square error is 2.28e-4.
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Figure 3: The result for shock wave interaction,the L2 error is 2.28e-4

5 CONCLUSION

In this paper, we propose a new method to solve one dimension hyperbolic conservation laws.This
characteristic-based neural network applies the rule of characteristic lines and guarantees conver-
gence of solution directly.Complex local discontinuities like shock waves can be derived by R-H
relation.This method will be applied to higher dimension and hyperbolic systems in the future.
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