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ABSTRACT

Bilevel optimization underpins many machine learning applications, including
hyperparameter optimization, meta-learning, neural architecture search, and re-
inforcement learning. While hypergradient-based methods have advanced sig-
nificantly, a gap persists between theoretical guarantees—typically derived for
multi-loop algorithms—and practical single-loop implementations required for ef-
ficiency. This work narrows that gap by establishing sharper convergence results
for single-loop approximate implicit differentiation (AID) and iterative differenti-
ation (ITD) methods. For AID, we improve the convergence rate from O(κ6/K)
to O(κ5/K), where κ is the condition number of the inner-level problem. For
ITD, we prove that the asymptotic error is O(κ2), exactly matching the known
lower bound and improving upon the previous O(κ3) guarantee. We further val-
idate the refined analyses by the experiments on synthetic bilevel optimization
tasks.

1 INTRODUCTION

Bilevel optimization has attracted extensive attention in various applications of machine learning,
including hyperparameter optimization (Maclaurin et al., 2015; Franceschi et al., 2017; Shaban et al.,
2019; Shen et al., 2024), meta-learning (Chen et al., 2017; Finn et al., 2017; Franceschi et al., 2018),
neural architecture search (Liu et al., 2018; He et al., 2020), and reinforcement learning (Zhang
et al., 2020; Wang et al., 2020; Shen et al., 2025). Bilevel optimization corresponds to solving one
optimization problem subject to constraints defined by another optimization problem. In this paper,
we focus on the following bilevel optimization problem:

min
x∈Rm

Φ(x) = f(x, y∗(x)) s.t. y∗(x) = argmin
y∈Rn

g(x, y), (1)

where the outer- and inner-level functions f and g are both jointly continuously differentiable on
Rm ×Rn. We focus on the setting where g is strongly convex with respect to (w.r.t.) the inner-level
variable y, which can guarantee the uniqueness of the inner solution (Chen et al., 2024).

Hypergradient-based algorithms have recently gained significant attention for their balance of sim-
plicity and efficiency. Two prominent approaches are approximate implicit differentiation (AID)
(Domke, 2012; Pedregosa, 2016; Ghadimi & Wang, 2018; Grazzi et al., 2020; Ji et al., 2021) and it-
erative differentiation (ITD) (Franceschi et al., 2017; Shaban et al., 2019; Grazzi et al., 2020; Ji et al.,
2021; Liu et al., 2021). The key distinction lies in how they estimate the hypergradient ∇Φ(x): AID
leverages the implicit function theorem, while ITD applies automatic differentiation (see Section 2).
Despite this difference, both methods require solving the inner problem to obtain the optimal solu-
tion y∗. In practice, however, closed-form solutions are rarely available, and one typically resorts to
gradient descent to compute an approximate solution ŷ.

Most theoretical studies of bilevel optimization analyze algorithms that employ multi-loop updates
(multi-step gradient descent) for the inner problem and linear-system (Ghadimi & Wang, 2018; Ji
et al., 2021; Dong et al., 2025; Fang et al., 2025). In contrast, practical algorithms overwhelmingly
adopt single-loop updates, where only one inner update is performed per outer iteration. The main
appeal of single-loop methods is computational efficiency: they significantly reduce training cost
while maintaining competitive performance. This design has become standard across a wide range
of applications. For instance, in neural architecture search, DARTS (Liu et al., 2018) updates the
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Algorithms Convergence rate MV(ϵ) Gc(ϵ)
AID (Ji et al., 2022) O(κ6/K) O(κ6ϵ−1) O(κ6ϵ−1)
AID (this paper) O(κ5/K) O(κ5ϵ−1) O(κ5ϵ−1)
ITD (Ji et al., 2022) O(κ3/K + κ3) N/A N/A
ITD (this paper) O(κ3/K + κ2) N/A N/A
Lower bound of ITD Ω(κ2) N/A N/A

Table 1: Comparison of computational complexities of both single-loop AID-based and ITD-based
algorithms for finding an ϵ-stationary point. For the last three columns, ‘N/A’ means that the com-
plexities to achieve an ϵ-accuracy are not measurable due to the nonvanishing convergence error.
MV(ϵ): the total number of Jacobian- and Hessian-vector product computations. Gc(ϵ): the total
number of gradient computations.

network parameters (y) via single-loop while optimizing architecture coefficients (x). In few-shot
meta-learning, MAML (Finn et al., 2017) applies single-loop adaptation to task-specific parameters.
In data reweighting for imbalanced or noisy samples, methods such as Ren et al. (2018); Shu et al.
(2019) also rely on single-loop updates. These examples underscore a critical gap: while existing
theory primarily addresses multi-loop schemes, the algorithms most relevant in practice depend on
single-loop updates, making it essential to establish their convergence guarantees.

Recently, Liu et al. (2024) propose MEHA, a Moreau-envelope-based single-loop method with con-
vergence rate O(1/K1/2−p + 1/Kp), where K is the number of outer iterations and p ∈ (0, 1/2).
Kwon et al. (2023) design F3SA by incorporating momentum, achieving a rate of O(K−2/3). How-
ever, these single-loop methods remain slower than AID and ITD, both of which can reach O(K−1)
as shown in Table 1. Motivated by this gap, we focus on the AID and ITD methods and seek sharper
analyses for their single-loop variants.

Along similar lines, Ji et al. (2022) analyze different loop structures in bilevel optimization and
establish corresponding theoretical results. For AID, Ji et al. (2022) establish a convergence of
O(κ6/K) in the single-loop setting, where κ = L

µ denotes the condition number (L and µ are the
gradient Lipschitz and strong convexity constants defined respectively in Assumptions 1 and 3). This
is still inferior to the O(κ4/K) rate achieved by the multi-loop AID. Therefore, our work first aims
to narrow the gap of the convergence between the single-loop and multi-loop AID-based methods:

• Our first contribution is that, via a refined analysis and a novel analytical methodology,
we show that the single-loop AID algorithm can achieve a convergence rate of O(κ5/K),
thereby providing a more practical and theoretically grounded alternative for large-scale
bilevel optimization tasks where previous guarantees of O(κ6/K) limited reliability.

For ITD, Ji et al. (2022) show that single-loop suffers from an inherent error of order O(κ3), leaving
a gap of αµ (with α the inner-level step size) from the fundamental lower bound. They identify
closing this gap as an open problem.

• Our second contribution is that the single-loop ITD method can attain a convergence error
of order O(κ2), exactly matching the lower bound of Ji et al. (2022), thereby establishing
its theoretical optimality and potentially supporting it as an efficient alternative to more
costly multi-loop methods.

Moreover, our key technical contribution is a novel analytical framework that departs from the stan-
dard proof template. Prior analyses bound the squared error norm directly, which inflates the de-
pendence on κ. We instead decouple the analysis by first bounding the error norm and only then
squaring it. This delicate treatment avoids the overestimation and yields sharper bounds, providing
a more accurate characterization of both AID and ITD.

2 ALGORITHMS

In this section, we introduce two popular bilevel optimization algorithms to solve problem (1). It
is worth noting that we provide the single-loop algorithms, as this aligns with practical choices in
related applications.
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Algorithm 1 Single-Loop AID-based bilevel optimization algorithm
1: Input: Learning rates α, β, η > 0, initializations x0, y0, v0.
2: for k = 0, 1, 2, ...,K do
3: Set y0k = ŷk−1 if k > 0 and y0 otherwise (warm start initialization)
4: Update ŷk = y0k − α∇yg(xk, y

0
k)

5: Set v0k = v̂k−1 if k > 0 and v0 otherwise (warm start initialization)
6: Update v̂k = (I − η∇2

yg(xk, ŷk))v
0
k + η∇yf(xk, ŷk)

7: Compute ∇̂Φ(xk) = ∇xf(xk, ŷk)−∇2
xyg(xk, ŷk)v̂k

8: Update xk+1 = xk − β∇̂Φ(xk)
9: end for

Algorithm 2 Single-Loop ITD-based bilevel optimization algorithm
1: Input: Learning rate α, β > 0, initializations x0 and y0.
2: for k = 0, 1, 2, ...,K do
3: Set y0k = ŷk−1 if k > 0 and y0 otherwise (warm start initialization)
4: Update ŷk(xk) = y0k − α∇yg(xk, y

0
k)

5: Compute ∇̂Φ(xk) = ∇xf(xk, ŷk)− α∇2
xyg(xk, y

0
k)∇yf(xk, ŷk)

6: Update xk+1 = xk − β∇̂Φ(xk)
7: end for

2.1 AID-BASED BILEVEL OPTIMIZATION ALGORITHM

We provide the single-loop AID-based bilevel optimization algorithm (for simplicity, hereafter re-
ferred to as AID) in Algorithm 1. In each outer-level iteration k, AID first performs one step of
gradient descent on the inner-level function g(x, y) to find a point ŷk that approximates y∗k, where
y∗k denotes argminy g(xk, y). Moreover, to accelerate the practical training process, AID usually
adopts a warm-start strategy. In other words, the initial value y0k of the inner-level problem at itera-
tion k is set to the updated value ŷk−1 from iteration k − 1.

