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Abstract

Most of these text-to-video (T2V) generative models often produce single-scene
video clips that depict an entity performing a particular action (e.g., ‘a red panda
climbing a tree’). However, it is pertinent to generate multi-scene videos since they
are ubiquitous in the real-world (e.g., ‘a red panda climbing a tree’ followed by ‘the
red panda sleeps on the top of the tree’). To generate multi-scene videos from the
pretrained T2V model, we introduce a simple and effective Time-Aligned Captions
(TALC) framework. Specifically, we enhance the text-conditioning mechanism in
the T2V architecture to recognize the temporal alignment between the video scenes
and scene descriptions. For instance, we condition the visual features of the earlier
and later scenes of the generated video with the representations of the first scene
description (e.g., ‘a red panda climbing a tree’) and second scene description (e.g.,
‘the red panda sleeps on the top of the tree’), respectively. As a result, we show
that the T2V model can generate multi-scene videos that adhere to the multi-scene
text descriptions and be visually consistent (e.g., entity and background). Further,
we finetune the pretrained T2V model with multi-scene video-text data using the
TALC framework. We show that the TALC-finetuned model outperforms the
baseline by achieving a relative gain of 29% in the overall score, which averages
visual consistency and text adherence using human evaluation.

1 Introduction

The ability to generate videos that simulate the physical world has been a long-standing goal of
artificial intelligence [1, 47, 10, 36]. In this regard, text-to-video (T2V) models have seen rapid
advancements by pretraining on internet-scale datasets of images, videos, and texts [9, 6]. Previous
work [20, 18, 28, 49, 8, 7] primarily focus on training conditional denoising diffusion probabilistic
models [22] on paired video-text data [4, 54]. After training, these models allow for video generation
by sampling from the trained diffusion model, conditioned on a text prompt. However, most of
the open-models such as ModelScope[49] VideoCrafter [13, 14], OpenSora [57] are trained with
single-scene video-text dataset [4, 50], which is widely available and easy to acquire. However,
real-world scenarios often require the generation of multi-scene videos from multi-scene descriptions
(e.g., Scene1: ‘A koala is napping on a tree.’ Scene2: ‘The koala eats leaves on the tree.’). In such
cases, the generated video should accurately depict the events in their temporal order (e.g., Scene2
follows Scene1) while maintaining visual consistency, meaning that backgrounds and entities should
remain consistent across scenes. While high-performance T2V models such as Sora [36] might be
able to generate multi-scene videos, we point out that they are closed-source models trained with
massive compute resources and lack sufficient details on the model design, training protocol, and
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“Scene 1: A jeep car is driving on the beach, sunny ” “Scene 2: A jeep car is driving on the beach, night”

“Scene 1: A panda is running in the park, sunny.” “Scene 2: A golden retriever is running in the park, autumn.”

“Scene 1: A koala climbs a tree” “Scene 3: The koala takes a nap”“Scene 2: The koala eats the eucalyptus leaves”

“Scene 1: Spiderman is surfing on the waves.” “Scene 2: Darth Vader is surfing on the same waves.”

Figure 1: Examples of multi-scene video generation using the TALC framework. Our proposed
method, TALC, enhances scene-level alignment between text and video, facilitating the generation
of videos with seamless transitions between textual descriptions while preserving visual consistency.
The first two rows are generated using Lumiere [6] and the last two rows use ModelScope [49].

datasets. In this work, we present a complementary approach and tackle the challenge of effectively
leveraging the capabilities of base T2V models for multi-scene video generation.

The multi-scene T2V generation differs from long video synthesis where the goal is to either
interpolate (few frames to many frames) [18] or create continuing patterns of the single event in the
generated video [8]. Prior work like Phenaki [45, 28] use transformers [44, 3] to generate video
frames for a given scene autoregressively. However, it is hard for their model to generate multiple
scenes reliably as the context length increases with the history of text descriptions and visual tokens
[56] of the previous generated videos (e.g., generating Scene 4 conditioned on the Scene1, 2, 3 videos
and descriptions). Other works [40] utilize a latent diffusion model [41] to generate video frames
autoregressively by conditioning on the entire history of generated videos and scene descriptions.
However, the approach is (a) slow due to repeated sampling, (b) generates only one frame per scene
description, and (c) shown to work with only limited cartoon characters [29, 55] instead of wide
range of visual concepts in the real-world. In this work, our goal is to generate multi-scene videos in
the end-to-end manner using a diffusion T2V generative model. Prior work like VideoDirectorGPT
[30, 31] generates multi-scene videos by utilizing knowledge of the entity, background, and their
movements from large language models [2]. However, these videos are generated independently for
each scene before being merged.

To remedy these challenges, we propose TALC (Time-ALigned Captions), a simple and effective
framework to generate consistent and faithful multi-scene videos. In particular, our approach
conditions the T2V generative model with the knowledge of the temporal alignment between the
parts of the multi-scene video and multi-scene descriptions (Figure 3). Specifically, TALC conditions
the visual representations of earlier video frames on the embeddings of the earlier scene description,
and likewise, it conditions the representations of later video frames on the embeddings of the later
scene description in the temporal dimension. Additionally, the temporal modules in the T2V diffusion
architecture allows information sharing between video frames (the first half and the second half) to
maintain visual consistency. Therefore, TALC enhances the scene-level text-video alignment while
providing the scene descriptions to the diffusion model all at once (Figure 1).

Prior methods like FreeNoise [38] propose a motion injection strategy to address these challenges.
However, this method is quite sophisticated and difficult to control due to diverse hyperparameters,
such as time-specific motion injection, prompt interpolation, and injection in specific cross-attention
layers. In contrast, our approach eliminates these complexities and introduces a straightforward
mechanism that significantly boosts performance. Unlike previous work, we also demonstrate
that finetuning with TALC using real-world multi-scene data can enhance generation capabilities.
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Specifically, we propose a pipeline to curate multi-scene video data and subsequently finetune the
T2V model on this multi-scene data using TALC (§3.2).
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Figure 2: Summary of the results. We compare several baselines and our TALC framework with ModelScope
[49] for generating multi-scene videos on the unseen prompts. Specifically, we study the overall score which
averages the visual consistency (object and background) and text adherence (video-text alignment). We observe
that using TALC with the base model i.e., training-free achieves relative gains of 21% in comparison to
FreeNoise [38]. In addition, we show that multi-scene finetuning with TALC (TALC-FT) allows larger gains,
achieving relative gains upto 29%.

