
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SHARPER ANALYSIS OF SINGLE-LOOP METHODS FOR
BILEVEL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Bilevel optimization underpins many machine learning applications, including
hyperparameter optimization, meta-learning, neural architecture search, and re-
inforcement learning. While hypergradient-based methods have advanced sig-
nificantly, a gap persists between theoretical guarantees—typically derived for
multi-loop algorithms—and practical single-loop implementations required for ef-
ficiency. This work narrows that gap by establishing sharper convergence results
for single-loop approximate implicit differentiation (AID) and iterative differenti-
ation (ITD) methods. For AID, we improve the convergence rate from O(κ6/K)
to O(κ5/K), where κ is the condition number of the inner-level problem. For
ITD, we prove that the asymptotic error is O(κ2), exactly matching the known
lower bound and improving upon the previous O(κ3) guarantee. We further val-
idate the refined analyses by the experiments on synthetic bilevel optimization
tasks.

1 INTRODUCTION

Bilevel optimization has attracted extensive attention in various applications of machine learning,
including hyperparameter optimization (Maclaurin et al., 2015; Franceschi et al., 2017; Shaban et al.,
2019; Shen et al., 2024), meta-learning (Chen et al., 2017; Finn et al., 2017; Franceschi et al., 2018),
neural architecture search (Liu et al., 2018; He et al., 2020), and reinforcement learning (Zhang
et al., 2020; Wang et al., 2020; Shen et al., 2025). Bilevel optimization corresponds to solving one
optimization problem subject to constraints defined by another optimization problem. In this paper,
we focus on the following bilevel optimization problem:

min
x∈Rm

Φ(x) = f(x, y∗(x)) s.t. y∗(x) = argmin
y∈Rn

g(x, y), (1)

where the outer- and inner-level functions f and g are both jointly continuously differentiable on
Rm ×Rn. We focus on the setting where g is strongly convex with respect to (w.r.t.) the inner-level
variable y, which can guarantee the uniqueness of the inner solution (Chen et al., 2024).

Hypergradient-based algorithms have recently gained significant attention for their balance of sim-
plicity and efficiency. Two prominent approaches are approximate implicit differentiation (AID)
(Domke, 2012; Pedregosa, 2016; Ghadimi & Wang, 2018; Grazzi et al., 2020; Ji et al., 2021) and it-
erative differentiation (ITD) (Franceschi et al., 2017; Shaban et al., 2019; Grazzi et al., 2020; Ji et al.,
2021; Liu et al., 2021). The key distinction lies in how they estimate the hypergradient ∇Φ(x): AID
leverages the implicit function theorem, while ITD applies automatic differentiation (see Section 2).
Despite this difference, both methods require solving the inner problem to obtain the optimal solu-
tion y∗. In practice, however, closed-form solutions are rarely available, and one typically resorts to
gradient descent to compute an approximate solution ŷ.

Most theoretical studies of bilevel optimization analyze algorithms that employ multi-loop updates
(multi-step gradient descent) for the inner problem and linear-system (Ghadimi & Wang, 2018; Ji
et al., 2021; Dong et al., 2025; Fang et al., 2025). In contrast, practical algorithms overwhelmingly
adopt single-loop updates, where only one inner update is performed per outer iteration. The main
appeal of single-loop methods is computational efficiency: they significantly reduce training cost
while maintaining competitive performance. This design has become standard across a wide range
of applications. For instance, in neural architecture search, DARTS (Liu et al., 2018) updates the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Algorithms Convergence rate MV(ϵ) Gc(ϵ)
AID (Ji et al., 2022) O(κ6/K) O(κ6ϵ−1) O(κ6ϵ−1)
AID (this paper) O(κ5/K) O(κ5ϵ−1) O(κ5ϵ−1)
ITD (Ji et al., 2022) O(κ3/K + κ3) N/A N/A
ITD (this paper) O(κ3/K + κ2) N/A N/A
Lower bound of ITD Ω(κ2) N/A N/A

Table 1: Comparison of computational complexities of both single-loop AID-based and ITD-based
algorithms for finding an ϵ-stationary point. For the last three columns, ‘N/A’ means that the com-
plexities to achieve an ϵ-accuracy are not measurable due to the nonvanishing convergence error.
MV(ϵ): the total number of Jacobian- and Hessian-vector product computations. Gc(ϵ): the total
number of gradient computations.

network parameters (y) via single-loop while optimizing architecture coefficients (x). In few-shot
meta-learning, MAML (Finn et al., 2017) applies single-loop adaptation to task-specific parameters.
In data reweighting for imbalanced or noisy samples, methods such as Ren et al. (2018); Shu et al.
(2019) also rely on single-loop updates. These examples underscore a critical gap: while existing
theory primarily addresses multi-loop schemes, the algorithms most relevant in practice depend on
single-loop updates, making it essential to establish their convergence guarantees.