In the outer-level, AID first obtain v̂k via solving a linear system ∇2
yg(xk, ŷk)v = ∇yf(xk, ŷk) by

one step of gradient descent starting form v0k, and then AID can estimate the gradient ∇Φ(xk) =
∇xf(xk, y

∗
k) − ∇2

xyg(xk, y
∗
k)v̂k of the outer-level function w.r.t. x (called hypergradient) by the

form of ∇̂Φ(xk) = ∇xf(xk, ŷk)−∇2
xyg(xk, ŷk)v̂k.

2.2 ITD-BASED BILEVEL OPTIMIZATION ALGORITHM

We present the single-loop ITD-based bilevel optimization algorithm (for simplicity, hereafter re-
ferred to as ITD) in Algorithm 2. Similar to AID, ITD also performs one step of gradient descent
and employs a warm-start strategy on the inner-level function g(x, y) to obtain ŷk. Unlike AID,
however, ITD does not rely on the implicit gradient formula when estimating the hypergradient, but
instead estimates the hypergradient directly via automatic differentiation. Since the update of ŷk
depends on xk, ITD needs to store the iterative trajectory for backpropagation. In this work, be-
cause we consider the more practical single-step gradient descent, the hypergradient estimate takes
the following form: ∇̂Φ(xk) = ∇xf(xk, ŷk)− α∇2

xyg(xk, y
0
k)∇yf(xk, ŷk).

3 DEFINITIONS AND ASSUMPTIONS

In bilevel optimization, the objective is to minimize the hyper-objective function ∇Φ(x), which is
typically nonconvex. Because finding a global minimum for such functions can be computationally
prohibitive (Nemirovski & IUdin, 1983), this work aims to find an approximate stationary point
following the literature (Carmon et al., 2017; Ji et al., 2021).

Definition 1. We call x̄ is an ϵ-stationary point of problem (1) if ∥∇Φ(x̄)∥2 ≤ ϵ.
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In this work, we focus on the problem (1) under the following standard assumptions, as also widely
adopted by Ghadimi & Wang (2018); Ji et al. (2021). Let z = (x, y) denote all parameters.
Assumption 1. The inner-level function g(x, y) is µ-strong-convex w.r.t. y.
Assumption 2. The function f(z) is M -Lipschitz, i.e., for any z, z′,

|f(z)− f(z′)| ≤ M ∥z − z′∥ .
Assumption 3. Gradients ∇f(z) and ∇g(z) are L-Lipschitz, i.e., for any z, z′,

∥∇f(z)−∇f(z′)∥ ≤ L ∥z − z′∥ , ∥∇g(z)−∇g(z′)∥ ≤ L ∥z − z′∥ .
Assumption 4. Suppose the derivatives ∇2

xyg(z) and ∇2
yg(z) are ρ-Lipschitz, i.e., for any z, z′,∥∥∇2

xyg(z)−∇2
xyg(z

′)
∥∥ ≤ ρ ∥z − z′∥ ,

∥∥∇2
yg(z)−∇2

yg(z
′)
∥∥ ≤ ρ ∥z − z′∥ .

4 MAIN RESULTS

In this section, we will provide the convergence analysis and characterize the overall computational
complexity for both single-loop AID- and ITD-based algorithms.

4.1 CHALLENGES IN THE ANALYSIS AND OUR APPROACH

The conventional analytical path (Ji et al., 2021; 2022), which we term Direct Squared Norm Anal-
ysis (DSNA), relies on bounding the squared norm of the error vector at each iteration. Let’s con-
sider a simplified one-step error recurrence of the form ek+1 = Aek + δk, where A represents the
contraction operator and δk is the accumulated error term (e.g., from the inexact inner-loop solu-
tion). The standard approach proceeds by analyzing its squared norm: ∥ek+1∥2 = ∥Aek + δk∥2 =

∥Aek∥2 + 2⟨Aek, δk⟩ + ∥δk∥2. The primary challenge arises from the cross-term, 2⟨Aek, δk⟩. To
make this term tractable, existing analyses invariably resort to “pessimistic” inequalities, such as
the Cauchy-Schwarz or Young’s inequality (e.g., 2⟨a, b⟩ ≤ ∥a∥2 + ∥b∥2). For example, Ji et al.
(2022) adopted this approach when analyzing the error upper bounds of the inner variable and the
solution of the linear system. While this decouples the terms, it does so at a great cost. This step
fundamentally ignores any potential underlying structure or cancellation effects between ek and δk.
The repeated application of such loose bounds over many iterations causes the dependencies on the
problem’s condition number, κ, to compound, ultimately leading to the inflated convergence rate.
Our key insight is that this pessimistic rate is not an inherent property of the algorithm itself, but
rather an analysis artifact stemming from the premature squaring of the norm. This step discards
crucial information too early in the derivation.

We introduce a more delicate analytical strategy, Decoupled Norm Analysis (DNA), that sidesteps
this bottleneck. Instead of immediately squaring the error recurrence, we first analyze the error norm
in its linear form by applying the triangle inequality: ∥ek+1∥ = ∥Aek + δk∥ ≤ ∥Aek∥ + ∥δk∥. By
keeping the analysis in the linear domain of norms for as long as possible, we can establish a tighter
recursive relationship (Lemmas 1 and 2 for AID, Lemma 5 for ITD). This approach allows for a
more refined handling of the error terms, preserving more of the underlying geometric structure.
The squaring operation is deferred to the very end of the analysis, after the full recurrence has been
unrolled (Lemma 4 for AID, Lemma 7 for ITD). This seemingly simple change of order—analyzing
the norm before squaring it—prevents the compounding of pessimistic estimates associated with the
cross-term. It is this principled deviation from the standard analytical template that allows us to
break the rate barrier and establish the significantly improved convergence rate, providing a more
faithful theoretical picture of the algorithm’s efficiency.

4.2 CONVERGENCE ANALYSIS OF AID

Proof Sketch: The proof for AID consists of three main steps: 1) Decomposing the hypergradient
estimation error into the approximation error of the inner-level solution and the error from solving
the linear system. (Lemma 3). 2) Bounding these two types of errors based on the errors in previ-
ous iterations (Lemmas 1 and 2). 3) Combining the results from the preceding steps to provide a
convergence guarantee for the AID algorithm (Theorem 1).
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Before presenting the convergence analysis on AID, we first give the following useful lemmas. Now
we study the convergence of ∥v̂k − v∗k∥ and ∥ŷk − y∗k∥ for k = 1, 2, . . . ,K, where v∗k is the exact
solution of the linear system ∇2

yg(xk, ŷk)v = ∇yf(xk, ŷk). Note that the descent of the overall
outer-level objectives also depends on the error of yk. We next analyze these errors.
Lemma 1. Consider single-loop AID-based algorithm in Algorithm 1. Suppose Assumptions 1-4
hold. Let α ≤ 1

L , then we have∥∥y0k − ŷk
∥∥ ≤ αL

(∥∥ŷk−1 − y∗k−1

∥∥+ ∥xk−1 − xk∥
)
, (2)

∥ŷk − y∗k∥ ≤ (1− µα)
∥∥ŷk−1 − y∗k−1

∥∥+
L

µ
∥xk−1 − xk∥ . (3)

Remark 1. Lemma 1 demonstrates that: 1) for k = 1, . . . ,K, the error between the initial point
and the iterated solution of the inner-level problem in single-loop AID can be bounded by the error
from the previous iteration; 2) the error between the approximate solution and the exact solution
of the inner-level problem in single-loop AID can also be bounded by the error from the previous
iteration, which serves as a crucial foundation for the analysis of the algorithm’s convergence.

