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Theory of Consistency Diffusion Models: Distribution Estimation
Meets Fast Sampling

Anonymous Authors1

Abstract
Diffusion models have revolutionized various ap-
plication domains, including computer vision and
audio generation. Despite the state-of-the-art per-
formance, diffusion models are known for their
slow sample generation due to the extensive num-
ber of steps involved. In response, consistency
models have been developed to merge multiple
steps in the sampling process, thereby signifi-
cantly boosting the speed of sample generation
without compromising quality. This paper con-
tributes towards the first statistical theory for con-
sistency models, formulating their training as a
distribution discrepancy minimization problem.
Our analysis yields statistical estimation rates
based on the Wasserstein distance for consistency
models, matching those of vanilla diffusion mod-
els. Additionally, our results encompass the train-
ing of consistency models through both distilla-
tion and isolation methods, demystifying their
underlying advantage.

1 Introduction
Diffusion models have achieved the state-of-the-art perfor-
mance in cross-domain applications, such as computer vi-
sion (Song & Ermon, 2019; Dathathri et al., 2019; Ho et al.,
2020; Song et al., 2020c), audio generation (Kong et al.,
2020; Chen et al., 2020), language generation (Li et al.,
2022; Yu et al., 2022; Lovelace et al., 2022), reinforcement
learning and control (Pearce et al., 2023; Chi et al., 2023;
Hansen-Estruch et al., 2023; Reuss et al., 2023), as well as
computational biology (Lee et al., 2022c; Luo et al., 2022;
Gruver et al., 2023). These break-through performances
are enabled by the unique design in the diffusion models.
Specifically, diffusion models utilize the forward and back-
ward processes to generate new samples. In the forward
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process, a clean data point is progressively contaminated by
random noise, while the backward process attempts to re-
move the noise iteratively (typically 500 to 1000 steps (Song
& Ermon, 2019)) using a so-called score neural network.

Due to the enormous size of the score neural network, e.g.,
the smallest stable diffusion model uses a network of more
than 890M parameters (Rombach et al., 2022), the sam-
ple generation speed of diffusion models is limited (Song
et al., 2023), compared to Generative Adversarial Networks
(Goodfellow et al., 2020) and AutoEncoders (Kingma et al.,
2019). To overcome this shortcoming, there are extensive
methodological studies aiming to accelerate diffusion mod-
els. Notable methods include sampling with stride to reduce
the backward steps (Nichol & Dhariwal, 2021; Song & Er-
mon, 2020; Lu et al., 2022), changing the backward process
to a deterministic probabilistic flow (Song et al., 2020a; Kar-
ras et al., 2022; Zhang et al., 2022), and utilizing pretrained
variational autoencoders to reduce the data dimensionality
before applying diffusion models (Rombach et al., 2022).
These methods lead to sampling speed acceleration, but are
prone to degrade the quality of the generated samples.

More recently, consistency models (Song et al., 2023)
achieve a significant sampling speed boost, while main-
taining the high quality in generated samples. Roughly
speaking, consistency models merge a large number of con-
secutive steps in the original backward process by addi-
tionally training a consistency network via distillation or
isolation. The distillation method requires a pretrained dif-
fusion model, yet isolation lifts this requirement. In either
ways, it suffices to deploy the consistency model for very
few times or even a single time to generate a new sample.

Despite the empirical success, theoretical underpinnings of
consistency models are limited. In particular, the following
question is largely open:

What is the statistical error rate of consistency models for
estimating the data distribution? How does it compare to

the vanilla diffusion models?

In this paper, we provide the first theoretical study towards
a positive answer to the preceding question. Specifically,
we consider both the distillation and isolation methods and
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Theory of Consistency Diffusion Models

establish statistical estimation rate of consistency models
in terms of the Wasserstein distance. We summarize our
contributions as follows:

• We formulate the training of consistency models as a
Wasserstein distance minimization problem. This formula-
tion is the first principled objective of consistency models,
encompassing the practical consistency models’ training
proposed in Song et al. (2023).

• We establish statistical distribution estimation guarantees
of consistency models trained under the distillation method.
We demonstrate in Theorem 4.1 that the distribution esti-
mation error is dominated by the score estimation error,
showing that consistency models preserve the distribution
estimation ability of vanilla diffusion models, but allow
efficient sample generation.

• We extend our study to the isolation method, establishing
analogous statistical estimation result. An Õ(n−1/d) sta-
tistical error rate is obtained in Theorem 4.2 without any
pretraining on the score function.

These results are the first attempt to demystify consistency
models from a statistical estimation perspective.

1.1 Related Work

Our work is related to the recent sampling theory of con-
sistency models (Lyu et al., 2023), where they assume the
score function as well as a multi-step backward process sam-
pler have been accurately estimated. Our analysis, however,
does not require such assumptions. In fact, we provide sam-
ple complexity bounds of ensuring these estimation errors
being small. Apart from (Lyu et al., 2023), recent theoretical
advances in diffusion models can be roughly categorized
into sampling and statistical theories.

Sampling Theory of Diffusion Models This line of
works show that the distribution generated by a diffusion
model is close to the data distribution, as long as the score
function is assumed to be accurately estimated. Specifi-
cally, De Bortoli et al. (2021); Albergo et al. (2023) study
sampling from diffusion Schrödinger bridges with L∞ ac-
curate score functions. Concrete sampling distribution error
bounds of diffusion models are provided in Block et al.
(2020); Lee et al. (2022a); Chen et al. (2022); Lee et al.
(2022b) under different settings, yet they all assume access
to L2 accurate score functions. Lee et al. (2022a) require the
data distribution satisfying a log-Sobolev inequality. Con-
current works Chen et al. (2022) and Lee et al. (2022b)
relax the log-Sobolev assumption to only having bounded
moments conditions.

It is worth mentioning that Lee et al. (2022b) allow the er-
ror of the score function to be time-dependent. Recently,
Chen et al. (2023c;b); Benton et al. (2023) largely enrich
the study of sampling theory using diffusion models. Specif-

ically, novel analyses based on Taylor expansions of the
discretized backward process (Li et al., 2023) or localiza-
tion method (Benton et al., 2023) are developed. Further,
Chen et al. (2023c;b) extend to broad backward sampling
methods. Besides Euclidean data, De Bortoli (2022) made
the first attempt to analyze diffusion models for learning
low-dimensional manifold data. Moreover, Montanari &
Wu (2023) consider using diffusion processes to sample
from noisy observations of symmetric spiked models and
El Alaoui et al. (2023) study polynomial-time algorithms
for sampling from Gibbs distributions based on diffusion
processes.

Statistical Theory of Diffusion Models Distribution es-
timation bounds of diffusion models are first explored in
Song et al. (2020b) and Liu et al. (2022) from an asymp-
totic statistics point of view. These results do not provide
an explicit sample complexity bound. Later, Oko et al.
(2023) and Chen et al. (2023a) establish sample complexity
bounds of diffusion models for both Euclidean data and
low-dimensional subspace data. More recently, Yuan et al.
(2023) study the distribution estimation of conditional dif-
fusion models with scalar reward guidance. Mei & Wu
(2023) investigate statistical properties of diffusion models
for learning high-dimensional graphical models.

Notation: For a mapping F : RD → Rd and a distribu-
tion D supported on RD, F♯D stands for the push forward
distribution, which means Law(F (x)) where x ∼ D. For
brevity, we denote cD := f♯D where f : x 7→ cx is a
scaling function. For two distributions D1,D2 supported on
Rd, denote D1 ⋆D2 as their convolution, which stands for
Law(x+y) where x ∼ D1 and y ∼ D2. The given dataset
is {xj}j∈[n], which is assumed to be i.i.d sampled from
pdata, our target distribution. The empirical distribution is
denoted as p̂data = 1

n

∑
j δxj . Here, δx stands for the Dirac

delta distribution at point x.

2 Diffusion Model Preliminary
We adopt a continuous time description of diffusion models,
which provide rich interpretations. In practice, a proper dis-
cretization is applied accordingly. Diffusion models consist
of two coupled processes. In the forward process, we grad-
ually add noise to data following a stochastic differential
equation:

dxt = µ(xt, t)dt+ σ(t)dWt for t ∈ [0, T ]. (1)

Here Wt(·) is the standard Brownian motion, µ(xt, t) and
σ(t) are the drift term and the diffusion term respectively,
and T is a terminal time. The forward process (1) starts
from x0 ∼ pdata, the distribution of data. At each time
t ∈ [0, T ], we denote xt ∼ pt as the marginal distribution
of the forward process.

As shown in Anderson (1982), the forward process enjoys a
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Theory of Consistency Diffusion Models

time reversal, which is termed as the backward process:

dxt =
[
µ(xt, t)− σ(t)2∇xt log pt(xt)

]
dt+ σ(t)dWt.

(2)
Here W t(·) is a standard Brownian motion with time flow-
ing backward from T to 0 and ∇xt log pt(xt) is the score
function. In practice, we use a score neural network to
estimate the unknown score function via denoising score
matching (Song & Ermon, 2019; Vincent, 2011). It is worth
mentioning that (2) is not the only backward process whose
solution trajectories match the distribution of the forward
process. We present the following example.

A commonly used specialization of (1) is the variance pre-
serving SDE (VP-SDE, Dhariwal & Nichol (2021)), i.e.,

dxt = −β(t)

2
xtdt+

√
β(t)dWt. (3)

Here β(t) > 0 is the noise schedule, which is usually chosen
as a linear function over t. Under VP-SDE, we have that the
transition kernel p(xt | x0) is Gaussian satisfying

p(xt | x0) = N (xt | m(t)x0, σ(t)
2I), (4)

where

m(t) = exp

(
−1

2

∫ t

0

β(s)ds

)
and σ(t)2 = 1−m(t)2.

At the terminal time T , the marginal distribution pT :=
p(xT ) is approximately a standard Gaussian distribution.

The corresponding backward process to (3) is

dxt =

[
−β(t)

2
xt − β(t)∇xt

log pt(xt)

]
dt+

√
β(t)dWt

Interestingly, (3) also assumes a probability ODE flow as a
backward process:

dxt =

[
−β(t)

2
xt −

β(t)

2
∇xt

log pt(xt)

]
dt. (5)

As can be seen, the transition in (5) is deterministic.