Recently, Liu et al. (2024) propose MEHA, a Moreau-envelope-based single-loop method with con-
vergence rate O(1/K1/2−p + 1/Kp), where K is the number of outer iterations and p ∈ (0, 1/2).
Kwon et al. (2023) design F3SA by incorporating momentum, achieving a rate of O(K−2/3). How-
ever, these single-loop methods remain slower than AID and ITD, both of which can reach O(K−1)
as shown in Table 1. Motivated by this gap, we focus on the AID and ITD methods and seek sharper
analyses for their single-loop variants.

Along similar lines, Ji et al. (2022) analyze different loop structures in bilevel optimization and
establish corresponding theoretical results. For AID, Ji et al. (2022) establish a convergence of
O(κ6/K) in the single-loop setting, where κ = L

µ denotes the condition number (L and µ are the
gradient Lipschitz and strong convexity constants defined respectively in Assumptions 1 and 3). This
is still inferior to the O(κ4/K) rate achieved by the multi-loop AID. Therefore, our work first aims
to narrow the gap of the convergence between the single-loop and multi-loop AID-based methods:

• Our first contribution is that, via a refined analysis and a novel analytical methodology,
we show that the single-loop AID algorithm can achieve a convergence rate of O(κ5/K),
thereby providing a more practical and theoretically grounded alternative for large-scale
bilevel optimization tasks where previous guarantees of O(κ6/K) limited reliability.

For ITD, Ji et al. (2022) show that single-loop suffers from an inherent error of order O(κ3), leaving
a gap of αµ (with α the inner-level step size) from the fundamental lower bound. They identify
closing this gap as an open problem.

• Our second contribution is that the single-loop ITD method can attain a convergence error
of order O(κ2), exactly matching the lower bound of Ji et al. (2022), thereby establishing
its theoretical optimality and potentially supporting it as an efficient alternative to more
costly multi-loop methods.

Moreover, our key technical contribution is a novel analytical framework that departs from the stan-
dard proof template. Prior analyses bound the squared error norm directly, which inflates the de-
pendence on κ. We instead decouple the analysis by first bounding the error norm and only then
squaring it. This delicate treatment avoids the overestimation and yields sharper bounds, providing
a more accurate characterization of both AID and ITD.

2 ALGORITHMS

In this section, we introduce two popular bilevel optimization algorithms to solve problem (1). It
is worth noting that we provide the single-loop algorithms, as this aligns with practical choices in
related applications.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1 Single-Loop AID-based bilevel optimization algorithm
1: Input: Learning rates α, β, η > 0, initializations x0, y0, v0.
2: for k = 0, 1, 2, ...,K do
3: Set y0k = ŷk−1 if k > 0 and y0 otherwise (warm start initialization)
4: Update ŷk = y0k − α∇yg(xk, y

0
k)

5: Set v0k = v̂k−1 if k > 0 and v0 otherwise (warm start initialization)
6: Update v̂k = (I − η∇2

yg(xk, ŷk))v
0
k + η∇yf(xk, ŷk)

7: Compute ∇̂Φ(xk) = ∇xf(xk, ŷk)−∇2
xyg(xk, ŷk)v̂k

8: Update xk+1 = xk − β∇̂Φ(xk)
9: end for

Algorithm 2 Single-Loop ITD-based bilevel optimization algorithm
1: Input: Learning rate α, β > 0, initializations x0 and y0.
2: for k = 0, 1, 2, ...,K do
3: Set y0k = ŷk−1 if k > 0 and y0 otherwise (warm start initialization)
4: Update ŷk(xk) = y0k − α∇yg(xk, y

0
k)

5: Compute ∇̂Φ(xk) = ∇xf(xk, ŷk)− α∇2
xyg(xk, y

0
k)∇yf(xk, ŷk)

6: Update xk+1 = xk − β∇̂Φ(xk)
7: end for

2.1 AID-BASED BILEVEL OPTIMIZATION ALGORITHM

We provide the single-loop AID-based bilevel optimization algorithm (for simplicity, hereafter re-
ferred to as AID) in Algorithm 1. In each outer-level iteration k, AID first performs one step of
gradient descent on the inner-level function g(x, y) to find a point ŷk that approximates y∗k, where
y∗k denotes argminy g(xk, y). Moreover, to accelerate the practical training process, AID usually
adopts a warm-start strategy. In other words, the initial value y0k of the inner-level problem at itera-
tion k is set to the updated value ŷk−1 from iteration k − 1.