Then, we decompose ∥v̂k − v∗k∥ and then estimate the upper bound.
Lemma 2. Consider single-loop AID-based algorithm in Algorithm 1. Suppose Assumptions 1-4
hold. Let C0 = ρM

µ2 + L
µ . Then, we have

∥v̂k − v∗k∥ ≤ ∥v̂k − ṽ∗k∥+ C0 ∥ŷk − y∗k∥ , (4)

∥v̂k − ṽ∗k∥ ≤ (1− µη)
∥∥v̂k−1 − ṽ∗k−1

∥∥+ C0

(∥∥y0k − ŷk
∥∥+ ∥xk−1 − xk∥

)
, (5)

where ṽ∗k = (∇2
yg(xk, ŷk))

−1∇yf(xk, ŷk).
Remark 2. The purpose of Lemma 2 is to conduct a more detailed decomposition of the error
between v̂k and v∗k, because this error originates from two aspects: 1) The use of ŷk to approx-
imate y∗k in the inner-level problem. 2) The use of v̂k, obtained from solving the linear system
∇2

yg(xk, ŷk)v = ∇yf(xk, ŷk), to approximate v∗k. Therefore, Lemma 2 decouples these two factors
and controls them separately. Specifically, the first and second terms in Eq. (4) are only related to
the precision of the linear equation solution and the inner-level problem solution, respectively. 3)
Eq. (5) further expands the first term on the right-hand side of Eq. (4).

In Lemmas 1 and 2, we have already provided the relevant error terms of yk and vk. Therefore, we
will utilize the above results to analyze the error between the estimated hypergradient ∇̂Φ(xk) and
the true hypergradient ∇Φ(xk).
Lemma 3. Consider single-loop AID-based algorithm in Algorithm 1. Suppose Assumptions 1-4
hold. Define C0 as in Lemma 2. Then we have∥∥∥∇̂Φ(xk)−∇Φ(xk)

∥∥∥ ≤
(
L+

ρM

µ
+ C0L

)
∥ŷk − y∗k∥+ L ∥v̂k − ṽ∗k∥ . (6)

Unlike the previous DSNA, our proposed DNA avoids the inflation of the condition number κ caused
by repeated squaring. Combine Eq. (6) with the former lemmas, we can get the following lemma.
Lemma 4. Consider single-loop AID-based algorithm in Algorithm 1. Suppose Assumptions 1-4
hold. Define C0 as in Lemma 2. Let α = η = 1

L , C1 = 4C0L
µ , C2 = αL2C0

µ + ρM
µ2 + L

µ + LC1

µ and

C3 = L + ρM
µ + C0L. Choose the outer stepsize β such that β = min{ C1µα

4C2C3
, ηµ
2LC2

}. Then, we
have ∥∥∥∇̂Φ(xk)−∇Φ(xk)

∥∥∥2 ≤L2
(
1− µ

4L

)k

·
(∥∥∥vQ0 − ṽ∗0

∥∥∥+ C1

∥∥yN0 − y∗0
∥∥)2

+
3β2C2

2L
3

µ

k∑
t=0

(
1− µ

4L

)k−1−t

∥∇Φ(xt)∥2 .
(7)

Remark 3. Lemma 4 is a key result that supports the convergence analysis of single-loop AID-based
algorithm. Compared to the work of (Ji et al., 2022), we relax the limit of the step-size for solving
the linear system. Specifically, Ji et al. (2022) in their Corollary 2 required that η = O(κ−2),
whereas we, through a more fine-grained analysis, set eta to 1/L. This indirectly allows for a more
aggressive choice of the outer-level step size β, thereby achieving a faster convergence rate.
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Based on the above conclusions, the following theorem provides a convergence analysis for single-
loop AID-based algorithm.

Theorem 1. Consider single-loop AID-based algorithm in Algorithm 1. Suppose As-
sumptions 1-4 hold. Choose parameters α = η = 1

L . Let LΦ = L + 2L2+ρM2

µ2 +
2ρLM+L3

µ2 + ρL2M
µ3 be the smoothness parameter of Φ(·). Choose the outer stepsize β such

that β = min{ C1µα
4C2C3

, ηµ
2LC2

}. Then, 1
K

∑K−1
k=0 ∥∇Φ(xk)∥2 = O(κ

5

K ), and the complexity is

Gc(ϵ) = Õ(κ5ϵ−1), Mv(ϵ) = Õ(κ5ϵ−1).

Remark 4. Compared with the work of Ji et al. (2022), our core improvement lies in controlling the
errors of both the inner solution y and the linear system solution v, where we relax the requirement
on the outer objective learning rate β from O(κ−6) to O(κ−5). Consequently, we improve the
convergence rate of single-loop AID-based algorithm from O(κ6/K) to O(κ5/K). This indicates
that the convergence gap between such algorithms and the AID algorithms with multi-step gradient
descent is not as large as the O(κ2) gap shown by Ji et al. (2022), but rather a smaller O(κ1). This
also partially supports the practice that most bilevel optimization algorithms perform only one or a
few inner updates.
Theorem 2. [Simplified version of the upper bound in Ji et al. (2022)]. Consider single-
loop AID-based algorithm in Algorithm 1. Under the same setting of Theorem 1, we have
1
K

∑K−1
k=0 ∥∇Φ(xk)∥2 = O

(
κ6

K

)
.

4.3 CONVERGENCE ANALYSIS OF ITD

Proof Sketch: Unlike AID, the hypergradient estimation error of the single-loop ITD-based algo-
rithm is introduced only by solving the inner problem. Therefore, our proof consists of three main
steps: 1) Establishing the connection between the hypergradient estimation error and the approx-
imation error of the inner-level solution (Lemma 6). 2) Bounding the approximation error of the
solution to the inner-level problem (Lemma 5). 3) Combining the results from the previous steps to
provide a convergence analysis for the ITD algorithm (Lemma 7 and Theorem 3).

To this end, we first present several useful lemmas, which will subsequently be used to prove Theo-
rem 3.
Lemma 5. Consider the single-loop ITD-based algorithm in Algorithm 2. Suppose Assumptions
1-4 hold. Let α ≤ 1

L , C4 = L+αL2+αρM , C5 = M(1−αµ)Lµ +α2ρM2, C6 = 1−µα+ LβC4

µ

and C7 = LβC5

µ . Then, we have

∥ŷk − y∗(xk)∥ ≤ C6 ∥ŷk−1 − y∗(xk−1)∥+
Lβ

µ
∥∇Φ(xk−1)∥+ C7, (8)

∥ŷk − y∗(xk)∥ ≤
(
1− µ

2L

)k

∥ŷ0 − y∗(x0)∥+
Lβ2

µ

k−1∑
j=0

(
1− µ

2L

)k−1−j

(∥∇Φ(xj)∥+ C5) .