In our experiments, we assess the visual consistency (background and entity consistency) and multi-
scene script adherence of the generated videos from T2V generative models. Through our human
evaluation, we find that TALC strikes an effective balance between visual consistency and text
adherence, and outperforms the FreeNoise by achieving relative gains of 21% points on the overall
score. This score represents the average of visual consistency and text adherence scores (Figure 2).
Furthermore, we construct a multi-scene text-video dataset from real-world videos and fine-tune the
T2V generative model using TALC. We show that finetuning with TALC outperforms FreeNoise
by achieving relative gains of 29% on the overall score (Figure 2). Further, we perform automatic
evaluation for scalable judgements (§5.4) and provide qualitative examples to highlight the benefits
of our approach (§5.5). We present the related work in Appendix §A.

2 Preliminaries

2.1 Diffusion Models for Text-to-Video Generation

Diffusion models [22, 33] pθ(x) are a class of generative models that learn data distribution pdata(x).
Due to their flexible design, we can train their class-conditional versions to learn class-conditional
data distributions pdata(x|y) where y is the conditioning variable. We assume a dataset S ⊂ V × T
consisting of pairs of (Vj , Tj) where Vj ∈ RL×3×H×W is a raw video consisting of 3 RGB channels,
L frames, H height, W width, and Tj is a text caption. We use V and T to denote the domain
of videos and text, respectively. The aim of T2V generative modeling is to learn the conditional
distribution of the videos conditioned on the text pS(Vj |Tj). In this work, we consider diffusion-
based generative models that learn the data distribution via iterative denoising of the input video
zj ∈ RL×C×H′×W ′

. Here, zj can either represent the input video in the raw pixel space Vj [6] or it
can represent the latent representation of the video zj = E(Vj) for the latent diffusion models [41]
where E is an encoder network [27].

Given zj , diffused variable zτ,j = ατzj + βτ ϵ are constructed where ϵ ∼ N (0, I) where ατ and βτ

are sampled from the noise scheduler pτ [16]. Finally, we train a denoiser network fθ [42, 37] that
inputs the diffused variable zτ and embeddings of the text caption to predict the target vector y where
y can be the original noise ϵ, which minimizes the denoising objective [22]:

E(Vj ,Tj)∈S,τ∼pτ ,ϵ∼N(0,I)

[
||ϵ− fθ(τ, zτ,j , hj)||22

]
(1)
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where hj = H(Tj) ∈ Rd is the embedding of the text caption Tj where H is the text embedding
model [39] and d is the dimension size.

2.2 Text Conditioning Mechanism

To ensure the effective textual controllability of video generation, the structure of the denoiser
networks is equipped with a cross-attention mechanism [49, 18]. Specifically, it conditions the visual
content zτ ∈ RL×C×H′×W ′

on the text. To do so, we first repeat the text embeddings of the text
caption rj = R(hj) ∈ RL×d where R is a function that repeats the input text embedding hj for L
times in the temporal dimension. Intuitively, the repeat operation represents that the L frames of the
video zj are semantically aligned with the textual description Tj or its text embedding rj .

These repeated text embeddings rj are inputs to the spatial attention block as the key and value in the
multi-head attention block. The cross-attention enables the intermediate visual features to capture the
semantic information that facilitates an alignment between the language and vision embeddings.

z′τ,j = CAfθ (Q = zτ,j ;K = rj ;V = rj) (2)

where CAfθ is the cross attention mechanism with Q,K, V as the query, key, and value, respectively,
in the spatial blocks of the denoiser network. Additionally, z′τ,j is the intermediate representation
that is informed with the visual and textual content of the data. In addition to the spatial blocks, the
denoiser network also consists temporal blocks that aggregate features across video frames which are
useful for maintaining visual consistency in the video.

2.3 Multi-Scene Text-to-Video Generation

In this work, we aim to generate multi-scene video X = {x1, x2, . . . , xn} from multi-scene descrip-
tions Y = {y1, y2, . . . , yn} where n are the number of sentences and each sentence yj is a scene
description for scene j. Additionally, the index j also defines the temporal order of events in the
multi-scene script i.e., we want the events described in the scene j to be depicted earlier than the
events described in the scene k where k > j. Further, we want the parts of the entire generated video
X , given by xj , to have high video-text semantic alignment with the corresponding scene description
yj . In addition, we expect the appearance of the objects to remain consistent throughout the video
unless a change is specified in the description.

3 TALC: Time-Aligned Captions for Multi-Scene T2V Generation

3.1 Approach

Most of the existing T2V generative models [49, 13, 6] are trained with large-scale short video-text
datasets (10 seconds - 30 seconds) such as WebVid-10M [4]. Here, each instance of the dataset
consists of a video and a human-written video description. These videos either lack the depiction of
multiple events, or the video descriptions do not cover the broad set of events in the video, instead
focusing on the major event shown. As a result, the pretrained T2V generative models only synthesize
single video scenes depicting individual events.

We introduce TALC, a novel and effective framework to generate multi-scene videos from diffusion
T2V generative models based on the scene descriptions. Our approach focuses on the role of text
conditioning mechanism that is widely used in the modern T2V generative models (§2.2). Specifically,
we take inspiration from the fact that the parts of the generated video xj should depict the events
described in the scene description yj . To achieve this, we ensure that the representations for the part
of the generated video aggregates language features from the scene description yj .

Consider that we want to generate a multi-scene video X ∈ RL×3×H×W from the scene descriptions
yj ∈ Y , using a T2V generative model fθ. Furthermore, we assume that individual video segments xj

are allocated L/n frames within the entire video X . Let zX = [zx1
; zx2

; . . . ; zxn
] ∈ RL×C×H′×W ′

represent the representation for the entire video X , and zxj
∈ R(L/n)×C×H′×W ′

for the jth part of
the video that are concatenated in the temporal dimension. In addition, consider rY = {ry1

, . . . , ryn
}

be the set of text embeddings for the multi-scene description Y and yj be an individual scene
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description. In the TALC framework, the Eq. 2 is changed to:

z′τ,xj
= CAfθ (Q = zτ,xj

,K = ryj
, V = ryj

) (3)

z′τ,X = [z′x1
; z′x2

; . . . ; z′xn
] (4)

Here, τ represents the timestamp in the diffusion modeling setup, which is applied during training as
well as inference. We illustrate the framework in Figure 3. While TALC aims to equip the generative
model with the ability to depict all the events in the multi-scene descriptions, the visual consistency
is ensured by the temporal modules (attentions and convolution blocks) in the denoiser network. By
design, our approach can be applied to the base T2V model without any further training.