3 Consistency Models Minimize Discrepancy
Consistency models merge multiple backward steps in the
vanilla diffusion models to expedite the sampling. As pro-
posed in Song et al. (2023), the training of consistency
models utilizes either distillation or isolation. Unfortunately,
only iterative algorithms are derived in Song et al. (2023),
making the training objective elusive. In this section, we for-
mulate the training of consistency models as a Wasserstein
distance minimization problem, which encodes the original
derivation in Song et al. (2023), but also enables broad mod-
ifications. To motivate the consistency models, we consider
the probabilistic ODE (5) as our backward process. Con-
sistency models seek a mapping fθ(x, t) that identifies a
solution trajectory in the backward ODE to a single point.
In particular, we define

fθ(x, t) =

{
x t = ε

Fθ(x, t) t ∈ (ε, T ]
, (6)

Figure 1. Illustration of Consistency Models: At each time step t,
the consistency model f(·, t) will map xt to x0 along the trajectory
of probability flow ODE. We also demonstrate the score function
applied at time t in both distillation training and isolation training.

where Fθ(·, ·) : Rd×[ϵ, T ] 7→ Rd is a free-form deep neural
network with parameter θ and ε is an early-stopping time
to prevent instability (Song & Ermon, 2020). The neural
network Fθ(x, t) should satisfy a time-invariant property
with respect to the solution trajectories in the ODE (5).
Specifically, for any two time points t1 ̸= t2 ∈ [ε, T ],
we denote the contemporary generated samples as xt1 and
xt2 . Then in the ideal case, it holds that Fθ(xt1 , t1) =
Fθ(xt2 , t2) = xε. In other words, Fθ attempts to identify
an ODE trajectory to its end point, which is the generated
data point.

Training of Consistency Models The training of con-
sistency models leverage the time-invariance of fθ(x, t).
We discretize the time interval [ε, T ] into N uniform sub-
intervals, with breaking points ε = t0 < t1 < . . . < tN =
T . We denote tk = t0+k∆t where ∆t = T−ε

N is the length
of each sub-interval. We also denote {τk}k∈[N ′] as a subset
of time steps such that τk := tkM where N = N ′M with
τ0 = t0 = ε and τN ′ = tN = T . Corresponding to the
exposure of the time-invariance property of fθ, consistency
models aim to enforce
fθ(·, τk)♯Xτk

law
= fθ(·, τk−1)♯Xτk−1

law
= Xε ∀k ∈ [N ′].

To this end, we define the following Wasserstein distance-
based consistency loss for training fθ:

N ′∑
k=1

W1

(
fθ(·, τk)♯Xτk , fθ(·, τk−1)♯Xτk−1

)
. (7)

Here Xt = Law(xt) = m(t)pdata ⋆N (0, σ(t)2I) for ∀t ∈
[ε, T ] by Equation (4). We remark that (7) accommodates
to both deterministic and stochastic backward processes by
measuring the distribution discrepancy, while our discussion
focuses on deterministic ODEs.

Notice that the Wasserstein distance in (7) is not tractable,
since we have no access to the target distribution pdata,
let alone Xt. Therefore, we replace it by the empirical
counterpart p̂data = 1

n

∑
j δxj as well as Xt := m(t)p̂data⋆

N (0, σ2(t)), the empirical version of Xt. We cast (7) into
N ′∑
k=1

W1

(
fθ(·, τk)♯Xτk , fθ(·, τk−1)♯Xτk−1

)
. (8)
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Theory of Consistency Diffusion Models

In practice, there are two different approaches, named dis-
tillation and isolation, to determine the corresponding sam-
ple from Xτk−1

given a sample xτk ∼ Xτk . Both of
them pushes xτk along the backward probability flow (5)
by ODE update, but consistency distillation relies on a
pretrained plug-in score estimator sϕ(x, t) while consis-
tency isolation does not require any pretrained models.
In this work, we study both the consistency distillation
and isolation in Section 4 and provide a statistical rate of
W1

(
fθ̂(·, T )♯N (0, I), pdata

)
for the learned consistency

model fθ̂(·, ·).

Distillation Method Given a time step τk as well as xτk ∼
Xτk , we obtain a corresponding sample xτk−1

by running
M discretization steps of probability ODE (5) solver starting
from xτk . For a one-step update, we denote

x̂ϕ
tk−1

= xtk −∆t · Φ(xtk , tk;ϕ) := G(xtk , tk;ϕ). (9)

Here, Φ(·, ·;ϕ) is the update function of numerical ODE. In
our variance preserving framework (5), we have:

Φ(xtk , tk;ϕ) = −β(tk)

2
xtk − β(tk)

2
· sϕ(xtk , tk). (10)

After applying M consecutive updates, we obtain x̂ϕ,M
τk−1

from xτk ∼ Xτk , which is defined as

yM := xτk = xtkM
, yj−1 := G

(
yj , t(k−1)M+j ;ϕ

)
for j ∈ [M ], and eventually x̂ϕ,M

τk−1
:= y0. Here, the up-

date function G(·, ·;ϕ) is the same as Equation (9). For
simplicity, it is equivalent to express it as

x̂ϕ,M
τk−1

= G(M)(xτk , τk;ϕ)

:= G(·, t(k−1)M+1;ϕ) ◦ . . . ◦G(·, tkM ;ϕ)(xτk).

In this way, we can approximate distribution Xτk−1
with

G(m)(·, τk;ϕ)♯Xτk , whose error only comes from the dis-
cretization loss of ODE solver as well as the score estima-
tion loss of sϕ(·, t). Now, we have the training objective of
consistency models as follows:

LN
CD(θ;ϕ) =

N ′∑
k=1

W1

(
fθ(·, τk)♯Xτk , fθ(·, τk−1)♯X̂ ϕ,M

τk−1

)
.

(11)
Here, X̂ ϕ,M

τk−1
= G(M)(·, τk;ϕ)♯Xτk is the underlying dis-

tribution of x̂ϕ,M
τk−1

= G(M)(xτk , τk;ϕ) where xτk ∼ Xτk .
Our consistency model fθ̂ is optimized over function class
Lip(R), with regard to the optimization problem:

θ̂ = arg min
θ: fθ∈Lip(R)

LN
CD(θ;ϕ). (12)

Here, Lip(R) denotes the set of functions f(x, t) such that
f(·, t) is Lipschitz-R continuous over x at any given time
step t ∈ [ε, T ] with boundary condition f(·, ε) = id.

Isolation Method Besides training in distillation, consis-
tency models can also be trained without a pre-learned score
estimator. Instead of using score model sϕ(xt, t) to approx-
imate the true score function ∇ log pt(xt), we can also use
the following Tweedie’s formula

∇ log pt(xt) = −E
[
xt −m(t)x0

σ(t)2

∣∣∣∣xt

]
where x0 ∼ pdata and p(xt | x0) = N (x0, σ(t)

2I). Since
pdata is intractable, we make an unbiased approximation as
follows:

∇ log pt(xt) ≈ −Ex0∼p̂data

[
xt −m(t)x0

σ(t)2

∣∣∣∣xt

]
. (13)

Lemma 3.1. For the approximator above, it exactly equals
to the score function of distribution Xt, i.e.

−Ex0∼p̂data

[
xt −m(t)x0

σ(t)2

∣∣∣∣xt

]
= ∇ log p̂t(xt).

Here, p̂t(·) is the density of Xt = m(t)p̂data⋆N (0, σ(t)2I),
which is a mixture of Gaussian. Therefore, it has explicit
formulation and needs no additional training.

Proof. Detailed proof is left in Appendix §A.1.

Lemma 3.1 concludes that, taking a backward ODE step
in the isolation setting is equivalent to moving along the
following empirical backward diffusion ODE.

Forward: dxt = −β(t)

2
xtdt+

√
β(t)dWt, x0 ∼ p̂data.

Backward: dxt =

[
−β(t)

2
xt −

β(t)

2
∇xt

log p̂t(xt)

]
dt.

(14)
Its only differences with the diffusion model introduced in
distillation training is that x0 ∼ p̂data instead of pdata, and
the empirical score function ∇ log p̂t(·) is applied instead of
true score ∇ log pt(·). Under this forward SDE, it’s obvious
that Law(xt) = Xt. In this case, a one-step update of the
backward probability ODE at xtk ∼ Xtk accurately links
Xtk to Xtk−1

. Therefore, the isolation training objective of
consistency models is as follows:

LN
CT(θ) =

N ′∑
k=1

W1

(
fθ(·, τk)♯Xτk , fθ(·, τk−1)♯Xτk−1

)
.

(15)
Similarly, our consistency model fθ̂ is optimized with regard
to the optimization problem:

θ̂ = arg min
θ: fθ∈Lip(R)

LN
CT(θ). (16)

Notice that, there is no parameter ϕ in the objective since
the isolation training does not need the pre-trained score
model sϕ(·, ·).
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Theory of Consistency Diffusion Models

Connection to Original Consistency Model Training in
Song et al. (2023) For the practical training of consistency
models, (Song et al., 2023) proposed the following sample-
based consistency loss:

L(θ, θ−;ϕ) = E
[
λ(tk) · d

(
fθ(xtk , tk), fθ−(x̂ϕ

tk−1
, tk−1)

)]
.

Here, the expectation is taken over k ∼ Unif[1, N ] and
xt ∼ Xt for ∀t ∈ [0, T ]. θ− is the running average of
the past values of θ in previous iterations during the opti-
mization, and d(·, ·) is a metric function over the sample
space. Besides, λ(·) is a positive weighting function over
time and x̂ϕ

tk−1
is obtained by making a discretization step

through backward probability flow (Equation (9)) from xtk .
In comparison, we make the following minor modifications
for convenience of theoretical analysis on the statistical rate
of consistency models.

We let λ(·) ≡ 1, which is applied both practically and the-
oretically (Lyu et al., 2023). A simplification of θ− = θ is
made since the optimization techniques while learning con-
sistency models is not what we consider from the statistical
point of view. We also extend the one-step ODE solver to
multi-step ODE solver, which pushes xτk back to x̂ϕ,M

τk−1
.