(9)

Using the error bound for ∥ŷk − y∗k∥, we will analyze the error between the estimated hypergradient
∇̂Φ(xk) and the true hypergradient ∇Φ(xk) of the ITD algorithm in the following lemma.
Lemma 6. Consider the single-loop ITD-based algorithm in Algorithm 2. Suppose Assumptions
1-4 hold. Define C4 and C5 in Lemma 5. Let α ≤ 1

L , we have∥∥∥∇̂Φ(xk)−∇Φ(xk)
∥∥∥ ≤ C4 ∥ŷk − y∗k∥+ C5. (10)

Remark 5. Lemma 6 shows that the error between the true hypergradient and the estimated hyper-
gradient is controlled by the accuracy of the inner-level problem solution and an inherent error, part
of which arises from

∥∥y0k − ŷk
∥∥. This indicates that this non-vanishing convergence error is related

to the refinement of the inner-level problem solution, and that the single-loop method is insufficient
to bridge this gap.
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Lemma 7. Consider the single-loop ITD-based algorithm in Algorithm 2. Suppose Assumptions
1-4 hold. Define C4 and C5 in Lemma 5. Let α ≤ 1

L and β ≤ µ3

2L(2L2+ρM) . Then we have∥∥∥∇̂Φ(xk)−∇Φ(xk)
∥∥∥2 ≤C2

4

(
1− µ

4L

)k

∥ŷ0 − y∗(x0)∥2

+
3Lβ2C2

4

µ

k−1∑
j=0

(
1− µ

4L

)k−1−j

(∥∇Φ(xj)∥+ C5)
2
+ 3C2

5 .

Based on the above results, the following theorem provides a convergence analysis for single-loop
ITD-based algorithm.

Theorem 3. Consider the single-loop ITD-based algorithm in Algorithm 2. Suppose As-
sumptions 1-4 hold. Choose parameters α = η = 1

L . Let LΦ = L + 2L2+ρM2

µ2 +
2ρLM+L3

µ2 + ρL2M
µ3 be the smoothness parameter of Φ(·). Choose the outer stepsize β such

that β ≤ µ3

2L(2L2+ρM) . Then, 1
K

∑K−1
k=0 ∥∇Φ(xk)∥2 = O

(
κ3

K + κ2
)

.

Remark 6. Theorem 3 demonstrates that for the single-loop ITD-based algorithm, the convergence
bound contains a non-vanishing error of order O(κ2). Under the standard Assumptions 1-4, such
an error is unavoidable. Moreover, this error upper bound of order O(κ2) matches the error lower
bound (Theorem 4), which indicates that we have achieved a tighter error upper bound through more
refined analysis. This resolves the issue in Ji et al. (2022) where there exists a gap of αµ between
the upper and lower bounds.
Theorem 4. [Simplified version of the lower bound in Ji et al. (2022)]. Consider the single-loop
ITD-based algorithm in Algorithm 2. Suppose Assumptions 1-4 hold. Let α ≤ 1

L , β ≤ 1
LΦ

and

LΦ = L+ 2L2+ρM2

µ2 + 2ρLM+L3

µ2 + ρL2M
µ3 . Then, we have ∥∇Φ(xK)∥2 ≥ Θ(κ2).

5 EXPERIMENTS

Experimental setup. We consider the following bilevel optimization problem:

f(x, y) =
1

2
xTZxx+

1

10
1T y, g(x, y) =

1

2
yTZyy − LxT y + 1T y,

where x, y ∈ R2 and Zx = Zy =

[
L 0
0 µ

]
. Thus the optimal solution of the inner-level subproblem

and the exact hypergradient have the following form:

y∗(x) = Z−1
y (Lx− 1), ∇Φ(x) = Zxx+ LZ−1

y 1. (11)

Based on the updates of single-loop ITD-based method, we have ŷk = y0k − α(Zyy
0
k − Lxk + 1).

Let the hyperparameters set as µ = 0.1, M = 0.1, ρ = 0.1, K = 10000 and α = 1/L.

Results of AID-based Algorithm. Figure 1 presents the error curves of the single-loop AID-based
Algorithm. In Figure 1 (Left), we compare the error upper bound derived by Thoerem 1 with that
given by Ji et al. (2022) under different condition numbers κ. It can be observed that, under varying
condition numbers, our upper bound curve consistently lies closer above the ∥∇Φ(xk)∥2 curve.
This is achieved by refining the analysis and reducing the theoretical order of the upper bound from
O(κ6) to O(κ5). In Figure 1 (Right), under the condition number κ = 2, we compare the variation
of the error upper bound with respect to the number of outer iterations K. It can be seen that
the ∥∇Φ(xk)∥2 curve keeps decreasing as the number of iterations increases, which indicates that
the single-loop AID-based algorithm converges as K grows, thereby confirming the correctness of
Theorem 1. Moreover, we observe that our upper bound curve consistently outperforms that of Ji
et al. (2022), which demonstrates that, theoretically, we provide a tighter error upper bound for this
algorithm, thus verifying the correctness and effectiveness of our theoretical results.

Results of ITD-based Algorithm. Figure 2 illustrates the performance of the ITD-based algorithm.
From Figure 2 (Left), we first observe that in Ji et al. (2022), the gap between the reported upper and

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

2 4 6 8 10
Kappa

10−7

10−5

10−3

10−1

101

103

105

E
rr

or

‖∇Φ(xK)‖2

Upper bound (Ours)

Upper bound (Ji et al. 2022)

0 2000 4000 6000 8000 10000
Iteration

10−7

10−5

10−3

10−1

101

103

105

E
rr

or

‖∇Φ(xK)‖2

Upper bound (Ours)

Upper bound (Ji et al. 2022)

Figure 1: Comparison of error curves of the single-loop AID-based Algorithm. Left: Curves of var-
ious error terms (the squared norm of the true hypergradient ∥∇Φ(xk)∥2, the upper bound provided
in Theorem 1 by us, and the upper bound provided in Theorem 2 by Ji et al. (2022)) with respect to
different condition numbers κ. Right: Curves of various error terms with respect to the number of
iterations K when the condition number κ = 2.
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Figure 2: Comparison of error curves of the single-loop ITD-based Algorithm. Left: Curves of var-
ious error terms (the squared norm of the true hypergradient ∥∇Φ(xk)∥2, the upper bound provided
in Theorem 3 by us, and the upper bound provided by Ji et al. (2022), the lower bound provided in
Theorem 4) with respect to different condition numbers κ. Right: Curves of the scaled upper bound
(×0.32 and ×0.39) with respect to different condition numbers κ.

lower bounds remains large, confirming their conclusion that both bounds still differ by an error of
order αµ. In contrast, our theoretical upper bound is substantially tighter: it lies much closer to the
empirical ∥∇Φ(xK)∥2 curve while remaining strictly above it. This demonstrates that our bound
provides a sharper characterization of the true convergence behavior.

To further verify the validity of our theoretical results, in addition to the curve of the true hypergra-
dient norm, the upper bound curve (according to Theorem 3), and the lower bound curve, we also
scale the upper bound curve in Figure 2 (Right). Specifically, we multiply it by 0.32 and 0.39, re-
spectively. The results show that, after scaling the upper bound curve with different factors, its error
values almost coincide with the true hypergradient norm curve and the lower bound curve, respec-
tively. This indicates that the difference between the upper bound and the lower bound arises from
constant factors introduced by scaling, rather than from differences in order. Thus, this supports the
conclusion of Theorem 3, namely that we have reduced the inherent error to O(κ2).

6 RELATED WORK

Hypergradient-based bilevel optimization. A variety of hypergradient-based bilevel algorithms
have been proposed, differing mainly in how they estimate hypergradients. Methods based on ap-
proximate implicit differentiation (AID) (Domke, 2012; Pedregosa, 2016; Ghadimi & Wang, 2018;

8
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Grazzi et al., 2020; Ji et al., 2021) estimate the product of the inverse hessian and a vector by solv-
ing linear systems with efficient iterative solvers. In contrast, iterative differentiation (ITD) methods
(Maclaurin et al., 2015; Franceschi et al., 2017; Shaban et al., 2019; Liu et al., 2021) compute hyper-
gradients by backpropagating through the inner optimization trajectory. The convergence properties
of AID- and ITD-based algorithms have been the subject of extensive study. For example, Ghadimi
& Wang (2018) and Ji et al. (2021) analyzed the convergence rates and complexities of both ap-
proaches, while Ji et al. (2022) provided a unified framework covering different inner-loop choices
and established lower bounds on the inherent error of ITD. Despite this progress, a notable gap re-
mains between the convergence rate of the single-loop and multi-loop algorithms. Motivated by this
gap, our work develops sharper convergence guarantees for single-loop methods, which are widely
used in practice. Compared with Ji et al. (2022), our analysis for AID achieves an improved con-
vergence order, while for ITD we refine the upper bound on the inherent error to match its known
lower bound.