3.2 Multi-Scene Video-Text Data Generation

T2V DenoisingScene 1: “Cat leaps 
onto a countertop.”
Scene 2: “Dog leaps onto 
the same countertop.”
Scene 3: “Rabbit leaps 
onto the same countertop.”
Scene 4: “Raccoon leaps 
onto the same countertop.”

Figure 3: The architecture of Time-Aligned Captions
(TALC). During the generation process of the video, the
initial half of the video frames are conditioned on the embed-
dings of the description of scene 1 (ry1

), while the subsequent
video frames are conditioned on the embeddings of the de-
scription of scene 2 (ry2

).

While our approach generates better
multi-scene videos, the text adherence
capabilities of the pretrained T2V gen-
erative model are limited. This is
due to the lack of multi-scene video-
text data during its pretraining. To
this end, we create a real-world multi-
scene video-text dataset to allow fur-
ther training of the pretrained T2V
models. Specifically, we leverage the
capability of the multimodal founda-
tion model, Gemini-Pro-Vision [43],
to generate high-quality synthetic data
for enhanced video-text training [5].
Formally, we start with a video-text
dataset M = A × B consisting of
pairs of (Ai, Bi) where Ai is a raw
video and Bi is the corresponding video description from the dataset. Subsequently, we utilize
PySceneDetect library 1 to generate continuous video scenes from Ai = {Ai,1, Ai,2, . . . , Ai,m}
where m is the number of scene cuts in the video. Further, we sample the middle video frame Fi,j as
a representative of the semantic content in the video scene Ai,j . Finally, we input all the video frames
Fi = {Fi,1, . . . , Fi,m} for a single video Ai and the entire video caption Bi to Gemini-Pro-Vision.
Specifically, the model is prompted to generate high-quality captions for each of the frames Fi,j such
they form a coherent narrative guided by the common caption Bi. We provide the prompt provided
to the multimodal model in Appendix §E. In Figure 4 we provide an instance for the multi-scene
video-text data generation. We highlight that higher-quality multi-scene datasets would enhance the
performance of the models with TALC framework. We provide the more details in Appendix C. 2

4 Evaluation

4.1 Metrics

The ability to assess the quality of the generated multi-scene videos is a challenging task itself.
As humans, we can judge the multi-scene videos across diverse perceptual dimensions [25] that
the existing automatic methods often fails to capture [11]. Following [30], we focus on the visual
consistency of the generated video, and text adherence capabilities of the T2V models.

Visual Consistency. This metric aims to assess the (entity or background) consistency between the
frames of the multi-scene videos. Here, the entity consistency aims to test whether the entities in the
multi-scene video are consistent across the video frames. For instance, the appearance of an animal
should not change without a change described in the text description. In addition, the background

1https://github.com/Breakthrough/PySceneDetect
2We note that the parts of this pipeline are also utilized in a concurrent work, ShareGPTVideo [15]. However,

their approach is focused on long-form video generation pretraining, while we are focus on multi-scene video
generation for finetuning.
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Table 1: Human evaluation results. We present the human evaluation results for the overall score for several
baselines (e.g., FreeNoise, merge videos, and merge captions) and TALC framework for the ModelScope
generative model. Specifically, we find that the TALC with the base model outperforms the FreeNoise by
achieving the relative gain of 21% on the overall score. In addition, finetuning ModelScope with TALC
framework enables better multi-scene video generation by achieving the highest overall score. Overall, TALC
strikes a good balance between visual consistency and text adherence.

Overall score Visual consistency Text adherence
FreeNoise [38] 59.7 77.0 42.5
Merge videos 61.3 (+2.6%) 55.0 67.5
Merge captions 64.8 (+8.5%) 96.5 33.0
Finetuning w/ Merge captions 61.1 (+2.3%) 80.0 42.3
TALC 72.4 (+21%) 92.3 52.5
Finetuning w/ TALC 76.8 (+29%) 86.4 67.2

consistency aims to test whether the background of the multi-scene video remains consistent across
the video frames. For instance, the room should not change without a change in text description.

Text Adherence. This metric aims to test whether the generated video adheres to the multi-scene text
description. For instance, the events and actions described in the text script should be presented in
the video accurately, and in the correct temporal order.

In our experiments, we compute the visual consistency and text adherence with the human and
automatic evaluators. Further, we compute the overall score, which is the average of the visual
consistency and text adherence scores. In addition, we also assess the visual quality of the generated
videos using human evaluation to understand whether the video contains any flimsy frames, shaky
images, or undesirable artifacts (Appendix D).

4.2 Task Prompts

Here, we curate task prompts for diverse scenarios to holistically assess the quality of the videos.

Single character in multiple visual contexts (S1). In this scenario, we instruct an LLM, GPT-4 [2],
to create a coherent script consisting of four scenes. Each scene features a specific animal character
performing diverse activities in every scene. This task assesses the capability of the T2V model to
generate consistent appearance of the entity and its background while adhering to the different actions
(or events) described in the multi-scene text script.

Different characters in a specific visual context (S2). In this scenario, we instruct a language model,
GPT-4, to create a coherent script consisting of four scenes. Each scene features different animal
characters engaging in the same activity in every scene [45]. This task assesses the capability of the
T2V model to generate consistent appearance of the background while adhering to the appearance of
the different characters in the multi-scene text script.

Multi-scene captions from real videos (S3). Here, we aim to assess the ability of the model to
generate multi-scene videos for open-ended prompts that are derived from real-world videos. This
task also assesses the ability of the T2V model to generate consistent appearances of the entity and
its background while adhering to multi-scene descriptions. Specifically, we use our multi-scene
video-text data generation pipeline (§3.2) to create such prompts for the real videos from the test
splits of the video-text datasets. In total, we generate 100 prompts in this scenario. We present a
sample of the various task prompts in the Appendix §F. We present the details about the human and
automatic evaluators in §B.