Another difference is that we use Wasserstein-1 metric
W1(·, ·) over distribution space instead of the sample-based
metric d(·, ·) as the training objective of consistency models.
In comparison, a small pointwise distance implies a small
distributional distance but not vice versa. However, our
ultimate goal is to upper bound the distance between pdata
and fθ̂(·, T )♯N (0, I), which makes the distribution-based
metric sufficient for our analysis.

4 Statistical Rates of Consistency Models
In this section, we propose our main theorems for the statis-
tical error rates of consistency models, under both settings
of distillation training and isolation training.

Consistency Distillation After obtaining the global op-
tima fθ̂ in the optimization problem (12), we first construct
a baseline consistency model fθ∗(·, t) induced by natu-
ral probability flow ODE solver, named as DDPM solver,
whose formulation is presented below. Next, we can up-
per bound the gap between these two one-step consistency
models by applying the optimality condition, with the per-
formance gap represented as

W1

(
fθ̂(·, T )♯XT , fθ∗(·, T )♯XT

)
.

Furthermore, we conclude our main theorem which upper
bounds the following statistical error

L(θ̂) = W1

(
fθ̂(·, T )♯N (0, I), pdata

)
. (17)

by using the bounds of W1(xT ,N (0, I)) and the approx-
imation error W1(fθ∗(·, T )♯XT ,Xε) of the DDPM solver
fθ∗(·, ·). Here, the baseline DDPM solver fθ∗(·, ·) is struc-
tured as an N -layer ResNet (He et al., 2016) with an inserted

pretrained score estimator sϕ(·, ·):
fθ∗(x, t) = fθ∗

(
x̂ϕ, t−∆t

)
∀t ∈ [t1, T ]

where x̂ϕ := x+
(

β(t)
2 x+ β(t)

2 sϕ(x, t)
)
∆t is a single-step

numerical ODE update from x at time t. For ∀t ∈ [ε, t1],
we let

fθ∗(x, t) = x+

(
β(t)

2
x+

β(t)

2
sϕ(x, t)

)
· (t− ε).

This structure naturally assures that fθ∗(·, ε) = id, which
makes extra reparameterization techniques unnecessary.

In this work, we propose an upper bound for the statistical
rate of consistency error (17), given a pretrained score es-
timator sϕ and a global optimal solution θ̂. Formally, we
state our assumptions and main theorem as follows.
Assumption 4.1 (Gaussian tail). For the target distribution
pdata, it is twice continuously differentiable and it has a
Gaussian tail, i.e. there exists positive constants α1, α2 > 0
such that

PX∼pdata
[∥X∥2 ⩾ R0] ⩽ PZ∼N (0,I)

[
∥Z∥2 ⩾

R0 − α1

α2

]
holds for all R0 > α1. Notice that, this assumption directly
leads to the finite second order moment of pdata:

M2
2 = EX∼pdata

∥X∥22 < ∞.

Besides, for those distributions with compact support set or
with sub-Gaussian property, they all follow the Gaussian
tail assumption.
Assumption 4.2 (Lipschitz score function). For any time
step t ∈ [0, T ], the score function ∇ log pt(·) is L-Lipschitz.

The two assumptions above are mild and have been widely
used in relevant works (Lyu et al., 2023; Block et al., 2020;
Lee et al., 2022a;b). Unlike Block et al. (2020); De Bor-
toli et al. (2021); Lee et al. (2022a), we do not need extra
conditions on the target distribution such as log-Sobolev
inequality or log-concavity, but the Gaussian tail condition
is stronger than a bounded second order moment. However,
Assumption 4.1 is necessary in this paper since we need to
bound Wasserstein distance with KL divergence.
Assumption 4.3 (Lipschitz continuity of fθ∗). We assume
that the baseline consistency model fθ∗(·, t) is R-Lipschitz
continuous for ∀t ∈ [ε, T ].
Remark 4.1. As Caffarelli (1992) proposes, for two distri-
butions µ and ρ with α-Hölder densities and convex support
set, there exists a transformation T ∗ which is (α+1)-Hölder
smooth, such that T ∗

♯ ρ = µ. This conclusion shows us the
existence of transformation with regularity. Assumption 4.3
is natural and has been previously used in Assumption 5 of
Lyu et al. (2023) and Theorem 1 of Song et al. (2023).
Assumption 4.4 (Bounded coefficient). In our variance
preserving SDE (3), the coefficient function β(t) is upper
and lower bounded by β and β, such that:

β ⩽ β(t) ⩽ β <
1

d log n+ d2 log(d/ε)
for ∀t ∈ [ε, T ].

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Theory of Consistency Diffusion Models

Compared with Lyu et al. (2023), we do not require addi-
tional assumptions on score estimation error or consistency
loss. Actually, bounding these two losses are important
parts of our proof. Now, we introduce our main theorem.

Theorem 4.1 (Main Theorem 1: Distillation). Under As-
sumptions 4.1 - 4.4, there exists a score estimator sϕ(·, t)
such that the consistency model fθ̂(·, t) obtained from (12)
satisfies that:

E
[
W1

(
fθ̂(·, T )♯N (0, I), pdata

)]
≲

√
dR exp(−βT/2) +

RβdLT√
M

+ 6RN ′n−1/d

+Rβ
√
dεscore ·

√
TN ′

ε
+

√
dβε,

where R is the Lipschitz constraint of the optimization prob-
lem (12), and the expectation is taken with respect to the
choice of dataset {xj}j∈[n]. εscore = O(n−1/(d+5)) stands
for the score estimation error.

We interpret error terms in Theorem 4.1 as follows.√
dR exp(−βT/2) represents the convergence error of the

forward process. RβdLT√
M

is the discretization error of ODE

updates. 6RN ′n−1/d represents the concentration gap.

Rβ
√
dεscore ·

√
TN ′

ε is the score estimation error and
√
dβε

is the error caused by early stopping. We show in the fol-
lowing remark that the dominating error term is the score
estimation error, with proper choice of hyperparameters.
Remark 4.2. After picking β, β ≍ 1

d logn , T = (log n)3,

M = d2n
1

d+5 , N ′ = log n and ε =
√
TN ′n− 1

d+5 =

log2 n · n− 1
d+5 , we have the bound:

E
[
W1

(
fθ̂(·, T )♯N (0, I), pdata

)]
≲
√
log n · n− 1

2(d+5) .

Now, we obtain a Õ
(
n− 1

2(d+5)

)
bound for the Wasserstein

estimation error of consistency model via distillation, pre-
serving the distribution estimation rate of the vanilla diffu-
sion models as shown in Chen et al. (2023a). This indicates
that consistency models maintain the quality of the gener-
ated samples, while allowing fast sampling.

Consistency Isolation Similar to the consistency distilla-
tion case, we still need to construct a baseline consistency
model fθ∗(·, ·), named as empirical DDPM solver, which
replaces the inserted pretrained score model sϕ(x, t) with
∇ log p̂t(x), the explicit score of a mixture of Gaussian:

fθ∗(x, t) = fθ∗(x̂, t−∆t) ∀t ∈ [t1, T ]

where x̂ := x+
(

β(t)
2 x+ β(t)

2 ∇ log p̂t(x)
)
∆t is a single-

step numerical ODE update from x at time t along the
empirical backward ODE (14). For ∀t ∈ [ε, t1], we set

fθ∗(x, t) = x+

(
β(t)

2
x+

β(t)

2
∇ log p̂t(x)

)
· (t− ε).

After obtaining fθ̂ from the optimization problem (16),
we upper bound the performance gap induced by learned
one-step consistency model fθ̂(·, T ) and the empiri-
cal DDPM solver fθ∗(·, T ), which is evaluated by
W1

(
fθ̂(·, T )♯XT , fθ∗(·, T )♯XT

)
. Furthermore, it leads to

our main theorem on consistency isolation, which upper
bounds the statistical error

L(θ̂) = W1

(
fθ̂(·, T )♯N (0, I), pdata

)
.

To achieve this result, we require a stronger version of As-
sumption 4.1, that the target distribution pdata has a bounded
support set:

Assumption 4.5 (Bounded support set). The target distribu-
tion pdata has a bounded support set such that:

PX∼pdata
[∥X∥2 ⩽ R0] = 1.

Here, we require a much stronger assumption than the Gaus-
sian tail because a Lipschitz continuity condition is needed
over the empirical score function ∇ log p̂t(·) for ∀t ∈ [ε, T ]
to replace Assumption 4.2. Now, we state our main theorem
on consistency isolation as follows:

Theorem 4.2 (Main Theorem 2: Isolation). Under Assump-
tions 4.3- 4.5, the consistency model fθ̂(·, t) obtained from
Equation (16) satisfies that:

E
[
W1

(
fθ̂(·, T )♯N (0, I), pdata

)]
≲

√
dR exp

(
−βT/2

)
+Rn−1/d +

dβR2
0T

β2ε2
√
M

+

√
dβε,

where R is the Lipschitz constraint of the optimization prob-
lem (16), and the expectation is taken over the dataset.

Remark 4.3. After picking β, β ≍ 1
d logn , ε = n−2/d, T =

d(log n)3,M = d2(log n)8 · n10/d, we have the bound:

E
[
W1

(
fθ̂(·, T )♯N (0, I), pdata

)]
≲ n−1/d.

Now, we obtain a Õ
(
n−1/d

)
bound for the Wasserstein

estimation error of consistency model via isolation. Note
that the rate of convergence is not directly comparable to
distillation method, due to the distinct training procedure.

5 Proof Sketch for Consistency Distillation
In this section, we provide the proof sketch for the main
theorems proposed in the previous part. First, we propose
an overview of the entire proof sketch.

5.1 Technical Overview

We now present a detailed technical overview for the proof
of the statistical error rate for distillation consistency mod-
els (Theorem 4.1). For the proof of isolation consistency
models (Theorem 4.2), it follows very similar ideas and we
leave the detailed proof in Appendix §D.