Gradient-based bilevel optimization. In recent years, some first-order gradient-based bilevel op-
timization methods have also attracted attention. Chen et al. (2025) proposed an algorithm that
achieves near-optimal complexity under the nonconvex–strongly convex setting; however, they still
require a relatively large number of inner iterations, O(κ log(λκ)), where λ = O(κ3) denotes the
penalty strength, which is also large. This, to some extent, affects practical applicability. In addition,
Liu et al. (2024) proposed MEHA based on Moreau-envelope, where they considered the single-loop
setting and provided a convergence rate of O(1/K1/2−p + 1/Kp), with p ∈ (0, 1/2). Kwon et al.
(2023), by introducing momentum, designed F3SA, which is also a single-loop method and achieves
a convergence rate of O(K−2/3). However, compared with hypergradient-based methods, its con-
vergence rate is relatively slower. Therefore, this paper focuses on providing a sharper analysis for
hypergradient-based methods. From a technical perspective, DNA has the potential to be applied
to such gradient-based methods (Chen et al., 2022; Hong et al., 2023; Liu et al., 2024; Fang et al.,
2025), which we leave for future work.

The single-loop bilevel optimization algorithms. The single-loop methods have shown potential in
many applications. In few-shot meta-learning, MAML (Finn et al., 2017), as a classic method, per-
forms single-step gradient descent on the support set for multiple tasks in the inner-level, retaining
the iteration path, while the outer-level updates the network’s initial values using the query set. In
hyperparameter optimization, sample reweighting is a widely used application of bilevel optimiza-
tion algorithms (Ren et al., 2018; Shu et al., 2019; Wang et al., 2024), as bilevel optimization can
efficiently assign different weights to each sample. Such methods typically use the training set in the
inner-level to perform single-step gradient descent to optimize model parameters, and the validation
set in the outer loop to optimize sample weights or weighted networks. In neural architecture search,
DARTS (Liu et al., 2018) method uses a one-step update in the inner-level to update the model, and
the outer-level optimizes the architecture using validation data. It is worth noting that most of these
algorithms achieve efficiency by single-loop, which is also crucial for the large-scale practice of
bilevel optimization techniques (Choe et al., 2023; Shen et al., 2024). Therefore, in this work, we
focus on the single-loop bilevel optimization algorithms, consistent with practical applications, and
are committed to establishing sharper convergence guarantees for these algorithms.

7 CONCLUSION

In this work, we advance the theoretical understanding of single-loop bilevel optimization algo-
rithms, a setting of growing practical relevance. For the AID method, our refined analysis improves
the convergence rate to O(κ5/K), narrowing the gap with multi-loop approaches. For the ITD
method, we establish that its convergence error is exactly O(κ2), thereby closing the open question
raised in prior work regarding its tightness. Our experimental results can corroborate the theory,
demonstrating that single-loop methods can achieve both efficiency and favorable convergence be-
havior. These findings not only bridge an important gap between theory and practice, but also
potentially suggest that the single-loop bilevel optimization methods can be strong candidates for
large-scale machine learning tasks. Beyond the specific result for the algorithm, we believe our
proposed analytical paradigm of the decoupling norm analysis opens new path for studying other
bilevel optimization algorithms, potentially tightening bounds for methods where previous analyses
have been overly pessimistic. Future work includes extending our refined analyses to nonconvex
inner problems and hessian-free methods.
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Reproducibility Statement. All results are theoretical, and complete proofs are provided in the
appendix with clear assumptions and detailed derivations. This ensures that all claims can be inde-
pendently verified without reliance on external data.
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A PROOF OF THE SINGLE-LOOP AID-BASED ALGORITHM

A.1 PROOF OF LEMMA 1

Proof. By the update rule of yk, we have for each k = 1, . . . ,K,∥∥y0k − ŷk
∥∥ =α

∥∥∇yg(xk, y
0
k)
∥∥ = α ∥∇yg(xk, ŷk−1)∥

=α
∥∥∇yg(xk, ŷk−1)−∇yg(xk, y

∗
k−1) +∇yg(xk, y

∗
k−1)−∇yg(xk−1, y

∗
k−1)

∥∥
≤αL

(∥∥ŷk−1 − y∗k−1

∥∥+ ∥xk−1 − xk∥
)
.

The second conclusion holds that

∥ŷk − y∗k∥ ≤(1− µα)
∥∥y0k − y∗k

∥∥ ≤ (1− µα)
∥∥ŷk−1 − y∗k−1

∥∥+
∥∥y∗k−1 − y∗k

∥∥
(i)
≤(1− µα)

∥∥ŷk−1 − y∗k−1

∥∥+
L

µ
∥xk−1 − xk∥ ,

where (i) follows from Lemma 2.2 in Ghadimi & Wang (2018).

A.2 PROOF OF LEMMA 2

In the following two proofs, we will respectively present the two conclusions (Eq. (4) and Eq. (5))
in Lemma 2.

Proof. According to the triangle inequality, we have ∥v̂k − v∗k∥ ≤ ∥v̂k − ṽ∗k∥ + ∥ṽ∗k − v∗k∥ for
k = 1, 2, . . . ,K. Then we focus on using ∥ŷk − y∗k∥ to bound ∥ṽ∗k − v∗k∥:

∥ṽ∗k − v∗k∥ =
∥∥[∇2

yg(xk, ŷk)]
−1∇yf(xk, ŷk)− [∇2

yg(xk, y
∗
k)]

−1∇yf(xk, y
∗
k)
∥∥

≤
∥∥[∇2

yg(xk, ŷk)]
−1∇yf(xk, ŷk)− [∇2

yg(xk, y
∗
k)]

−1∇yf(xk, ŷk)
∥∥

+
∥∥[∇2

yg(xk, y
∗
k)]

−1∇yf(xk, ŷk)− [∇2
yg(xk, y

∗
k)]

−1∇yf(xk, y
∗
k)
∥∥

≤
∥∥[∇2

yg(xk, ŷk)]
−1 − [∇2

yg(xk, y
∗
k)]

−1
∥∥ · ∥∇yf(xk, ŷk)∥

+
∥∥[∇2

yg(xk, y
∗
k)]

−1
∥∥ · ∥∇yf(xk, ŷk)−∇yf(xk, y

∗
k)∥

≤ρM ∥ŷk − y∗k∥
µ2

+
L

µ
∥ŷk − y∗k∥ =

(
ρM

µ2
+

L

µ

)
∥ŷk − y∗k∥ .

Then, we can get the conclusion of Eq. (4).

Proof. By the updated rule, we can obtain that

∥v̂k − ṽ∗k∥ ≤ (1− µη)
∥∥v0k − ṽ∗k

∥∥ ≤ (1− µη)
∥∥v̂k−1 − ṽ∗k−1

∥∥+
∥∥ṽ∗k−1 − ṽ∗k

∥∥ .
For the second term

∥∥ṽ∗k−1 − ṽ∗k
∥∥, we have∥∥ṽ∗k−1 − ṽ∗k

∥∥ =
∥∥[∇2

yg(xk−1, ŷk−1)]
−1∇yf(xk−1, ŷk−1)− [∇2

yg(xk, ŷk)]
−1∇yf(xk, ŷk)

∥∥
≤
∥∥[∇2

yg(xk−1, ŷk−1)]
−1∇yf(xk−1, ŷk−1)− [∇2

yg(xk, ŷk)]
−1∇yf(xk−1, ŷk−1)

∥∥
+
∥∥[∇2

yg(xk, ŷk)]
−1∇yf(xk−1, ŷk−1)− [∇2

yg(xk, ŷk)]
−1∇yf(xk, ŷk)

∥∥
≤
∥∥[∇2

yg(xk−1, ŷk−1)]
−1 − [∇2

yg(xk, ŷk)]
−1

∥∥ · ∥∇yf(xk−1, ŷk−1)∥
+
∥∥[∇2

yg(xk, ŷk)]
−1

∥∥ ∥∇yf(xk−1, ŷk−1)−∇yf(xk, ŷk)∥ .