4.3 Evaluation Setup

We compute the performance of the baselines and TALC by averaging the scores assigned to videos
generated for two, three, and four scenes. Additionally, we report on visual consistency by averaging
the performance across the entity and background consistency metrics. Here, the entity consistency
scores are calculated for the task prompts S1 and S3 (since S2 aims to change the characters across
scenes), and the background consistency and text adherence scores are computed for all the task
prompts. We also evaluate the impact of TALC-based finetuning for single-scenes in Appendix §M.
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5 Experiments

5.1 Text-to-Video Generative Models

We perform most of our experiments on ModelScope [49] due to its easy-of-access and adoption in
prior works [30]. In addition, we also include Lumiere-T2V, a model that leverages space-time U-Net
denoising networks to generate high-quality videos. In this work, we include early experiments with
Lumiere to showcase the flexibility of the TALC approach on diverse models. We perform human
evaluation for ModelScope, and automatic evaluation for both ModelScope and Lumiere.

Base model with TALC. As described in §3.1, our approach modifies the traditional text-conditioning
mechanism to be aware of the alignment between text descriptions and individual video scenes. By
design, the TALC framework can be applied to the base T2V model during inference, without any
multi-scene finetuning. Here, we generate 16 frames per scene from ModelScope and 80 frames per
scene from Lumiere. We provide more details in Appendix §J.

Finetuning with TALC. Since the base model is pretrained with single-scene data, we aim to show
the usefulness of TALC framework when we have access to the multi-scene video-text data. To
this end, we finetune ModelScope on the multi-scene video-text data (§3.2) with TALC framework.
As a pertinent baseline, we also finetune the ModelScope without TALC framework by naively
merging the scene-specific captions in the raw text space. In this setting, we finetune the T2V model
with 8 frames per scene and the maximum number of scenes in an instance is set to 4. We provide
further details on the finetuning setup in Appendix §L. The inference settings are identical to the
prior method of generating videos from the base model without finetuning.

In this section, we present the results for the baselines and TALC framework averaged over a
diverse task prompts and multiple scenes using automatic evaluation (§5.4) and human evaluation
(§5.3). Finally, we provide qualitative examples for the multi-scene generated videos to showcase the
usefulness of our approach (§5.5).

5.2 Baselines

Merge Captions In this setup, we create a single caption by merging all the multi-scene descriptions.
While this approach mentions the temporal sequence of the events in a single prompt, the T2V model
does not understand the temporal boundaries between the two events. Specifically, the visual features
for all the frames will aggregate information from the entire multi-scene description, at once, without
any knowledge about the alignment between the scene description and its expected appearance.

Merge Videos In this setup, we generate videos for each scene description individually and merge
them in the raw input space. In this process, the parts of the multi-scene video closely adhere to the
scene descriptions, leading to high text fidelity. However, since the generated videos do not have
access to all the multi-scene descriptions (e.g., the video for Scene 2 is not informed about Scene 1),
the visual consistency across the entire video is quite poor.

FreeNoise We also consider a more sophisticated approach, FreeNoise [38]. Specifically, it
reschedules a sequence of noises for long-range correlation and perform temporal attention over
them by window-based fusion. In addition, it includes motion injection method to support the
generation of videos conditioned on multiple text prompts. Due to its complexity, this method
involves setting various hyperparameters, including the denoising step at which motion injection
should be activated, the cross-attention layers where prompts are injected, and the frames between
which the prompt representations should be interpolated. In this work, we evaluate the publicly
available implementation with VideoCrafter [13] on our unseen prompts.3 While Gen-L-Video [48]
has been shown to perform worse than FreeNoise, we conduct a qualitative analysis to emphasize the
robustness of our method against it. (§5.5).4

3https://github.com/AILab-CVC/FreeNoise
4Other approaches such as VideoDirectorGPT [30] and Phenaki [45] are not publicly available.
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5.3 Human Evaluation

TALC achieves the best performance in human evaluation. We compare the performance of the
baselines and TALC framework using human evaluation in Table 1. We find that TALC applied to
ModelScope (MS) outperforms FreeNoise by achieving a relative gain of 21% on the overall score.
In addition, finetuning MS with TALC framework increases the video generation capability, leading
to relative gain of 27% over FreeNoise in the overall score. The poor performance of FreeNoise can
be attributed to the inability to introduce new content and limited motions as the multiple scenes
(> 2) are requested. We provide some qualitative examples for FreeNoise to highlight its limitations
in Appendix N. In addition, we find that using TALC framework in the base model outperforms the
merging captions and merging video methods with the base model by 7.6 points and 11.1 points,
respectively, on the overall score. Further, we note that TALC-finetuned model outperforms the
merging captions and merging video methods with the base model by 12 points and 15.5 points,
respectively, on the overall score.

Additionally, we observe that the merging captions with the base model achieves the highest visual
consistency score of 96.5 points while it is the lowest for merging videos generated from the base
model. Our results indicate that merging videos independently for the individual scene descriptions
does not preserve the background and entity appearances across the different frames. Further, we
note that the text adherence of the TALC-finetuned and TALC-base model is better than merging
captions-finetuned and merging captions-base model, respectively. The high text adherence for
merging videos can be attributed to its design where individual video scenes adhere to the scene-
specific descriptions well. Overall, our empirical findings highlight that our simple framework can
enable robust multi-scene video generation with finetuning. We present the results for the visual
quality metric in Appendix D.

Table 2: Automatic evaluation results for ModelScope. We compare the performance of the baselines and
TALC framework using the automatic evaluation for ModelScope generative model. Similar to the human
evaluation, we observe that our simple approach achieves the best overall score with the base model (TALC)
and finetuned model (Finetuning w/ TALC). We abbreviate visual consistency as VC, and text adherence as TA.

Overall score VC TA
Merge captions 61.7 91.0 32.4
Merge videos 67.5 (+9.4%) 65.0 70.0
Finetuning w/ Merge captions 57.3 (−7.1%) 77.0 37.5
TALC 68.6 (+11.2%) 89.9 47.2
Finetuning w/ TALC 75.6 (+22.5%) 89.0 62.3

Table 3: Automatic evaluation results for Lumiere. We present the results for the comparison between the
baselines and TALC for the Lumiere video generative model. Specifically, our results indicate that TALC
achieves the highest overall score, by achieving 7.1% relative gains over merge captions on the overall score.
This indicates that TALC is a flexible strategy that can be applied to diverse video generative models. We
abbreviate visual consistency as VC, and text adherence as TA.

Overall score VC TA
Merge captions 64.4 94.7 34
Merge videos 66.5 (+3.2%) 68.0 65.0
TALC 69.0 (+7.1%) 97.8 40.0

5.4 Automatic Evaluation

We compare the performance of the baselines with the TALC framework for ModelScope and
Lumiere using the automatic evaluation in Table 2 and 3, respectively.