As we state above, our ultimate goal is to upper bound the
statistical estimation error W1(fθ̂(·, T )♯N (0, I), pdata), the

6
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distance between the true distribution pdata and standard
Gaussian pushed forward by our learned one-step consis-
tency model fθ̂(·, T ) by distillation. To achieve this, we
construct a DDPM solver fθ∗(·, ·) which is assumed to be
R-Lipschitz continuous at all time steps t ∈ [ε, T ], and
upper bound the performance gap between fθ̂ and fθ∗ .

In the first step, we study the approximation properties of
score estimation, and our purpose is to show the existence
of a score network sϕ(x, t) with small approximation error
E∥sϕ(x, t)−∇ log pt(x)∥2. With the score approximation
error bounded, we can conclude the proximity between the
true backward probability ODE and that with pretrained
score model inserted.

Next, we aim to bound the performance gap between the
learned one-step consistency model fθ̂ and the DDPM solver
fθ∗ . According to the training objective (12) as well as
Assumption 4.3 which makes fθ∗ also included in the con-
straint set Lip(R), we can apply the optimality inequality

LN
CD(θ̂;ϕ) ⩽ LN

CD(θ
∗;ϕ) (18)

Through some mathematical calculation, we show that the
performance gap is directly relevant to the concentration
gap between empirical and population distributions, as well
as the error caused by the numerical ODE update. There are
two main types of error taking place during the ODE update,
which are the discretization error and the score estimation
error. The former one is directly relevant to the length of
time sub-intervals ∆t while the bound of the latter one is
already solved in our first step.

After that, we finally come to our main theorem upper
bounding the statistical error (17). It can be smoothly ob-
tained by combining the performance gap, the tail bounds
W1(XT ,N (0, I)), W1(Xε, pdata) as well as the estimation
error of the DDPM solver W1(fθ∗(·, T )♯XT ,Xε).

In contrast, for the proof of Theorem 4.2, the major differ-
ence in the isolation setting is that there is no score estima-
tion error since the isolation training does not involve any
pretrained score models. For each ODE update, discretiza-
tion is the only error that takes place. Another technical
difficulty is to guarantee the Lipschitz continuity of the em-
pirical score functions involved in the backward process.

5.2 Approximation Error for Score Estimation

In Chen et al. (2023a), the authors introduce the l-layer
ReLU neural network class NN(l,M, J,K, κ, γ, γt) as fol-
lows and propose a score approximation error, with the
result shown in Lemma C.1. After removing the properties
we do not need, we can make the following conclusion:
Lemma 5.1. There exists a score estimator function sϕ(·, ·)
in the class of neural networks, such that: (1) sϕ(·, t) is
Lscore-Lipschitz continuous for any given t ∈ [ε, T ] where
Lscore = O(10d(1 + L)); (2) ∥sϕ(x, t)∥2 ⩽ Uscore holds
for ∀x ∈ Rd, t ∈ [ε, T ] where Uscore = O(2d log n +

2d2 log(d/ε)); (3) The mean integrated squared error can
be upper bounded by:

1

tb − ta

∫ tb

ta

∥sϕ(·, t)−∇ log pt(·)∥2L2(Xt)
dt

= Õ

(
1

ε
n− 2

d+5

)
∀ε ⩽ ta < tb ⩽ T.

According to this result, we can use the method of induction
to provide a loose upper bound for the Lipschitz constant
of fθ∗(·, ·), the baseline DDPM solver with score estimator
sϕ(·, ·) injected.

Corollary 5.1. Assume the information decay rate β(t) in
Equation (3) is bounded as β ⩽ β(t) ⩽ β for ∀t ∈ [ε, T ],
then the trivial upper bound for the Lipschitz constant of
fθ∗(·, t) is exp(CdβT ) for any given t. Here C = 10(1+L)
is a pure constant.

Proof. Detailed proof is left in Appendix §C.2.

By Lemma 5.1, we get the approximation error bound of
score model, which is part of the performance gap between
fθ̂ and fθ∗ . In the next part, we apply the optimality in-
equality (18) and decompose the consistency loss into sev-
eral error terms which are easier to analyze. We will also
show that these terms stand for the concentration gap and
the numerical ODE update error.

5.3 Upper Bound the Consistency Loss

According to the structure of fθ∗ , we have

fθ∗(·, τk) = fθ∗(·, τk−1) ◦G(M)(·, τk;ϕ).

Denote X̂ϕ,M
τk−1

:= G(M)(·, τk;ϕ) as the underlying distribu-
tion of x̂ϕ,M

τk−1
= G(M)(xτk , τk;ϕ) where xτk ∼ Xτk , then

it holds by definition that:

fθ∗(·, τk)♯Xτk
law
= fθ∗(·, τk−1)♯X̂

ϕ,M
τk−1

∀k ∈ [N ′]. (19)

This equation lays the foundation of recursive analysis be-
tween adjacent time steps. After Combining with the opti-
mality inequality (18), we can decompose the performance
gap between fθ̂ and fθ∗ (also known as consistency loss)
into four loss terms, which is shown in the following lemma.

Lemma 5.2. We can upper bound the consistency loss as:

W1

(
fθ̂(·, T )♯XT , fθ∗(·, T )♯XT

)
⩽ I1+I2+I3+I4. (20)

Here, the four loss terms Ii (1 ⩽ i ⩽ 4) have their formula-
tions as follows:

I1 :=

N ′∑
k=1

W1

(
fθ̂(·, τk−1)♯Xτk−1

, fθ̂(·, τk−1)♯X̂
ϕ,M
τk−1

)
,

I2 :=

N ′∑
k=1

W1

(
fθ∗(·, τk−1)♯Xτk−1

, fθ∗(·, τk−1)♯X̂
ϕ,M
τk−1

)
,

7
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I3 :=

N ′∑
k=1

[
W1

(
fθ̂(·, τk)♯Xτk , fθ̂(·, τk−1)♯X̂

ϕ,M
τk−1

)
−W1

(
fθ̂(·, τk)♯Xτk , fθ̂(·, τk−1)♯X̂ ϕ,M

τk−1

) ]
I4 :=

N ′∑
k=1

[
W1

(
fθ∗(·, τk)♯Xτk , fθ∗(·, τk−1)♯X̂ ϕ,M

τk−1

)
−W1

(
fθ∗(·, τk)♯Xτk , fθ∗(·, τk−1)♯X̂

ϕ,M
τk−1

) ]
.

Proof. Detailed proof is left in Appendix §C.3.

As we can see, both I1, I2 show the multi-step discretization
error of ODE solver and both I3, I4 show the concentration
gap between empirical and population Wasserstein-1 dis-
tances. Next, we start with I1, I2. The technical difficulties
on upper bound these terms come from two aspects. One
is to bound the KL divergence between the true ODE flow
measure and that with pretrained score function sϕ(·, ·) in-
serted. The other is to bound Wasserstein distance with
KL divergence, which is impossible in general but achiev-
able under Gaussian tail condition (Assumption 4.1). After
overcoming these obstacles, we prove the following lemma.

Lemma 5.3. Under the Assumption 4.1-4.4, we can upper
bound I1, I2 introduced in Lemma 5.2 as:

I1 + I2 ≲ RβdL · T√
M

+Rβ
√
dn− 1

d+5 ·
√

TN ′

ε
.

Here, R is the Lipschitz constraint in (12).

Proof. Detailed proof is left in Appendix §C.4.

Next, we upper bound I3, I4. After transforming them into
the Wasserstein distance between empirical and population
distributions, we prove the following lemma.

Lemma 5.4. Under the Assumption 4.1-4.4, we can upper
bound I3, I4 introduced in Lemma 5.2 as:

E [I3 + I4] ⩽ 6RN ′ · n−1/d.

Here, the expectation is taken with respect to the randomness
of dataset {x1,x2, . . . ,xn}.

Proof. Detailed proof is left in Appendix §C.5.

Now we can combine all the results above and get:

E
[
W1

(
fθ̂(·, T )♯XT , fθ∗(·, T )♯XT

)]
≲

RβdLT√
M

+Rβn− 1
d+5

√
dTN ′

ε
+ 6RN ′n−1/d

(21)

holds under Assumption 4.1-4.4.

5.4 Proof of Main Theorem 1

In order to bound the statistical error L(θ̂) defined in
(17), we still need to bound two additional loss terms:
W1

(
fθ̂(·, T )♯N (0, I), fθ∗(·, T )♯XT

)
and the estimation

error of DDPM solver W1 (fθ∗(·, T )♯XT , pdata). Since
fθ̂(·, T ) is R-Lipschitz continuous, we have

W1

(
fθ̂(·, T )♯XT , fθ̂(·, T )♯N (0, I)

)
⩽ R·W1(XT ,N (0, I)).

Therefore, we first need to bound W1(XT ,N (0, I)) in the
following lemma.

Lemma 5.5. For the distribution XT , its Wasserstein dis-
tance from the standard Gaussian N (0, I) can be upper
bounded as:

W1(XT ,N (0, I)) ≲
√
d exp(−βT/2).

Proof. Detailed proof is left in Appendix §C.6.

Next, we bound W1 (fθ∗(·, T )♯XT , pdata), which requires
an extension on the existing result on DDPM estimation
error (Theorem 2 of (Chen et al., 2022)) as well as the tech-
nique of bounding Wasserstein distance with KL divergence.

Lemma 5.6. Under Assumption 4.1-4.4, we bound the esti-
mation error of DDPM solver as:

W1 (fθ∗(·, T )♯XT , pdata)

≲ βLd
√
T∆t+ β

√
dT

ε
n− 1

d+5 +

√
dβε.

Proof. Detailed proof is left in Appendix §C.7.

Now, after summing up Lemma 5.5, 5.6 and Equation (21)
together, we finally come to our main theorem 4.1:

E
[
W1

(
fθ̂(·, T )♯N (0, I), pdata

)]
≲

√
dR exp(−βT/2)

+
RβdLT√

M
+Rβn− 1

d+5

√
dTN ′

ε
+

√
dβε+ 6RN ′n−1/d.