Furthermore,

∥∇yf(xk−1, ŷk−1)−∇yf(xk, ŷk)∥
≤
∥∥∇yf(xk−1, ŷk−1)−∇yf(xk, y

0
k)
∥∥+

∥∥∇yf(xk, y
0
k)−∇yf(xk, ŷk)

∥∥
≤L ∥xk−1 − xk∥+ L

∥∥y0k − ŷk
∥∥ .
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Then, we have∥∥[∇2
yg(xk−1, ŷk−1)]

−1 − [∇2
yg(xk, ŷk)]

−1
∥∥ · ∥∇yf(xk−1, ŷk−1)∥

≤
∥∥[∇2

yg(xk−1, ŷk−1)]
−1

∥∥ ∥∥∇2
yg(xk−1, ŷk−1)−∇2

yg(xk, ŷk)
∥∥∥∥[∇2

yg(xk, ŷk)]
−1

∥∥
· ∥∇yf(xk−1, ŷk−1)∥

≤ρ (∥ŷk−1 − ŷk∥+ ∥xk−1 − xk∥)
µ2

∥∇yf(xk−1, ŷk−1)∥

≤ρM

µ2
(∥ŷk−1 − ŷk∥+ ∥xk−1 − xk∥) .

Thus, we can obtain that∥∥ṽ∗k−1 − ṽ∗k
∥∥ ≤ρM (∥ŷk−1 − ŷk∥+ ∥xk−1 − xk∥)

µ2
+

L ∥xk−1 − xk∥+ L
∥∥y0k − ŷk

∥∥
µ

=

(
ρM

µ2
+

L

µ

)∥∥y0k − ŷk
∥∥+

(
ρM

µ2
+

L

µ

)
∥xk−1 − xk∥ .

Then, we can get the conclusion of Eq. (5).

A.3 PROOF OF LEMMA 3

Proof. According to the definition of the hypergradient, we have∥∥∥∇̂Φ(xk)−∇Φ(xk)
∥∥∥ =

∥∥∇xf(xk, ŷk)−∇2
xyg(xk, ŷk)v̂k −∇xf(xk, y

∗
k) +∇2

xyg(xk, y
∗
k)v

∗
k

∥∥
≤∥∇xf(xk, y

∗
k)−∇xf(xk, ŷk)∥+

∥∥∇2
xyg(xk, ŷk)(v

∗
k − v̂k)

∥∥
+
∥∥(∇2

xyg(xk, y
∗
k)−∇2

xyg(xk, ŷk)
)
v∗k
∥∥

≤
(
L+

ρM

µ

)
∥ŷk − y∗k∥+ L ∥v̂k − v∗k∥

Eq. (4)

≤
(
L+

ρM

µ
+ C0L

)
∥ŷk − y∗k∥+ L ∥v̂k − ṽ∗k∥ .

Then, the proof is compeleted.

A.4 PROOF OF LEMMA 4

Proof. Firstly, we have

∥v̂k − ṽ∗k∥ ≤(1− µη)
∥∥v̂k−1 − ṽ∗k−1

∥∥+ C0

∥∥y0k − ŷk
∥∥+

(
ρM

µ2
+

L

µ

)
∥xk−1 − xk∥

Eq. (2)

≤ (1− µη)
∥∥v̂k−1 − ṽ∗k−1

∥∥+ C0αL
∥∥ŷk−1 − y∗k−1

∥∥
+

(
αL2C0

µ
+

ρM

µ2
+

L

µ

)
∥xk−1 − xk∥ .

Then we have

∥v̂k − ṽ∗k∥+ C1 ∥ŷk − y∗k∥

≤(1− µη)
∥∥v̂k−1 − ṽ∗k−1

∥∥+ C0αL
∥∥ŷk−1 − y∗k−1

∥∥+

(
αL2C0

µ
+

ρM

µ2
+

L

µ

)
∥xk−1 − xk∥

+ (1− µα)C1

∥∥ŷk−1 − y∗k−1

∥∥+
LC1

µ
∥xk−1 − xk∥

=(1− µη)
∥∥v̂k−1 − ṽ∗k−1

∥∥+

(
1− µα+

C0αL

C1

)
· C1

∥∥ŷk−1 − y∗k−1

∥∥
+

(
αL2C0

µ
+

ρM

µ2
+

L

µ
+

LC1

µ

)
∥xk−1 − xk∥ .

13
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By the update rule of {xk}, we can obtain that

∥xk−1 − xk∥ =β
∥∥∥∇̂Φ(xk−1)

∥∥∥ ≤ β ∥∇Φ(xk−1)∥+ β
∥∥∥∇̂Φ(xk−1)−∇Φ(xk−1)

∥∥∥
Eq. (6)

≤ β ∥∇Φ(xk−1)∥+ β

(
L+

ρM

µ
+ C0L

)∥∥ŷk−1 − y∗k−1

∥∥+ βL
∥∥v̂k−1 − ṽ∗k−1

∥∥ .
Thus, we have

∥v̂k − ṽ∗k∥+ C1 ∥ŷk − y∗k∥

≤
(
1− µη + βL

(
αL2C0

µ
+

ρM

µ2
+

L

µ
+

LC1

µ

))∥∥v̂k−1 − ṽ∗k−1

∥∥
+

(
1− µα+

C0αL

C1
+

β

C1

(
L+

ρM

µ
+ C0L

)(
αL2C0

µ
+

ρM

µ2
+

L

µ
+

LC1

µ

))
· C1

∥∥ŷk−1 − y∗k−1

∥∥+ β

(
αL2C0

µ
+

ρM

µ2
+

L

µ
+

LC1

µ

)
∥∇Φ(xk−1)∥ .

We denote that C2 = αL2C0

µ + ρM
µ2 + L

µ + LC1

µ and C3 = L+ ρM
µ +C0L. Then the above equation

can rewrite as follows

∥v̂k − ṽ∗k∥+ C1 ∥ŷk − y∗k∥

≤ (1− µη + βLC2)
∥∥v̂k−1 − ṽ∗k−1

∥∥+

(
1− µα+

C0αL

C1
+

βC2C3

C1

)
· C1

∥∥ŷk−1 − y∗k−1

∥∥
+ βC2 ∥∇Φ(xk−1)∥ .

We only need to 1− µη + βLC2 ≤ 1− µη
2 , C0αL

C1
= µα

4 and βC2C3

C1
≤ µα

4 . Then we can get

β ≤ ηµ

2LC2
, β ≤ C1µα

4C2C3
, C1 =

4C0L

µ
,

C2 =

(
αL2C0

µ
+

ρM

µ2
+

L

µ
+

LC1

µ

)
α= 1

L=
4L3

µ3
+

4L2ρM

µ4
+

L2

µ2
+

LρM

µ3
+

L

µ
+

ρM

µ2
,

C3 = L+
ρM

µ
+ C0L = L+

ρM

µ
+

ρML

µ2
+

L2

µ
.

Then, we have

β ≤ C1µα

4C2C3
=

µ4(ρM + Lµ)

(4L3µ+ 4L2ρM + 2L2µ2 + 2LµρM + Lµ3)(Lµ2 + ρMµ+ ρML+ L2µ)

=O(κ−4),

β ≤ ηµ

2LC2

η= 1
L=

µ5

2L2(4L3µ+ 4L2ρM + L2µ2 + LµρM + Lµ3)
= O(κ−5).

Then, we have β ≤ min{O(κ−4),O(κ−5)} = O(κ−5). Thus, we have

∥v̂k − ṽ∗k∥+ C1 ∥ŷk − y∗k∥
≤max{1− µη

2
, 1− αµ

2
} ·

(∥∥v̂k−1 − ṽ∗k−1

∥∥+ C1

∥∥ŷk−1 − y∗k−1

∥∥)+ βC2 ∥∇Φ(xk−1)∥

=
(
1− µ

2L

)
·
(∥∥v̂k−1 − ṽ∗k−1

∥∥+ C1

∥∥ŷk−1 − y∗k−1

∥∥)+ βC2 ∥∇Φ(xk−1)∥

Accordingly, we have

(∥v̂k − ṽ∗k∥+ C1 ∥ŷk − y∗k∥)2 ≤
(
1− µ

4L

)
·
(∥∥v̂k−1 − ṽ∗k−1

∥∥+ C1

∥∥ŷk−1 − y∗k−1

∥∥)2
+

3β2C2
2L

µ
∥∇Φ(xk−1)∥2 .
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Moreover, we have

∥v̂k − ṽ∗k∥+ C1 ∥ŷk − y∗k∥ ≤
(
1− µ

2L

)k

·
(∥∥∥vQ0 − ṽ∗0

∥∥∥+ C1

∥∥yN0 − y∗0
∥∥)

+ βC2

k∑
t=0

(
1− µ

2L

)k−1−t

∥∇Φ(xt)∥ .