TALC outperforms the baselines without any finetuning. In Table 2, we find that the overall
score, average of visual consistency and text adherence, of the multi-scene videos generated using
the base ModelScope with TALC (68.6 points), outperforms the overall score achieved by the videos
generated using merging captions (61.7 points) and merging videos (67.5 points) with the base
ModelScope. In addition, we observe that the text adherence using TALC outperforms merging
captions by 14.8 points, while the text adherence is the highest with a score of 70 points using merging
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videos. In Table 3, we observe similar trends for the Lumiere T2V generative model. Specifically, we
find that the overall score for TALC outperforms merging captions and merging videos by 4 points
and 2 points, respectively. In addition, we observe that merging captions and TALC achieve a high
visual consistency score while merging videos independently has poor visual consistency. Further, we
find that TALC outperforms merging captions by 5 points on text adherence, while merging videos
achieves the highest text adherence 65 points. This highlights that the model more easily generates
multi-scene videos that adhere to individual text scripts, whereas adherence to the text diminishes
when the model is given descriptions of multiple scenes all at once.

Finetuning with TALC achieves the best performance. In Table 2, we find that finetuning with
TALC achieves the highest overall score of 75.6 points in comparison to all the baselines. Specifically,
we observe that the visual consistency does not change much with finetuning using the TALC method
(89.9 points vs 89 points). Interestingly, we observe that finetuning with merging captions reduces
the visual consistency by a large margin of 14 points. This can be attributed to the lack of knowledge
about the natural alignment between video scenes and individual scene descriptions, which gets lost
during the merging of captions. Additionally, we find that the text adherence of the TALC-finetuned
model is 15.1 points more than the text adherence of the TALC-base model. This highlights that
finetuning a T2V model with multi-scene data helps the most with its text adherence capability.
Fine-grained Results. To perform fine-grained analysis of the performance, we assess the visual
consistency and text adherence scores for the baselines and TALC framework across diverse task
prompts and number of scenes on ModelScope. We present their results in Appendix §I. In our
analysis, we find that finetuning with TALC achieves the highest overall score over the baselines
across all the scenarios. In addition, we notice that the highest performance is achieved in the
scenario that consist of the different entities in a specific visual context. Further, we observe that
the performance of the all the methods reduces when the task prompts get more complex i.e., multi-
scene captions from real videos. In addition, we observe that finetuning with TALC achieves the
highest overall score over the baselines across all the number of scenes. Specifically, we observe that
the performance of the merging captions and TALC framework reduces as the number of scenes
being generated increases. Overall, we show that the TALC strikes a good balance between visual
consistency and text adherence to generate high-quality multi-scene videos.

5.5 Qualitative Analysis

We provide qualitative examples of generating multi-scene videos using TALC, FreeNoise and Gen-
L-Video in Appendix Figure 10 and Figure 11. Our analysis demonstrates that all methods are capable
of generating multi-scene videos that exhibit a high degree of text adherence. However, the primary
distinction lies in the quality of the videos. FreeNoise is capable of producing videos characterized by
superior quality and visual coherence. Nonetheless, the motion within these videos is notably limited,
resulting in a relatively static scene. Gen-L-Video can generate videos that incorporate motion.
However, visual consistency is not maintained throughout the video. For instance, in the provided
example depicting a man engaged in both surfing and skiing, the man’s appearance undergoes
noticeable changes across the video. Overall, we observe that TALC is capable of generating realistic
multi-scene videos that not only exhibit high textual adherence but also maintain visual consistency.
Furthermore, the transitions between scenes are smooth and natural.

6 Conclusion

We introduced TALC, a simple and effective method for improving the text-to-video (T2V) models
for multi-scene generation. Specifically, it incorporates the knowledge of the natural alignment
between the video segments and the scene-specific descriptions. Further, we show that TALC-
finetuned T2V model achieve high visual consistency and text adherence while the baselines suffer
from one or both of the metrics. Given its design, our framework can be easily adapted into any
diffusion-based T2V model. An important future direction will be to scale the amount of multi-scene
video-text data and deploy TALC framework during pretraining of the T2V models.
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A Related Work

Text-to-Video Generative Modeling: Diffusion models like Imagen Video [21] represent a sig-
nificant advancement in T2V synthesis, yet generating multi-scene videos that realistically capture
the complexity of the physical world [1, 47, 10] remains challenging. Recent research has attempted
longer video generation, but limitations persist. Phenaki [45] targets arbitrary-length videos with a
focus on temporal coherence, though its evaluation is constrained by the lack of publicly available
code. VideoDirectorGPT [30], DirecT2V [23], and Free-bloom [24] employ zero-shot approaches
for multi-scene generation, contrasting with our fine-tuned method for enhanced performance. Gen-
L-Video [48] uses iterative denoising to create consistent videos by aggregating overlapping short
clips, but it typically generates videos with a maximum of two scenes, whereas our method supports
up to four distinct scenes. StreamingT2V [19] employs an auto-regressive, streaming-based approach
for continuous video generation. While these methods contribute to long video generation, they often
struggle with maintaining visual consistency and adherence to multi-scene textual descriptions, which
are critical for storytelling.

Multi-Scene Video Generation: Efforts like Phenaki [45] and Stable Video Diffusion [7] push
the boundaries of text-driven generation by scaling latent diffusion models. Dreamix [34] and
Pix2Video [12] utilize diffusion models for video editing and animation, while methods like
MCVD [46] and VDT [32] focus on improving temporal consistency in longer videos. Despite
these advances, generating multi-scene videos that accurately reflect complex narratives with high
visual fidelity remains difficult, as shown by ongoing research in projects like VideoPoet [28],
ModelScope [49], and Make-A-Scene [17]. TALC addresses the challenges of multi-scene video
generation by enhancing visual consistency and text adherence across scenes. Unlike zero-shot
methods, TALC leverages fine-tuning on a curated multi-scene video dataset. We also propose a
comprehensive evaluation protocol, combining human evaluation and automated assessments using
GPT-4V, to ensure robust narrative coherence in the generated videos.