6 Conclusion
In this paper, we have provided the first statistical theory
of consistency diffusion models. In particular, we have for-
mulated the consistency models’ training as a Wasserstein
discrepancy minimization problem. Further, we have estab-
lished sample complexity bounds for consistency models in
estimating nonparametric data distributions. The obtained
convergence rate closely matches the vanilla diffusion mod-
els, indicating consistency models boost the sampling speed
without significantly scarifying the sample generation qual-
ity. Our analyses have covered both the distillation and
isolation methods for training consistency models.
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Impact Statement
This work presents novel statistical analysis of consistency
diffusion models. Our treatment reveals a hidden connec-
tion between consistency models to discrepancy measure
minimization, a missing piece in understanding consistency
models. Built upon our formulated analytical framework in
Section 3, we anticipate broader explorations into accelera-
tion methods for diffusion models. Meanwhile, our research
opens new possibility of studying latent consistency models
(Luo et al., 2023). We do not foresee any ethical concerns.
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A Proofs in Section 3
A.1 Proof of Lemma 3.1

When x0 follows the empirical distribution p̂data = 1
n

∑n
j=1 δxj , then the posterior distribution p(x0 | xt) for a given

xt ∼ N (m(t)x0, σ(t)
2I) can be simply represented as:

p(x0 = xj | xt) ∝ exp

(
−∥m(t)xj − xt∥2

2σ(t)2

)
,

which leads to the following posterior mean:

Ex0∼p̂data
[x0 | xt] =

n∑
j=1

xj · p(x0 = xj | xt) =

∑n
j=1 x

j · exp
(
−∥m(t)xj−xt∥2

2σ(t)2

)
∑n

j=1 exp
(
−∥m(t)xj−xt∥2

2σ(t)2

) .

Therefore, the score function has the following unbiased estimation:

∇ log pt(xt) ≈ −Ex0∼p̂data

[
xt −m(t)x0

σ(t)2

∣∣∣∣xt

]
=

∑n
j=1 −

xt−m(t)xj

σ(t)2 · exp
(
−∥m(t)xj−xt∥2

2σ(t)2

)
∑n

j=1 exp
(
−∥m(t)xj−xt∥2

2σ(t)2

)
=

∇xt

∑n
j=1 exp

(
−∥m(t)xj−xt∥2

2σ(t)2

)
∑n

j=1 exp
(
−∥m(t)xj−xt∥2

2σ(t)2

) = ∇xt log

 1

n

n∑
j=1

exp

(
−∥m(t)xj − xt∥2

2σ(t)2

) .

(22)

Notice that, 1
n

∑n
j=1 exp

(
−∥m(t)xj−xt∥2

2σ(t)2

)
is exactly the density of Xt = m(t)p̂data ⋆N (0, σ(t)2).

B Some Useful Lemmas
In this section, we introduce some lemmas directly related to the Girsanov’s theorem and techniques from (Chen et al.,
2022). We also propose some propositions on Gaussian tails and provide a technique to upper bound Wasserstein distance
with KL divergence for distributions with Gaussian tail.
Lemma B.1. For any k = 1, 2, . . . , N ′, it holds that:

KL
(
Xτk , X̂

ϕ,M
τk−1

)
⩽

Mk∑
i=M(k−1)+1

E
∫ ti

ti−1

β(t)2

2
∥sϕ(Xti , ti)−∇ log pt(Xt)∥2 dt. (23)

Here, the expectation is taken over the forward diffusion process. Without approximating XT with standard Gaussian
distribution N (0, I), the forward diffusion and the back diffusion share the trajectory with exactly the same marginal
distributions.

Next, we need to upper bound the right hand side of Equation (23). Actually, we can directly use Theorem 9 in (Chen et al.,
2022) and conclude that:
Lemma B.2. For each k = 1, 2, . . . , N and t ∈ [tk−1, tk], it holds that:

E∥sϕ(Xtk , tk)−∇ log pt(Xt)∥2 ≲ ε2tk + L2d∆t+ L2M2
2∆t2

where ε2tk is the score estimation error at time step tk:

ε2tk = Ex∼Xtk
∥sϕ(x, tk)−∇ log ptk(x)∥2,

and the expectation is taken over the forward diffusion process.

After combining Lemma B.1, Lemma B.2 and the score estimation error (Lemma 5.1), it holds that: for all k = 1, 2, . . . , N

KL
(
Xτk , X̂

ϕ,M
τk−1

)
⩽

β
2

2

(
L2d∆t+ L2M2

2∆t2
)
·M∆t+

β
2

2
E
∫ τk

τk−1

∥sϕ(xt, t)−∇ log pt(xt)∥2 dt

≲ β
2
(
L2d∆t ·M∆t+

1

ε
n− 2

d+5 ·M∆t

)
(24)

Another major technical result we need is to upper bound Wasserstein distance with KL divergence, which is impossible in
the general case. However under Assumption 4.1, we will show that all the variables like Xt and X̂ϕ,M

t have Gaussian tail,
which enables the upper bounding. To achieve this, we propose a rigorous notion of Gaussian tail before proving a more
general result.
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Lemma B.3. For constants c1, c2 > 0, we call a d-dimensional random variable X having a (c1, c2)-Gaussian tail if there
exists a constant c > 0 such that

P [∥X∥2 ⩾ t] ⩽ c · P
[
∥Z∥2 ⩾

t− c1
c2

]
for ∀t > c1 where Z ∼ N (0, Id) is a standard Gaussian. Define truncated random variable XR0

as:

XR0
=

{
X If ∥X∥2 ⩽ R0

0 If ∥X∥2 > R0

.

Then, the distributional distance X and XR0
is exponentially small with regard to R0 in both Wasserstein and Total Variation

metrics:
TV(X,XR0

) ≲ exp

(
− (R0 − c1)

2

20c22

)
, W1(X,XR0

) ≲
√
dcd3 · exp

(
− (R0 − c1)

2

40c22

)
holds for ∀R0 > c1 +

√
2d · c2 where c3 is a constant only dependent on c1, c2.

Proof of Lemma B.3. Denote p(x) and pR0
(x) as the density function of X and XR0

. Then, it is obvious that p(x) = pR0
(x)

for ∀0 < ∥x∥2 ⩽ R0 and p(x) ⩾ pR0
(x) = 0 for ∀∥x∥2 > R0. Another fact is that p(x) < pR0

(x) for x = 0. Therefore,
the TV-distance between p(x) and pR0(x) can be simply expressed as:

TV(X,XR0
) =

1

2

∫
|p(x)− pR0

(x)|dx =

∫
∥x∥⩾R0

p(x)dx = P [∥X∥2 ⩾ R0] .

Since we know that X has a (c1, c2)-Gaussian tail, so:

P [∥X∥2 ⩾ R0] ⩽ c · P
[
∥Z∥2 ⩾

(R0 − c1)+
c2

]
= c · P

[
∥Z∥22 ⩾

(R0 − c1)
2
+

c22

]
.

∥Z∥22 follows the χ2
d distribution, so for ∀R0 > c1 + c2 ·

√
2d, its tail bound

TV(X,XR0) ≲ P
[
∥Z∥22 ⩾

(R0 − c1)
2
+

c22

]
⩽ exp

(
− (R0 − c1)

2

20c22

)
.

For the Wasserstein-1 distance, we have the following formulation

W1(X,XR0
) = sup

Lip(f)⩽1
f(0)=0

∫
f(x) · (p(x)− PR0

(x)) dx ⩽
∫

|f(x)| · |p(x)− PR0
(x)|dx

⩽
∫

∥x∥2 · |p(x)− PR0
(x)|dx =

∫
∥x∥>R0

∥x∥2 · p(x)dx

= Ex∥x∥2 · I[∥x∥2 > R0] ⩽
√

E∥x∥2 ·
√
P[∥x∥2 > R0] ≲

√
dcd3 · exp

(
− (R0 − c1)

2

40c22

)
where c3 is a constant only related to c1, c2.

According to Assumption 4.1, we know that the initial distribution pdata has a (α1, α2)-Gaussian tail. As we move forward,
we propose the following properties of the Gaussian tail.

Proposition B.1. Suppose random variable X has a (c1, c2)-Gaussian tail, then the following conclusions hold:

• For any positive constant c3 ⩾ c1 and c4 ⩾ c2, it also holds that X has a (c3, c4)-Gaussian tail.

• For positive constants a > 0, random variable aX + b has a (ac1 + ∥b∥2, ac2)-Gaussian tail.

• For a-Lipschitz function F with ∥F (0)∥2 ⩽ b, then the random variable F (X) has a (ac1 + b, ac2)-Gaussian tail.

• For a standard Gaussian variable Y ∼ N (0, I), random variable aX + bY has a (ac1, b+ ac2)-Gaussian tail.

Proof of Proposition B.1. According to the definition of Gaussian tail, the first statement is trivial. For X ′ := aX + b and
∀t > ac1 + ∥b∥2, we have:

P[∥X ′∥ ⩾ t] ⩽ P[a∥X∥ ⩾ t− ∥b∥] = c · P
[
∥X∥ ⩾

t− ∥b∥
a

]
13
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Since X has a (c1, c2)-Gaussian tail and t−∥b∥
a ⩾ c1, it holds that:

P
[
∥X∥ ⩾

t− ∥b∥
a

]
⩽ P

[
∥Z∥ ⩾

1

c2
·
(
t− ∥b∥

a
− c1

)]
= P

[
∥Z∥ ⩾

t− ∥b∥ − ac1
ac2

]
,

which comes to our second statement. For the third statement, we can simply use the result of the second statement since:

∥F (X)∥2 ⩽ ∥F (0)∥2 + a∥X∥2.

In fact, Statement 2 is a special case of Statement 3. For Statement 4, it holds that for ∀λ ∈ (0, 1):

P[∥aX + bY ∥2 ⩾ t] ⩽ P
[
∥X∥2 ⩾

λt

a

]
+ P

[
∥Y ∥2 ⩾

(1− λ)t

b

]
⩽ c · P

[
∥Z∥2 ⩾

λt− ac1
ac2

]
+ P

[
∥Y ∥2 ⩾

(1− λ)t

b

]
.

Let
λt− ac1

ac2
=

(1− λ)t

b
=

t− ac1
b+ ac2

,

then:
P[∥aX + bY ∥2 ⩾ t] ⩽ (c+ 1) · P

[
∥Z∥2 ⩾

t− ac1
b+ ac2

]
,

which means that aX + bY has a (ac1, b+ ac2)-Gaussian tail.