Thus, we can obtain that

(∥v̂k − ṽ∗k∥+ C1 ∥ŷk − y∗k∥)2 ≤
(
1− µ

4L

)k

·
(∥∥∥vQ0 − ṽ∗0

∥∥∥+ C1

∥∥yN0 − y∗0
∥∥)2

+
3β2C2

2L

µ

k∑
t=0

(
1− µ

4L

)k−1−t

∥∇Φ(xt)∥2 . (12)

Therefore, we have∥∥∥∇̂Φ(xk)−∇Φ(xk)
∥∥∥2 ≤L2

(
∥v̂k − ṽ∗k∥+

C3

L
∥ŷk − y∗k∥

)2

≤L2 (∥v̂k − ṽ∗k∥+ C1 ∥ŷk − y∗k∥)2

≤L2
(
1− µ

4L

)k

·
(∥∥∥vQ0 − ṽ∗0

∥∥∥+ C1

∥∥yN0 − y∗0
∥∥)2

+
3β2C2

2L
3

µ

k∑
t=0

(
1− µ

4L

)k−1−t

∥∇Φ(xt)∥2 ,

where the second inequality is because of C3 ≤ LC1 and the specific derivation process is as follows

C3

LC1
=

µ(L+ µ)

L2
=

1

κ
+

1

κ2
< 1,

where C3 = (Lµ+ρM)·(L+µ)
µ2 and LC1 = L2(Lµ+ρM)

µ3 .

A.5 PROOF OF THEOREM 1

Proof. First, based on Lemma 2 in Ji et al. (2021), we have ∇Φ(·) is LΦ-Lipschitz, where LΦ =

L+ 2L2+ρM2

µ + 2ρLM+L3

µ2 + ρL2M
µ3 = Θ(κ3). Then, we have

Φ(xk+1) ≤Φ(xk) + ⟨∇Φ(xk), xk+1 − xk⟩+
LΦ

2
∥xk+1 − xk∥2

≤Φ(xk)−
(
β

2
− β2LΦ

)
∥∇Φ(xk)∥2 +

(
β

2
+ β2LΦ

)∥∥∥∇Φ(xk)− ∇̂Φ(xk)
∥∥∥2

Eq. (7)

≤ Φ(xk)−
(
β

2
− β2LΦ

)
∥∇Φ(xk)∥2 +

(
β

2
+ β2LΦ

)
L2

(
1− µ

4L

)k

·

(∥∥∥vQ0 − ṽ∗0

∥∥∥+ C1

∥∥∥yN
0 − y∗

0

∥∥∥)2

+

(
β

2
+ β2LΦ

)
3β2C2

2L
3

µ

k∑
t=0

(
1− µ

4L

)k−1−t

∥∇Φ(xt)∥2 .

Telescoping above equation over k from 0 to K − 1, we can obtain that

Φ(xK−1) ≤Φ(x0)−
(
β

2
− β2LΦ

)K−1∑
k=0

∥∇Φ(xk)∥2 +
(
β

2
+ β2LΦ

)
4L3

µ

·
(∥∥∥vQ0 − ṽ∗0

∥∥∥+ C1

∥∥∥yN
0 − y∗

0

∥∥∥)2

+

(
β

2
+ β2LΦ

)
12β2C2

2L
4

µ2

K−1∑
k=0

∥∇Φ(xk)∥2

=Φ(x0)− β

(
1

2
− βLΦ −

(
1

2
+ βLΦ

)
12β2C2

2L
4

µ2

)K−1∑
k=0

∥∇Φ(xk)∥2

+

(
β

2
+ β2LΦ

)
4L3

µ
·
(∥∥∥vQ0 − ṽ∗0

∥∥∥+ C1

∥∥∥yN
0 − y∗

0

∥∥∥)2

.
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Because β = min{ 1
8LΦ

= O(κ−3),O(κ−5)} = O(κ−5), we can obtain that

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 ≤ Φ(x0)− Φ(x∗)

βAK
+

4L3(1 + 2βLΦ)

2µAK
·
(∥∥∥vQ0 − ṽ∗0

∥∥∥+ C1

∥∥yN0 − y∗0
∥∥)2

,

where A = 1
2 −βLΦ−

(
1
2 + βLΦ

) 12β2C2
2L

4

µ2 , LΦ = L+ 2L2+ρM2

µ + 2ρLM+L3

µ2 + ρL2M
µ3 = O(κ3).

We rewrite yN0 as yN0
0 and Let N0 ≥ ln(µ)

ln(µ/(µ−L)) , Thus, we have

∥∥∥vQ0 − ṽ∗0

∥∥∥+ C1

∥∥yN0 − y∗0
∥∥ ≤ M

µ
+

2

µ
(L ∥y∗0∥+M) + 4L

(
ρM

µ2
+

L

µ

)
∥y∗0∥ = O(κ2),

because
∥∥∥yN0

0 − y∗0

∥∥∥ ≤ (1− αµ)N0
∥∥y00 − y∗0

∥∥ ≤ µ ∥y∗0∥. For the first term, we have

Φ(x0)− Φ(x∗)

βA
=

2µ2(Φ(x0)− Φ(x∗))

βµ2 − 2β2LΦ − 12β3C2
2L

4 − 24β4LΦC2
2L

4
= O(κ5).

For the second term, we have

4L3(1 + 2βLΦ)

2µAK
·
(∥∥∥vQ0 − ṽ∗0

∥∥∥+ C1

∥∥yN0 − y∗0
∥∥)2

=
4L3µ+ 8βLΦL

3µ

(1− 2βLΦ)µ2 − 12β2C2
2L

4(1 + 2βLΦ)
·
(∥∥∥vQ0 − ṽ∗0

∥∥∥+ C1

∥∥yN0 − y∗0
∥∥)2

= O(κ5).

Then, we have

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 = O
(
κ5

K
+

κ5

K

)
= O

(
κ5

K

)
.

Then, to achieve an ϵ-accurate stationary point, we have K = O(κ5ϵ−1), and hence we have the
following complexity results. 1) Gradient complexity: Gc(ϵ) = 3K = Õ(κ5ϵ−1). 2) Matrix-vector
product complexities: Mv(ϵ) = K +KQ = Õ(κ5ϵ−1).

B PROOFS OF THE SINGLE-LOOP ITD-BASED ALGORITHM

B.1 ADDITIONAL USEFUL LEMMA

Lemma 8. Consider the single-loop ITD-based algorithm in Algorithm 2. Suppose Assumptions
1-4 hold. Let α ≤ 1

L , we have∥∥∇xy
N
k (xk)−∇xy

∗
k(xk)

∥∥ ≤ (1− αµ) ∥∇xy
∗(xk)∥+ αρ

∥∥y0k − y∗(xk)
∥∥ ,

where yNk (xk) = y0k − α∇yg(xk, y
0
k) and y∗k = argminy g(xk, y) for k = 1, . . . ,K.

Proof. According to the definition, we have ∇xy
N
k (xk) = −α∇2

xyg(xk, y
0
k) and ∇xy

∗(xk) =

−[∇2
yyg(xk, y

∗
k)]

−1∇2
xyg(xk, y

∗
k). Thus, we have∥∥∇xy

N
k (xk)−∇xy

∗
k(xk)

∥∥ =
∥∥−α∇2

xyg(xk, y
0
k) + [∇2

yyg(xk, y
∗
k)]

−1∇2
xyg(xk, y

∗
k)
∥∥

≤
∥∥(I − α∇2

yyg(xk, y
∗
k)
)
[∇2

yyg(xk, y
∗
k)]

−1∇2
xyg(xk, y

∗
k)
∥∥

+
∥∥α (

∇2
xyg(xk, y

∗
k)−∇2

xyg(xk, y
0
k)
)∥∥

≤(1− αµ) ∥∇xy
∗(xk)∥+ αρ

∥∥y0k − y∗(xk)
∥∥ .