B Evaluator

Human Evaluation. Here, we use the annotators from Amazon Mechanical Turk (AMT) to provide
their judgements for the generated videos. Specifically, we choose the annotators that pass a
preliminary qualification exam. Subsequently, they assess the multi-scene generated videos along the
dimensions of entity and background consistency, text adherence, and visual quality. For each metric,
the multimodal model assigns one of three possible response {yes = 1, partial = 0.5, no = 0}.
For instance, yes for the entity consistency metric implies that the video frames sampled from the
generated video have consistent appearance of the entity described in the multi-scene script. We
present the screenshot of the UI in Appendix §H.

Automatic Evaluation. Here, we utilize the capability of a large multimodal model, GPT-4-Vision
[35], to reason over multiple image sequences. First, we sample four video frames, uniformly,
from each scene in the generated video (e.g., 8 videos frames for two-scene video). Then, we
prompt the multimodal model with the temporal sequence of video frames from different scenes and
the multi-scene text description. The model is instructed to judge the generated videos for visual
consistency and text adherence, similar to the human evaluation. In this work, we do not utilize any
existing video-text alignment models [52, 5] for evaluating text adherence as they are trained on
single-scene video-text datasets. We find that the agreement between the automatic evaluation and
human evaluation is 77%. We present the automatic evaluation prompt in Appendix §G.

C Multi-scene video data sources

To construct a multi-scene video-text dataset, we utilize existing dataset that include natural (real)
videos and associated high-quality human-written captions that summarize the entire video. Specif-
ically, we choose MSR-VTT [53] and VaTeX [51]. Most of the videos in MSR-VTT are 10-30
seconds long while VaTeX consists 10 seconds long videos. In addition, each video in MSR-VTT and
VaTeX consists 20 captions and 10 captions, respectively, out of which one is selected at random for
multi-scene data generation. As described above, a single video is cut into multiple video segments
using Pyscene library. In our experiments, we retain the first four video segments and discard any
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0:00 0:08 0:12 0:17 0:22Seconds

Gemini
Multi-Image 
Captions

The lady gets the 
dried/smoked prawns 
ready for use

She then adds the dried 
crayfish to the pot

Next, she includes 
tomato puree for that 
rich, tangy flavor

Salt is added to taste, 
and everything is stirred 
together

PyScene 
Scene Cuts

Caption A woman in a colorful scarf is showing how to make a stew

Figure 4: Our approach for generating time-aligned video captions. The process begins with
PyScene cuts identifying the boundaries of distinct scenes within a video. Keyframes are then selected
from the median of each scene. These frames are processed collectively through the Gemini model to
produce multi-image captions that maintain narrative continuity by contextualizing each scene within
the video’s overall sequence.

additional segments if the library generates more than four. Since the accuracy of the multi-scene cap-
tioning and the computational demands during finetuning are influenced by the number of scenes, we
opt to limit the scene count to four for our experiments. However, future work could employ similar
methodologies to scale the number of scenes, given more computing power and advanced multi-scene
captioning models. We provide the data statistics for the final multi-scene data in Appendix §K.

D Visual quality of the generated videos.

Table 4: Human evaluation results on the visual quality of the generated videos from ModelScope.
We observe that the visual quality of the generated videos are close to each other for the base model.
However, finetuning the model with merging captions reduces the video quality by a large margin
while TALC-finetuned model retains the video quality.

Method Quality
FreeNoise 80

Merge captions 80.5
Merge videos 86.5

Finetuning w/ Merge captions 63.4
TALC 84.5

Finetuning w/ TALC 83.3

We compare the visual quality of the generated videos using human evaluation in Table 4. We find
that the visual quality of videos generated from the base model ranges from 80 − 86.5 using the
baselines and TALC framework. However, we observe that the visual quality of generated videos is
quite poor for the model finetuned with merging captions with a score of 63.4 points. This highlights
that finetuning a T2V model with multi-scene video-text data by naively merging the scene-specific
descriptions in the raw text space leads to undesirable artifacts in the generated video. Finally, we
find that the TALC-finetuned model (83.3) achieves a video quality score similar to that of the
TALC-base model (84.5), indicating that our finetuning data preserves the visual quality observed
during the model’s pretraining.

E Prompt for Multi-Scene Caption Generation

We present the prompt used to generate multi-scene captions using large multimodal model, Gemini-
Pro-Vision, in Figure 5. In particular, we utilize Gemini-Pro-Vision since it can reason over multiple
image sequences. Specifically, we provide the multimodal model with a video frame from each of
the segmented videos and the single caption for the entire video present in the original video-text
datasets.
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Your task is to create captions for a series of images, each taken from different video scenes. For every image shown, craft a 7-10
word caption (7-10 words) that precisely describes what’s visible, while also linking these captions into a fluid, engaging story. A
common caption will be given to help guide your narrative, ensuring a smooth transition between scenes for a cohesive story flow.
Remember to not hallucinate in your responses.

Common Caption: {caption}

Figure 5: Prompt to generate multi-scene caption using large multimodal models.

F Task Prompts

F.1 Single character in multiple visual contexts

We present the prompt used to generate multi-scene text descriptions for single character in multiple
visual contexts from GPT-4 in Figure 6.

Create four concise continuous movie scenes (7-10 words) focusing on a specific real-world character. The scenes should form a
cohesive narrative.

Guidelines:

Choice of Character: Select a real-world animal as the focal point of your scenes.
Scene Description: Clearly describe the setting, actions, and any notable elements in each scene.
Connection: Ensure that the scenes are logically connected, with the second scene following on from the first.
Brevity and Precision: Keep descriptions short yet vividly detailed.

Example:

Character: polar bear
Scene 1: A polar bear navigates through a icy landscape.
Scene 2: The polar bear hunts seals near a crack in the ice.
Scene 3: The polar bear feasts on the seal.
Scene 4: The polar bear curls up for a nap.

Now it’s your turn.

Figure 6: GPT-4 Prompt to generate multi-scene prompts for single character in multiple visual
contexts.

F.2 Different characters in a specific visual context

We present the prompt used to generate multi-scene text descriptions for different characters in a
specific visual context from GPT-4 in Figure 7.

Create four concise scene descriptions (7-10 words) where different characters perform identical action/events.

Choice of Characters: Select four real-world animals as the focal point of the individual scenes.
Background Consistency: Ensure that the background is consistent in both the scenes.
Brevity and Precision: Keep descriptions short yet vividly detailed.

Example:
Characters: teddy bear, panda, grizzly bear, polar bear
Scene 1: A teddy bear swims under water.
Scene 2: A panda swims under the same water.
Scene 3: A panda swims under the same water.
Scene 4: A panda swims under the same water.