Now, for two distributions with Gaussian tail, we show in the next lemma how to upper bound their Wasserstein distance
with their total variation distance.

Lemma B.4. For constants c1, c2, d1, d2 > 0, for a random variable X with (c1, c2)-Gaussian tail and another random
variable Y with (d1, d2)-Gaussian tail, we can conclude that:

W1(X,Y ) ⩽ C
√
d · TV(X,Y ) ⩽ C

√
d ·
√

KL(X,Y )

where C is a constant only dependent on c1, c2, d1, d2.

Proof of Lemma B.4. Denote XR0 , YR0 as the truncated distributions of X,Y , then: XR0 , YR0 has support set Ω =
{x : ∥x∥2 ⩽ R0}. Therefore,

W1(XR0
, YR0

) = sup
Lip(f)⩽1
f(0)=0

∫
f(x)(pR0

(x)− qR0
(x))dx ⩽

∫
∥x∥2 · |pR0

(x)− qR0
(x)|dx

⩽ R0 ·
∫

|pR0
(x)− qR0

(x)|dx ⩽ 2R0 · TV(XR0
, YR0

).

Next, we have:

W1(X,Y ) ⩽ W1(X,XR0
) +W1(Y, YR0

) +W1(XR0
, YR0

)

⩽
√
dcd3 · exp

(
− (R0 − c1)

2

40c22

)
+
√
ddd3 · exp

(
− (R0 − d1)

2

40d22

)
+ 2R0 · TV(XR0

, YR0
)

⩽
√
ded3 · exp

(
− (R0 − e1)

2

40e22

)
+ 2R0 · (TV(X,Y ) + TV(X,XR0

) + TV(Y, YR0
))

⩽
√
ded3 · exp

(
− (R0 − e1)

2

40e22

)
+ 2R0 · exp

(
− (R0 − e1)

2

20e22

)
+ 2R0 · TV(X,Y ).

where ei := max(ci, di) for i = 1, 2, 3. Let R0 = C
√
d for a sufficiently large constant C, we can conclude that,

W1(X,Y ) ≲
√
d · TV(X,Y )

which comes to our lemma.

14



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Theory of Consistency Diffusion Models

C Proofs in Section 5
C.1 Approximation Error for Score Approximation

Lemma C.1. Define the l-layer ReLU network class NN(l,M, J,K, κ, γ, γt) as follows:
NN(l,M, J,K, κ, γ, γt) ={
s(z, t) = Wlσ(. . . σ(W1[z

⊤, t]⊤) . . .) + bl |

Network width is bounded by M ; sup
z,t

∥f(z, t)∥2 ⩽ K;

max
i

max(∥bi∥∞, ∥Wi∥∞) ⩽ κ;

l∑
i=1

(∥Wi∥0 + ∥bi∥0) ⩽ J ;

∥s(z, t)− s(z′, t)∥2 ⩽ γ∥z− z′∥2 holds for ∀z, z′, t;

∥s(z, t)− s(z, t′)∥2 ⩽ γt|t− t′| holds for ∀z, t, t′
}
.

As we see, all the neural networks in this class has bounded function value, bounded weights, bounded width and Lipschitz
continuity. Given an approximation error δ > 0, we choose the network hyperparameter as:

l = O(d+ log(1/δ)), K = O(2d2 log(d/εδ)), γ = 10d(1 + L), γt = 10τ,
M = O

(
(1 + L)dTτdd/2+1δ−(d+1) logd/2(d/εδ)

)
,

J = O
(
(1 + L)dTτdd/2+1δ−(d+1) logd/2(d/εδ)(d+ log(1/δ))

)
,

κ = O
(
max

(
2(1 + L)

√
d log(d/εδ), T τ

))
where δ is chosen as δ = n− 1−τ(n)

d+5 for τ(n) = d log logn
logn and

τ := sup
t

sup
∥z∥∞⩽

√
d log(d/εδ)

∥∥∥∥ ∂

∂t

[
σ(t)2∇ log pt(z)

]∥∥∥∥
2

.

After choosing There exists sϕ ∈ NN such that with probability at least 1− 1
n , it holds that

1

tb − ta

∫ tb

ta

∥sϕ(·, t)−∇ log pt(·)∥2L2(Xt)
dt = Õ

(
1

ε
n− 2

d+5

)
∀ε ⩽ ta < tb ⩽ T.

C.2 Proof of Corollary 5.1

For any given 0 ⩽ k < N , denote Lk to be the Lipschitz constant of f∗
θ (·, t) when t ∈ [tk, tk+1]. If we treat xϕ as a function

over x, its Lipschitz constant is no larger than
1 + β(1 + Lscore)∆t/2 ⩽ 1 + Cdβ∆t

where C = 10(1 + L) is a pure constant. This is also the upper bound of L1. Here, we use the result in Lemma 5.1 that
Lscore = O(10d(1 + L)). Therefore:

Lk+1 ⩽ (1 + Cdβ∆t)Lk

holds according to the recursive formulation of fθ∗(·, ·), which leads to the conclusion that, the Lipschitz constant of fθ∗(·, t)
is no larger than:

(1 + Cdβ∆t)N = (1 + Cdβ∆t)T/∆t ⩽ exp(CdβT ),
which proves the conclusion.

C.3 Proof of Lemma 5.2

As described in the lemma, we recall that

I1 :=

N ′∑
k=1

W1

(
fθ̂(·, τk−1)♯Xτk−1

, fθ̂(·, τk−1)♯X̂
ϕ,M
τk−1

)
,

I2 :=

N ′∑
k=1

W1

(
fθ∗(·, τk−1)♯Xτk−1

, fθ∗(·, τk−1)♯X̂
ϕ,M
τk−1

)
,

I3 :=

N ′∑
k=1

[
W1

(
fθ̂(·, τk)♯Xτk , fθ̂(·, τk−1)♯X̂

ϕ,M
τk−1

)
−W1

(
fθ̂(·, τk)♯Xτk , fθ̂(·, τk−1)♯X̂ ϕ,M

τk−1

)]

I4 :=

N ′∑
k=1

[
W1

(
fθ∗(·, τk)♯Xτk , fθ∗(·, τk−1)♯X̂ ϕ,M

τk−1

)
−W1

(
fθ∗(·, τk)♯Xτk , fθ∗(·, τk−1)♯X̂

ϕ,M
τk−1

)]
.
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First, from the optimality condition (18) and the structure of f∗
θ (19), we have:

N ′∑
k=1

W1

(
fθ̂(·, τk)♯Xτk , fθ̂(·, τk−1)♯X̂ ϕ,M

τk−1

)
⩽

N ′∑
k=1

W1

(
fθ∗(·, τk)♯Xτk , fθ∗(·, τk−1)♯X̂ ϕ,M

τk−1

)

⩽
N ′∑
k=1

[
W1

(
fθ∗(·, τk)♯Xτk , fθ∗(·, τk−1)♯X̂ ϕ,M

τk−1

)
−W1

(
fθ∗(·, τk)♯Xτk , fθ∗(·, τk−1)♯X̂

ϕ,M
τk−1

)]

+

N ′∑
k=1

W1

(
fθ∗(·, τk)♯Xτk , fθ∗(·, τk−1)♯X̂

ϕ,M
τk−1

)
= I4.

Then, we can immediately conclude that:

N ′∑
k=1

W1

(
fθ̂(·, τk)♯Xτk , fθ̂(·, τk−1)♯X̂

ϕ,M
τk−1

)
⩽ I3 + I4. (25)

Again by using Equation (19), we know that for ∀k ∈ [N ′]:

W1

(
fθ̂(·, τk)♯Xτk , fθ∗(·, τk)♯Xτk

)
= W1

(
fθ̂(·, τk)♯Xτk , fθ∗(·, τk−1)♯X̂

ϕ,M
τk−1

)
⩽ W1

(
fθ̂(·, τk)♯Xτk , fθ̂(·, τk−1)♯X̂

ϕ,M
τk

)
+W1

(
fθ̂(·, τk−1)♯Xτk−1

, fθ̂(·, τk−1)♯X̂
ϕ,M
τk−1

)
+W1

(
fθ̂(·, τk−1)♯Xτk−1

, fθ∗(·, τk−1)♯Xτk−1

)
+W1

(
fθ∗(·, τk−1)♯Xτk−1

, fθ∗(·, τk−1)♯X̂
ϕ,M
τk−1

) (26)

Then, after summing over k = 1, 2, . . . , N ′ and telescoping, we have:

W1

(
fθ̂(·, T )♯XT , fθ∗(·, T )♯XT

)
⩽

N ′∑
k=1

W1

(
fθ̂(·, τk)♯Xτk , fθ̂(·, τk−1)♯X̂

ϕ,M
τk−1

)

+

N ′∑
k=1

W1

(
fθ̂(Xτk−1

, τk−1), fθ̂(·, τk−1)♯X̂
ϕ,M
τk−1

)
+

N ′∑
k=1

W1

(
fθ∗(·, τk−1)♯Xτk−1

, fθ∗(·, τk−1)♯X̂
ϕ,M
τk−1

)

=

N ′∑
k=1

W1

(
fθ̂(·, τk)♯Xτk , fθ̂(·, τk−1)♯X̂

ϕ,M
τk−1

)
+ I1 + I2 ⩽ I1 + I2 + I3 + I4.

Here, we apply Equation (25) to the last line, and finally we come to our conclusion.

C.4 Proof of Lemma 5.3

According to the optimization constraint, we know that fθ̂, fθ∗ ∈ Lip(R). Therefore, we can combine these two terms
I1, I2 and see how to upper bound

J := sup
fθ∈Lip(R)

N ′∑
k=1

W1

(
fθ(·, τk−1)♯Xτk−1

, fθ(·, τk−1)♯X̂
ϕ,M
τk−1

)
.

Notice that, Xτk−1
,Xτk are sampled from the forward process, which means

Xt = (m(t) · pdata) ⋆N (0, σ(t)2) ∀t ∈ [ε, T ]

where m(t) = exp
(
−
∫ t

0
β(s)ds

)
, σ(t)2 = 1 −m(t)2 and ⋆ denotes the convolution between two distributions. Also,

X̂ϕ,M
τk−1

is sampled from multi-step discretization of backward probability ODE flow (Equation (5)), starting from Xτk .