Then, the proof is completed.
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B.2 PROOF OF LEMMA 5

Proof. Accordingly, we have

∥ŷk − y∗(xk)∥ ≤(1− µα) ∥ŷk−1 − y∗(xk−1)∥+
L

µ
∥xk−1 − xk∥

≤(1− µα) ∥ŷk−1 − y∗(xk−1)∥+
Lβ

µ

∥∥∥∇̂Φ(xk−1)
∥∥∥

≤(1− µα) ∥ŷk−1 − y∗(xk−1)∥+
Lβ

µ

(
∥∇Φ(xk−1)∥+

∥∥∥∇̂Φ(xk−1)−∇Φ(xk−1)
∥∥∥)

≤(1− µα) ∥ŷk−1 − y∗(xk−1)∥+
Lβ

µ
(∥∇Φ(xk−1)∥+ C4 ∥ŷk−1 − y∗

k−1∥+ C5)

≤
(
1− µα+

LβC4

µ

)
∥ŷk−1 − y∗(xk−1)∥+

Lβ

µ
∥∇Φ(xk−1)∥+

LβC5

µ
.

We rewrite the above equation as ∥ŷk − y∗(xk)∥ ≤ C6 ∥ŷk−1 − y∗(xk−1)∥+ Lβ
µ ∥∇Φ(xk−1)∥+

C7, where C6 = 1− µα+ LβC4

µ and C7 = LβC5

µ . Then, the proof of Eq. (8) is completed.

Since β ≤ µ3

2L(2L2+ρM) , we have C6 ≤ 1− µ
2L . Accordingly, we have

∥ŷk − y∗(xk)∥ ≤
(
1− µ

2L

)k

∥ŷ0 − y∗(x0)∥+
Lβ2

µ

k−1∑
j=0

(
1− µ

2L

)k−1−j

(∥∇Φ(xj)∥+ C5) .

Then, the proof of Eq. (9) is completed. Similar with AID in Eq. (12), we can obtain

∥ŷk − y∗(xk)∥2 ≤
(
1− µ

4L

)k

∥ŷ0 − y∗(x0)∥2 +
3Lβ2

µ

k−1∑
j=0

(
1− µ

4L

)k−1−j

(∥∇Φ(xj)∥+ C5)
2
.

(13)

B.3 PROOF OF LEMMA 6

Proof. First, according to the definition of ∇̂Φ(xk) and ∇Φ(xk), we have∥∥∥∇̂Φ(xk)−∇Φ(xk)
∥∥∥

≤∥∇1f(xk, ŷk) +∇xŷk(xk)∇2f(xk, ŷk)−∇1f(xk, y
∗
k)−∇xy

∗
k(xk)∇2f(xk, y

∗
k)∥

≤L ∥ŷk − y∗k∥+ ∥∇xŷk(xk)∇2f(xk, ŷk)−∇xŷk(xk)∇2f(xk, y
∗
k)∥

+ ∥∇xŷk(xk)∇2f(xk, y
∗
k)−∇xy

∗
k(xk)∇2f(xk, y

∗
k)∥

≤L ∥ŷk − y∗k∥+ αL2 ∥ŷk − y∗k∥+M

(
(1− αµ)

L

µ
+ αρ

∥∥y0k − y∗k
∥∥) .

For the relationship of
∥∥y0k − y∗(xk)

∥∥ and ∥ŷk − y∗(xk)∥, we have∥∥y0k − y∗(xk)
∥∥ ≤ ≤ α

∥∥∇yg(xk, y
0
k)
∥∥+ ∥ŷk − y∗(xk)∥ ≤ αM + ∥ŷk − y∗(xk)∥ .

Then, we have ∥∥∥∇̂Φ(xk)−∇Φ(xk)
∥∥∥ ≤ C4 ∥ŷk − y∗k∥+ C5, (14)

where C4 = L+ αL2 + αρM and C5 = M(1− αµ)Lµ + α2ρM2.

B.4 PROOF OF LEMMA 7

Proof. According to Lemma 6, we have∥∥∥∇̂Φ(xk)−∇Φ(xk)
∥∥∥2 ≤ (C4 ∥ŷk − y∗k∥+ C5)

2 ≤ C2
4 ∥ŷk − y∗k∥2 + 3C2

5

≤C2
4

(
1− µ

4L

)k

∥ŷ0 − y∗0∥2 +
3Lβ2C2

4

µ

k−1∑
j=0

(
1− µ

4L

)k−1−j

(∥∇Φ(xj)∥+ C5)
2
+ 3C2

5 ,

where the last inequality holds since Eq. (13).
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B.5 PROOF OF THEOREM 3

Proof. First, based on Lemma 2 in Ji et al. (2021), we have ∇Φ(·) is LΦ-Lipschitz, where LΦ =

L+ 2L2+ρM2

µ + 2ρLM+L3

µ2 + ρL2M
µ3 = Θ(κ3). Then, we have

Φ(xk+1) ≤Φ(xk)−
(
β

2
− β2LΦ

)
∥∇Φ(xk)∥2 +

(
β

2
+ β2LΦ

)∥∥∥∇̂Φ(xk)−∇Φ(xk)
∥∥∥2

≤Φ(xk)−
(
β

2
− β2LΦ

)
∥∇Φ(xk)∥2 +

(
β

2
+ β2LΦ

)
C2

4

(
1− µ

4L

)k

∥ŷ0 − y∗
0∥

2

+

(
β

2
+ β2LΦ

)
3Lβ2C2

4

µ

k−1∑
j=0

(
1− µ

4L

)k−1−j

(∥∇Φ(xj)∥+ C5)
2 +

(
β

2
+ β2LΦ

)
3C2

5 .

Telescoping the above equation over k from 0 to K − 1 yields

Φ(xK−1) ≤Φ(x0)−
(
β

2
− β2LΦ

)K−1∑
k=0

∥∇Φ(xk)∥2 +
(
β

2
+ β2LΦ

)
C2

4

4L

µ
∥ŷ0 − y∗0∥2

+

(
β

2
+ β2LΦ

)
3Lβ2C2

4

µ

4L

µ

K−1∑
k=0

(∥∇Φ(xk)∥+ C5)
2
+

(
β

2
+ β2LΦ

)
3C2

5K

≤Φ(x0)−A

K−1∑
k=0

∥∇Φ(xk)∥2 +B1 +B2 +

(
β

2
+ β2LΦ

)
3C2

5K,

where

A =

(
β

2
− β2LΦ

)
−
(
β

2
+ β2LΦ

)
12L2β2C2

4

µ2
, B1 =

(
β

2
+ β2LΦ

)
C2

4

4L

µ
∥ŷ0 − y∗0∥2 ,

B2 =

(
β

2
+ β2LΦ

)
36L2β2C2

4C
2
5

µ2
.

Thus we have

1

K

K−1∑
k=0

∥∇Φ(xj)∥2 ≤ Φ(x0)− Φ(x∗)

AK
+

B1 +B2

AK
+

(
β

2
+ β2LΦ

)
3C2

5

A
,

where β = O(κ−3), LΦ = O(κ3), C4 = O(1), C5 = O(κ1). Thus we have 1
A = O(κ3),

B1

A = O(κ1), B2

A = O(κ−2). Therefore, we have

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 = O
(
κ3

K
+ κ2

)
.

Therefore the proof is completed.

C THE USE OF LARGE LANGUAGE MODELS

In preparing this paper, we made limited use of ChatGPT (an OpenAI large language model) solely
for language polishing and minor improvements in clarity and readability of a few sections. The
LLM did not contribute to research ideation, technical content, experimental design, analysis, or
writing of substantive material. All research ideas, methods, results, and conclusions are entirely
those of the authors.
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