Now it’s your turn.

Figure 7: GPT-4 Prompt to generate multi-scene prompts for different characters in a specific visual
context.

G Automatic Evaluation Prompt

We present the prompt used to perform automatic evaluation of the multi-scene generated videos
using large multimodal model, GPT-4-Vision, in Figure 8. We utilize GPT-4-Vision for automatic
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evaluation since it can reason over multiple images. Specifically, we provide the multimodal model
with four video frames for each scene in the generated video. The model has to provide its judgments
based on the entity consistency, background consistency, and text adherence of the video frames.

You are a capable video evaluator. You will be shown a text script with two-scene descriptions where the events/actions . Video
generating AI models receive this text script as input and asked to generate relevant videos. You will be provided with eight video
frames from the generated video. Your task is to answer the following questions for the generated video.
1. Entity Consistency: Throughout the video, are entities consistent? (e.g., clothes do not change without a change described in the
text script)
2. Background Consistency: Throughout the video, is the background consistent? (e.g., the room does not change described in the
text script)
3. Text Adherence: Does the video adhere to the script? (e.g., are events/actions described in the script shown in the video accurately
and in the correct temporal order)

Respond with NO, PARTIALLY, and YES for each category at the end. Do not provide any additional explanations.

Two-scene descriptions:

Scene 1: {scene1}
Scene 2: {scene2}

Figure 8: Prompt used to perform automatic evaluation of the multi-scene generated videos. We use
this prompt when the number of scenes in the task prompt is two.

H Human Evaluation Screenshot

We present the screenshot for the human evaluation in Figure 9. Specifically, we ask the annotators
to judge the visual quality, entity consistency, background consistency, and text adherence of the
multi-scene generated videos across diverse task prompts and number of scenes.

Figure 9: Human Annotation Layout

I Fine-grained Analysis

We present the automatic evaluation results across task prompts (§I.1) and number of scenes (§I.2).

I.1 Task Prompts

We compare the performance of the baselines and TALC framework across different task prompts
in Table 5. We find that the TALC-finetuned model achieves the highest overall score over all the
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baselines. Specifically, we find that the TALC framework achieves a high visual consistency with
scores close to the merging captions baseline. Further, we observe that the TALC framework achieves
a higher text adherence in comparison to the merging captions, with or without finetuning, across all
the task prompts.

Table 5: Automatic evaluation results across task prompts. Here, S1 refers to the single character
in multiple visual contexts. S2 refers to the different characters in a specific visual context. S3 refers
to the multi-scene captions from real videos. We abbreviate Finetuning as F.T., Visual consistency as
V.C., Text adherence as T.A.

Method S1 S2 S3
V.C. T.A. Overall V.C. T.A. Overall V.C. T.A. Overall

Merge captions 95.9 43.8 69.9 99.5 21.5 60.5 81.9 32.0 56.9
Merge videos 69.4 71.5 70.5 71.2 82.3 76.7 57.9 58.7 58.3

F.T. w/ merge captions 94.2 57.1 75.7 94.9 31.2 63.1 50.8 24.3 37.5
TALC 93.6 48.3 71.0 99.3 57.3 78.3 81.4 36.1 58.8

F.T. w/ TALC 93.3 62.6 77.9 98.9 76.3 87.6 79.7 47.9 63.8

I.2 Number of Scenes

We compare the performance of the baselines and TALC framework across different number of
generated scenes in Table 6. We find that the TALC-finetuned model outperforms all the baselines in
this setup. In addition, we find that the visual consistency of the TALC framework does not change
much with the number of the scenes. However, we find that the text adherence of the baselines
and TALC framework reduces with the number of generated scenes. The text adherence scores of
the merging videos does not change with the number of scenes as it generates the videos for the
individual scenes independently.

Table 6: Automatic evaluation results across different number of scenes in the task prompts. We
abbreviate Finetuning as F.T., visual consistency as V.C., and Text Adherence as T.A.

# scenes = 2 # scenes = 3 # scenes = 4
V.C. T.A. Overall V.C. T.A. Overall V.C. T.A. Overall

Merge captions 93.2 34.4 63.8 92.5 33.0 62.7 87.4 29.9 58.6
Merge videos 66.7 69.9 68.3 65.2 71.9 68.6 63.5 70.7 67.1

F.T. w/ merge captions 87.7 45.7 66.7 83.2 39.5 61.4 60.0 27.4 43.7
TALC 92.6 54.4 73.5 89.8 48.0 68.9 87.3 39.3 63.3

F.T. w/ TALC 88.5 66.6 77.5 90.7 64.1 77.4 87.8 56.1 71.9

J Inference Details

We provide the details for sampling multi-scene videos from the ModelScope and Lumiere T2V
models in Table 7 and Table 8, respectively.

Table 7: Sampling setup for ModelScope T2V model.

Resolution 256 × 256
Number of video frames per scene 16

Guidance scale 12
Sampling steps 100
Noise scheduler DPMSolverMultiStepScheduler

add FreeNoise details too

K Multi-Scene Data Statistics

We provide the details for the multi-scene video-text dataset in Table 9.
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Table 8: Sampling setup for Lumiere T2V model.

Resolution 1024 × 1024
Number of video frames per scene 80

Guidance scale 8
Sampling steps 256
Noise scheduler DPMSolverMultiStepScheduler

Table 9: Multi Scene Video-Text Data Statistics

Number of entire videos 7107
% of single scene 27.3%
% of two scenes 25.4%

% of three scenes 31.3%
% of four scenes 16.0%

Number of video scene-caption instances 20177

L Finetuning Details

We provide the details for finetuning ModelScope T2V model with TALC framework in Table 10.

Table 10: Training details for the TALC-finetuned ModelScope T2V model.

Base Model ModelScope 5

Trainable Module UNet
Frozen Modules Text Encoder, VAE

Batch size 20
Number of GPUs 5 Nvidia A6000

Resolution 256 × 256
Crop CenterCrop

Learning Rate Scheduler Constant
Peak LR 1.00E-05

Warmup steps 1000
Optimizer Adam (0.9, 0.999, 1e-2, 1e-8) [26]

Max grad norm 1
precision fp16

Noise scheduler DDPM
Number of frames per video scene 8

prediction type epsilon

M Single-Scene Video Generation

To ascertain that our model’s new multi-scene generation function does not detract from its single-
scene generation performance, we conducted a series of evaluations using the VBench framework [25].
VBench offers a robust analysis of various video generation aspects such as adherence to text prompts,
stylistic integrity, semantic coherence, and overall aesthetic quality.