Lemma B.1 provides us an upper bound for the KL-divergence between Xτk−1
and X̂ϕ,M

τk−1
. Since fθ ∈ Lip(R), fθ(·, τk−1)

is an R-Lipschitz function, so it holds that:

W1

(
fθ(·, τk−1)♯Xτk−1

, fθ(·, τk−1)♯X̂
ϕ,M
τk−1

)
⩽ R ·W1

(
Xτk−1

, X̂ϕ
τk−1

)
.

In order to upper bound W1

(
Xτk−1

, X̂ϕ,M
τk−1

)
with the KL divergence KL

(
Xτk−1

, X̂ϕ,M
τk−1

)
, we need to apply Lemma B.4.

In the following part, we prove that the random variable xϕ,M
τk−1

has Gaussian tail, just like xτk . For any integer k ∈ [1, N ], it

16
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holds that: ∥∥∥x̂ϕ
tk−1

∥∥∥
2
=

∥∥∥∥xtk +

(
β(tk)

2
xtk +

β(tk)

2
sϕ(xtk , t)

)
·∆t

∥∥∥∥
2

<

(
1 +

β∆t

2

)
· ∥xtk∥2 +

βUscore ·∆t

2
<

(
1 +

∆t

Uscore

)
∥xtk∥2 +∆t

when β < 2/Uscore. After iterating this inequality M times, we have:

∥∥∥x̂ϕ,M
τk−1

∥∥∥
2
⩽

(
1 +

∆t

Uscore

)M

∥xτk∥2 +∆t ·

(
1 +

(
1 +

∆t

Uscore

)
+ . . .+

(
1 +

∆t

Uscore

)M−1
)
.

Under the condition that N ′ ≫ T , we have:(
1 +

∆t

Uscore

)M

< (1 + ∆t)T/N ′∆t < exp(T/N ′) < 2,

which leads to:

∆t ·

(
1 +

(
1 +

∆t

Uscore

)
+ . . .+

(
1 +

∆t

Uscore

)M−1
)

⩽ ∆t · 2M =
2T

N ′ < 2.

Therefore, we have
∥∥∥x̂ϕ,M

tk−1

∥∥∥
2
⩽ 2∥xtk∥2 + 2, which means both Xτk and Xϕ,M

τk−1
have Gaussian tail for all k ∈ [1, N ′]. By

applying Lemma B.4, we conclude that:

I1 + I2 ⩽ 2R ·
N ′∑
k=1

W1

(
Xτk−1

, X̂ϕ,M
τk−1

)
≲ 2R

√
d ·

N ′∑
k=1

√
KL
(
Xτk−1

, X̂ϕ,M
τk−1

)

≲ 2R
√
dN ′ ·

√
β
2
(
L2d∆t ·M∆t+

1

ε
n− 2

d+5 ·M∆t

)
≲ RdLβ · T√

M
+Rβ

√
dn− 1

d+5 ·
√

N ′T

ε
.

(27)

After arranging these terms, we come to our conclusion.

C.5 Proof of Lemma 5.4

For these two loss terms, they can be treated as the gap between empirical and population Wasserstein distances. Notice that,
for any two distributions p, q, denote p̂, q̂ as their empirical version, then it holds that:

|W1(p, q)−W1(p̂, q̂)| ⩽ W1(p, p̂) +W1(q, q̂). (28)

Notice that fθ̂(·, τk), fθ∗(·, τk) are Lipschitz-R continuous function for all k ∈ [1, N ′]. Also, since:

G(x, tk;ϕ) = x+

(
β(tk)

2
x+

β(tk)

2
sϕ(x, tk)

)
·∆t,

which is Lipschitz continuous with regard to xtk with Lipschitz constant

L1 = 1 + β(1 + Lscore)∆t/2 < 1 + ∆t

since β < 2/(1 + Lscore). After iterating M times, we know that:

G(M)(·, τk;ϕ) = G(·, t(k−1)M+1;ϕ) ◦ . . . ◦G(·, tkM ;ϕ)

17
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is Lipschitz continuous with constant (1 +∆t)M < exp(T/N ′) < 2. Therefore, fθ̂(x̂
ϕ,M
τk−1

, τk−1) and fθ∗(x̂ϕ,M
τk−1

, τk−1) are
2R-Lipschitz continuous function with regard to xτk . According to Inequality (28), we have:

|I3| ⩽
N ′∑
k=1

[
W1

(
fθ̂(·, τk)♯Xτk , fθ̂(·, tk)♯Xτk

)
+W1

(
fθ̂(·, τk−1)♯X̂

ϕ,M
τk

, fθ̂(·, τk−1)♯X̂ ϕ,M
τk

)]

⩽
N ′∑
k=1

[
R ·W1 (Xτk ,Xτk) +R ·W1

(
G(M)(·, τk;ϕ)♯Xτk , G(M)(·, τk;ϕ)♯Xτk

)]
⩽

N ′∑
k=1

[R ·W1 (Xτk ,Xτk) + 2R ·W1 (Xτk ,Xτk)] = 3R ·
N ′∑
k=1

W1 (Xτk ,Xτk) .

|I4| ⩽
N ′∑
k=1

[
W1 (fθ∗(·, τk)♯Xτk , fθ∗(·, tk)♯Xτk) +W1

(
fθ∗(·, τk−1)♯X̂

ϕ,M
τk

, fθ∗(·, τk−1)♯X̂ ϕ,M
τk

)]

⩽
N ′∑
k=1

[
R ·W1 (Xτk ,Xτk) +R ·W1

(
G(M)(·, τk;ϕ)♯Xτk , G(M)(·, τk;ϕ)♯Xτk

)]
⩽

N ′∑
k=1

[R ·W1 (Xτk ,Xτk) + 2R ·W1 (Xτk ,Xτk)] = 3R ·
N ′∑
k=1

W1 (Xτk ,Xτk) .

(29)

Here, Xτk is the empirical version of distribution Xτk , which means:
Xτk = (m(τk) · pdata) ⋆N (0, σ(τk)

2), Xτk = (m(τk) · p̂data) ⋆N (0, σ(τk)
2)

where p̂data is a uniform distribution taken over the n i.i.d samples from pdata. In order to upper bound |I3|, |I4|, we
only need to control W1 (Xτk ,Xτk). The following lemma upper bounds W1 (Xτk ,Xτk) with W1

(
pdata, p̂data

)
for each

k = 1, 2, . . . , N ′.
Lemma C.2. For each k = 1, 2, . . . , N ′, it holds that:

W1 (Xτk ,Xτk) ⩽ m(τk) ·W1

(
pdata, p̂data

)
.

Proof. By the dual formulation of Wasserstein distance, it holds that for ∀t ∈ [0, T ]:

W1(Xt,Xt) = sup
Lip(F )⩽1

(Ex∼Xt
F (x)− Ex∼Xt

F (x̂)) = sup
Lip(F )⩽1

[
ExEzF (mtx+ σtz)− Ex̂EzF (mtx̂+ σtz)

]
where the expectation is taken over x ∼ pdata, x̂ ∼ p̂data and z ∼ N (0, I). Notice that, for the following mapping

G[F ](x) := EzF (m(t)x+ σ(t)z),

it holds that for any function F with Lipschitz constant 1,
|G[F ](x)−G[F ](x′)| ⩽ Ez |F (m(t)x+ σ(t)z)− F (m(t)x′ + σ(t)z)| ⩽ Ez [m(t) · |x− x′|] = m(t) · |x− x′|.

Therefore, we know that G[F ] is m(t)-Lipschitz continuous, which leads to

W1(Xt, X̂t) = sup
Lip(F )⩽1

[
ExG[F ](x)− Ex̂G[F ](x̂)

]
⩽ sup

Lip(G)⩽mt

[
ExG(x)− Ex̂G(x̂)

]
= m(t) · sup

Lip(G)⩽1

[
ExG(x)− Ex̂G(x̂)

]
= m(t) ·W1(pdata, p̂data).

It comes to our conclusion.

After that, by combining Equation (29) and Lemma C.2, we have:

|I3|+ |I4| ⩽ 6R

 N ′∑
k=1

m(τk)

 ·W1

(
pdata, p̂data

)
< 6RN ′ ·W1

(
pdata, p̂data

)
. (30)

Now, our final step is to bound the gap between empirical and population Wasserstein distance of the initial distribution
pdata. According to the statistical result (Weed & Bach, 2019), we can conclude that:

EW1 (pdata, p̂data) ≲ n−1/d.

Here, the expectation is taken over p̂data
i.i.d∼ pdata. Therefore, we can upper bound I3 + I4 as:
I3 + I4 ⩽ |I3|+ |I4| ≲ 6RN ′ · n−1/d. (31)
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C.6 Proof of Lemma 5.5

From the proof of Lemma C.2, we know that

W1

(
P ⋆N (0, σ2I), Q ⋆N (0, σ2I)

)
⩽ W1(P,Q)

holds for any distribution pair (P,Q) and σ > 0. For distribution XT and N (0, I), we have:

XT = (m(T ) · pdata) ⋆N (0, σ(T )2) and N (0, I) = (m(T ) · N (0, I)) ⋆N (0, σ(T )2)

since m(T )2 + σ(T )2 = 1. Therefore:

W1(XT ,N (0, I)) ⩽ m(T ) ·W1(pdata,N (0, I)).

According to Assumption 4.2, we know that W1(pdata,N (0, I)) is finite and furthermore W1(pdata,N (0, I)) ≲
√
d.

Besides,

m(T ) = exp

(
−1

2

∫ T

0

β(s)ds

)
⩽ exp(−βT/2).

To sum up, we conclude that:
W1(XT ,N (0, I)) ≲

√
d exp(−βT/2).

C.7 Proof of Lemma 5.6

Lemma C.3 (DDPM). Under Assumption 4.1 and 4.2, when the step size ∆t < 1/L, it holds that:

KL (fθ∗(·, T )♯XT ,Xε) ≲ β
2
L2T (d∆t+M2

2∆t2) + β
2
∫ T

ε

∥sϕ(·, t)−∇ log pt(·)∥2L2(Xt)
dt

Since both Xε and fθ∗(·, T )♯XT have Gaussian tail, we apply Lemma B.4 and the score integrated error (Lemma 5.1), then
we conclude that:

W1 (fθ∗(·, T )♯XT ,Xε) ≲
√
d ·
√
KL (fθ∗(·, T )♯XT ,Xε) ≲ βLd

√
T∆t+ β

√
d ·
√

T

ε
n− 1

d+5 .

Finally, we just need to bound W1(Xε, pdata), which is stated in the following lemma.

Lemma C.4. For the distributions pdata and Xε = (m(ε) · pdata) ⋆N (0, σ(ε)2I), its Wasserstein-1 distance with pdata
can be upper bounded as:

W1(Xε, pdata) ≲
√
dβε.

Proof. Notice that Xε = (m(ε) · pdata) ⋆N (0, σ(ε)2) where

m(ε) = exp

(
−1

2

∫ ε

0

β(s)ds

)
⩾ exp(−βε/2) ⩾ 1− βε/2,

and σ(ε)2 = 1−m(ε)2 ⩽ 2(1−m(ε)) ⩽ βε. Then, it holds that:

W1(Xε, pdata) ⩽ W1 (pdata,m(ε) · pdata) +W1 (m(ε) · pdata,Xε)

⩽ sup
Lip(f)⩽1

Ex∼pdata
[f(x)− f(m(ε) · x)] +W1(δ{0},N (0, σ(ε)2))

⩽ (1−m(ε)) · Ex∼pdata
∥x∥2 + σ(ε) · Ez∼N (0,I)∥z∥2

⩽ (1−m(ε)) · M2 + σ(ε) · Ez∼N (0,I)∥z∥2

⩽ βε/2 · M2 +

√
βε ·

√
d ≲

√
dβε,

which comes to our conclusion.
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D Proof Sketch for Consistency Isolation
Unlike the distillation case, the consistency equality we apply is based on the empirical distributions, so that θ∗ satisfies

fθ∗(·, τk)♯Xτk
law
= fθ∗(·, τk−1)♯X̂M

τk−1
∀k ∈ [N ′]

because of the definition of fθ∗ . Besides, according to the optimality inequality, we have:
N ′∑
k=1

W1

(
fθ̂(·, τk)♯Xτk , fθ̂(·, τk−1)♯Xτk−1

)
⩽

N ′∑
k=1

W1

(
fθ∗(·, τk)♯Xτk , fθ∗(·, τk−1)♯Xτk−1

)
.

After combining these two inequalities, we can upper bound our target function as follows:

Lemma D.1.

W1

(
fθ̂(·, T )♯XT , fθ∗(·, T )♯XT

)
⩽ 2

N ′∑
k=1

W1

(
fθ∗(·, τk−1)♯X̂M

τk−1
, fθ∗(·, τk−1)♯Xτk−1

)
.

Proof. Notice that for ∀k ∈ [N ′], we have:

W1

(
fθ̂(·, τk)♯Xτk , fθ∗(·, τk)♯Xτk

)
⩽ W1

(
fθ̂(·, τk−1)♯Xτk−1

, fθ∗(·, τk−1)♯Xτk−1

)
+W1

(
fθ̂(·, τk)♯Xτk , fθ̂(·, τk−1)♯Xτk−1

)
+W1

(
fθ∗(·, τk)♯Xτk , fθ∗(·, τk−1)♯Xτk−1

)
.

After taking summation over k = 1, 2, . . . , N ′, we have:

W1

(
fθ̂(·, T )♯XT , fθ∗(·, T )♯XT

)
⩽

N ′∑
k=1

W1

(
fθ̂(·, τk)♯Xτk , fθ̂(·, τk−1)♯Xτk−1

)
+

N ′∑
k=1

W1

(
fθ∗(·, τk)♯Xτk , fθ∗(·, τk−1)♯Xτk−1

)
⩽

N ′∑
k=1

W1

(
fθ∗(·, τk)♯Xτk , fθ∗(·, τk−1)♯Xτk−1

)
+

N ′∑
k=1

W1

(
fθ∗(·, τk)♯Xτk , fθ∗(·, τk−1)♯Xτk−1

)
= 2

N ′∑
k=1

W1

(
fθ∗(·, τk−1)♯X̂M

τk−1
, fθ∗(·, τk−1)♯Xτk−1

)
,

which comes to our conclusion. Here, we use the optimality inequality as well as the consistency equation.

As we can see, the loss decomposition is much simpler than the distillation case. The only relevant term stands for the
discretization error of ODE solver. Since fθ∗(·, t) is R-Lipschitz for any t ∈ [0, 1], we have

W1

(
fθ∗(·, τk−1)♯X̂M

τk−1
, fθ∗(·, τk−1)♯Xτk−1

)
⩽ R ·W1

(
X̂M

τk−1
,Xτk−1

)
.

Compared with Equation (24), we do not have the score approximation error here since the score function for Xt has explicit
formulation, which leads to

KL
(
X̂M

τk−1
,Xτk−1

)
≲ β

2
L2
εd∆t ·M∆t.

Here, the score function ∇ log p̂t(·) is Lε-Lipschitz continuous for ∀t ∈ [ε, T ]. By using Lemma B.4 and Lemma D.1, we
have:

W1

(
fθ̂(·, T )♯XT , fθ∗(·, T )♯XT

)
⩽ 2R ·

N ′∑
k=1

W1

(
X̂M

τk−1
,Xτk−1

)
≲ 2RN ′

√
d ·
√

β
2
L2
εdM∆t2.

Similarly, the DDPM bound (Lemma C.3) also does not contain the score approximation error:

KL (fθ∗(·, T )♯XT ,Xε) ≲ β
2
L2
εTd∆t,

which leads to
W1 (fθ∗(·, T )♯XT ,Xε) ≲

√
d ·
√
β
2
L2
εTd∆t

according to Lemma B.4. In the next step, we need to bound the Lipschitz constant Lε since Assumption 4.1 is no longer
applicable here.

Lemma D.2. For the mixture of Gaussian distribution 1
n

∑n
j=1 N (xj , σ2I), we denote p̂ as its density. Assume ∥xj∥2 ⩽ R0

for ∀j ∈ [n], then its score function ∇ log p̂(·) is L-Lipschitz continuous. Here L = max(R2
0/σ

4, 1/σ2). Furthermore, it
leads to Lε = 4R2

0/(ε
2β2).
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Proof. For the score function of 1
n

∑n
j=1 N (xj , σ2), it has the following formulation:

s(x) =

∑n
j=1 −

x−xj

σ2 exp
(
−∥x−xj∥2

2σ2

)
∑n

j=1 exp
(
−∥x−xj∥2

2σ2

) = −
n∑

j=1

x− xj

σ2
· pj = − 1

σ2
x+

1

σ2

n∑
j=1

pjxj .

Here,

pj =
exp

(
−∥x−xj∥2

2σ2

)
∑n

k=1 exp
(
−∥x−xk∥2

2σ2

) ∀j ∈ [n].

The Jacobian matrix

ds(x)

dx
= − 1

σ2
Id +

1

σ2

n∑
j=1

xj ·
(
dpj

dx

)⊤

= − 1

σ2
Id− 1

σ2

n∑
j=1

xj ·
(
pj · x− xj

σ2
+ pjs(x)

)⊤

= − 1

σ2
Id +

1

σ4

n∑
j=1

pjxjxj⊤ − 1

σ2

 n∑
j=1

pjxj

 ·
(
s(x) +

1

σ2
x

)⊤

= − 1

σ2
Id +

1

σ4

n∑
j=1

pjxjxj⊤ − 1

σ4

 n∑
j=1

pjxj

 ·

 n∑
j=1

pjxj

⊤

.

(32)

Therefore, we have:
− 1

σ2
Id ⪯ ds(x)

dx
⪯ 1

σ4

n∑
j=1

pjxjxj⊤.

Notice that when ∥xj∥2 ⩽ R0 for all j ∈ [n]:∥∥∥∥∥∥
n∑

j=1

pjxjxj⊤

∥∥∥∥∥∥
2

⩽
n∑

j=1

pj
∥∥xjxj⊤∥∥

2
=

n∑
j=1

pj∥xj∥22 ⩽ R2
0.

Finally, we can conclude that s(x) is L-Lipschitz continuous for L = max(1/σ2, R2
0/σ

4). Furthermore, for Lε, the
Lipschitz continuity of ∇ log p̂t(·) for t ∈ [ε, T ], since

σ(ε)2 = 1−m(ε)2 ⩾ 1− exp(βε) > βε/2,

we have Lε = 4R2
0/(β

2ε2).

After combining these conclusions together, we notice that:

W1

(
fθ̂(·, T )♯N (0, I), pdata

)
⩽ W1

(
fθ̂(·, T )♯N (0, I), fθ̂(·, T )♯XT

)
+W1

(
fθ̂(·, T )♯XT , fθ∗(·, T )♯XT

)
+W1 (fθ∗(·, T )♯XT ,Xε) +W1(Xε, pdata)

≲ R ·W1(N (0, I),XT ) + 2RN ′
√
d ·
√
β
2
L2
εdM∆t2

+
√
d ·
√
β
2
L2
εTd∆t+W1(Xε, Xε) +W1(Xε, pdata).

Finally, we apply Lemma C.2, 5.5, C.4, and have:

W1(Xε, pdata) ≲
√

dβε, E [W1(Xε, Xε)] ⩽ E
[
W1(p̂data, pdata)

]
≲ n−1/d

W1(N (0, I),XT ) ⩽ W1(N (0, I), XT ) +W1(XT ,XT ) ≲
√
d exp(−βT/2) + n−1/d.

To sum up, it holds that:

E
[
W1

(
fθ̂(·, T )♯N (0, I), pdata

)]
≲

√
dR exp

(
−βT/2

)
+R · n−1/d + dβLε ·

T√
M

+

√
dβε

≲
√
dR exp

(
−βT/2

)
+R · n−1/d +

dβR2
0

β2ε2
· T√

M
+

√
dβε,

(33)

which comes to our conclusion of the main theorem 4.2.
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