Our analysis, shown in Table 11, establishes a refined baseline: ModelScope (Single-Scene Fine-
tuning), fine-tuned on single-scene video generation data. This process yielded an average score of
0.48, indicating a decrease from the base ModelScope’s average score of 0.63. This suggests that
the optimizations in the base model, such as integrating high-quality images, are not fully utilized in
single-scene fine-tuning.

Interestingly, fine-tuning the model on multi-scene data (ModelScope - Multi-Scene Finetuning)
resulted in improved performance with an average score of 0.59, surpassing the single-scene fine-
tuned version. This indicates that multi-scene data enriches the model’s understanding of video
content, enhancing both multi-scene and single-scene video generation.
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Texp prompts: (1) A man is surfing in the sea (2) A man is skiing in the snow.
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Texp prompts: (1) A jeep car is driving on the snow, sunny (2) A jeep car is driving on the snow, night.
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Figure 10: Examples of videos generated by TALC with Lumiere, FreeNoise and Gen-L-Video.
The videos generated using TALC with Lumiere exhibited smooth motion, seamless transitions
between text prompts, and high overall quality. In contrast, videos created with FreeNoise were of
lower quality, with notably less motion. For example, in the second video, the background remained
static except for darkening, and the jeep did not appear to be in motion. Videos generated with Gen-
L-Video demonstrated less smooth transitions between prompts and, at times, showed inconsistencies
in object representation, as seen in the first video where the man’s appearance changed repeatedly.

This comparison highlights the importance of data curation and fine-tuning strategies, showing that
our approach not only enables complex multi-scene narratives but also improves single-scene video
generation.

N FreeNoise failure cases

In this work, we observe that the state-of-the-art method FreeNoise [38] does not perform well on
our multi-scene prompts. We provide some qualitative examples to show its inability to introduce
new content and limited motions as multiple scenes are requested in Figure 12, 13, and 14.
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“Scene 1: A small town nestled on a hillside overlooks a sparkling bay.” “Scene 2: Tourists explore the narrow streets of a quaint village.”

“Scene 1: Red panda is moving in the forest” “Scene 3: The red panda finds a 
map inside the treasure chest.”“Scene 2: The red panda spots a treasure chest”

“Scene 1: A bald eagle soars above rugged cliffs” “Scene 2: The bald eagle swoops down to snatch a fish from the river below.”

Figure 11: Qualitative examples of videos generated by TALC with ModelScope. Videos
generated with TALC allow for the creation of videos where a single object performs multiple actions
while maintaining visual consistency. Furthermore, TALC facilitates the generation of videos with
diverse scenes, as demonstrated in the final example.

Table 11: Single-Scene Evaluation Results using VBench, comparing the base model, when it is
fine-tuned on multi-scene data, and single-scene data (‘f.t.’ stands for fine-tuned). Our analysis
shows ModelScope (Single-Scene Finetuning) as a refined baseline with an average score of 0.48,
compared to the base ModelScope’s 0.63. Fine-tuning on multi-scene data (ModelScope - Multi-
Scene Finetuning) yields an improved score of 0.59, highlighting the efficacy of multi-scene data in
enhancing video generation performance.

Dimension ModelScope (Base) ModelScope (Multi-scene f.t.) ModelScope (Single-Scene f.t.)

Appearance style 0.23 0.24 0.21
Color 0.85 0.83 0.78
Human action 0.96 0.92 0.75
Object class 0.86 0.77 0.42
Overall consistency 0.26 0.26 0.22
Spatial relationship 0.35 0.29 0.14
Subject consistency 0.90 0.83 0.75
Temporal flickering 0.97 0.89 0.86
Temporal style 0.26 0.25 0.21

Average 0.63 0.59 0.48

Figure 12: FreeNoise generation for the prompt: "A wolf howls at the moon in a dense forest.; The
wolf prowls stealthily through the underbrush, eyes gleaming.; The wolf catches a scent and follows
it eagerly.; The wolf emerges victorious, holding a fresh kill." Explanation: The generated scene
shows a wolf standing in a forest, but the key actions described in the prompt are missing. The wolf
does not prowl, its eyes are not gleaming, it does not follow any scent, and no kill is presented. This
indicates a significant gap in the model’s ability to convey the sequential and dynamic nature of the
narrative.
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Figure 13: FreeNoise generation for the prompt: "A chimpanzee swings effortlessly through the
forest canopy.; The chimpanzee gathers fruit, chattering with companions." Explanation: Instead of
depicting the chimpanzee swinging through the canopy, the generated scene shows it sitting on a tree
branch and then on the ground. Furthermore, the scene lacks the critical elements of the prompt, such
as the presence of fruits and companions, which are essential for conveying the intended narrative.

Figure 14: FreeNoise generation for the prompt: "A tiger prowls through dense jungle undergrowth
stealthily.; The tiger ambushes a deer, swift and deadly." Explanation: The scene fails to show
the tiger ambushing a deer as described. Instead, the tiger is depicted standing calmly, and no deer
is visible. Additionally, a second tiger appears unexpectedly from the first tiger’s body, abruptly
changing directions, which introduces further inconsistencies and detracts from the intended narrative.

22


	Introduction
	Preliminaries
	Diffusion Models for Text-to-Video Generation
	Text Conditioning Mechanism
	Multi-Scene Text-to-Video Generation

	TALC: Time-Aligned Captions for Multi-Scene T2V Generation
	Approach
	Multi-Scene Video-Text Data Generation

	Evaluation
	Metrics
	Task Prompts
	Evaluation Setup

	Experiments
	Text-to-Video Generative Models
	Baselines
	Human Evaluation
	Automatic Evaluation
	Qualitative Analysis

	Conclusion
	Acknowledgement
	Related Work
	Evaluator
	Multi-scene video data sources
	Visual quality of the generated videos.
	Prompt for Multi-Scene Caption Generation
	Task Prompts
	Single character in multiple visual contexts
	Different characters in a specific visual context

	Automatic Evaluation Prompt
	Human Evaluation Screenshot
	Fine-grained Analysis
	Task Prompts
	Number of Scenes

	Inference Details
	Multi-Scene Data Statistics
	Finetuning Details
	Single-Scene Video Generation
	FreeNoise failure cases