In the outer-level, AID first obtain v̂k via solving a linear system ∇2
yg(xk, ŷk)v = ∇yf(xk, ŷk) by

one step of gradient descent starting form v0k, and then AID can estimate the gradient ∇Φ(xk) =
∇xf(xk, y

∗
k) − ∇2

xyg(xk, y
∗
k)v̂k of the outer-level function w.r.t. x (called hypergradient) by the

form of ∇̂Φ(xk) = ∇xf(xk, ŷk)−∇2
xyg(xk, ŷk)v̂k.

2.2 ITD-BASED BILEVEL OPTIMIZATION ALGORITHM

We present the single-loop ITD-based bilevel optimization algorithm (for simplicity, hereafter re-
ferred to as ITD) in Algorithm 2. Similar to AID, ITD also performs one step of gradient descent
and employs a warm-start strategy on the inner-level function g(x, y) to obtain ŷk. Unlike AID,
however, ITD does not rely on the implicit gradient formula when estimating the hypergradient, but
instead estimates the hypergradient directly via automatic differentiation. Since the update of ŷk
depends on xk, ITD needs to store the iterative trajectory for backpropagation. In this work, be-
cause we consider the more practical single-step gradient descent, the hypergradient estimate takes
the following form: ∇̂Φ(xk) = ∇xf(xk, ŷk)− α∇2

xyg(xk, y
0
k)∇yf(xk, ŷk).

3 DEFINITIONS AND ASSUMPTIONS

In bilevel optimization, the objective is to minimize the hyper-objective function ∇Φ(x), which is
typically nonconvex. Because finding a global minimum for such functions can be computationally
prohibitive (Nemirovski & IUdin, 1983), this work aims to find an approximate stationary point
following the literature (Carmon et al., 2017; Ji et al., 2021).

Definition 1. We call x̄ is an ϵ-stationary point of problem (1) if ∥∇Φ(x̄)∥2 ≤ ϵ.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

In this work, we focus on the problem (1) under the following standard assumptions, as also widely
adopted by Ghadimi & Wang (2018); Ji et al. (2021). Let z = (x, y) denote all parameters.
Assumption 1. The inner-level function g(x, y) is µ-strong-convex w.r.t. y.
Assumption 2. The function f(z) is M -Lipschitz, i.e., for any z, z′,

|f(z)− f(z′)| ≤ M ∥z − z′∥ .
Assumption 3. Gradients ∇f(z) and ∇g(z) are L-Lipschitz, i.e., for any z, z′,

∥∇f(z)−∇f(z′)∥ ≤ L ∥z − z′∥ , ∥∇g(z)−∇g(z′)∥ ≤ L ∥z − z′∥ .
Assumption 4. Suppose the derivatives ∇2

xyg(z) and ∇2
yg(z) are ρ-Lipschitz, i.e., for any z, z′,∥∥∇2

xyg(z)−∇2
xyg(z

′)
∥∥ ≤ ρ ∥z − z′∥ ,

∥∥∇2
yg(z)−∇2

yg(z
′)
∥∥ ≤ ρ ∥z − z′∥ .

4 MAIN RESULTS

In this section, we will provide the convergence analysis and characterize the overall computational
complexity for both single-loop AID- and ITD-based algorithms.

4.1 CHALLENGES IN THE ANALYSIS AND OUR APPROACH

The conventional analytical path (Ji et al., 2021; 2022), which we term Direct Squared Norm Anal-
ysis (DSNA), relies on bounding the squared norm of the error vector at each iteration. Let’s con-
sider a simplified one-step error recurrence of the form ek+1 = Aek + δk, where A represents the
contraction operator and δk is the accumulated error term (e.g., from the inexact inner-loop solu-
tion). The standard approach proceeds by analyzing its squared norm: ∥ek+1∥2 = ∥Aek + δk∥2 =

∥Aek∥2 + 2⟨Aek, δk⟩ + ∥δk∥2. The primary challenge arises from the cross-term, 2⟨Aek, δk⟩. To
make this term tractable, existing analyses invariably resort to “pessimistic” inequalities, such as
the Cauchy-Schwarz or Young’s inequality (e.g., 2⟨a, b⟩ ≤ ∥a∥2 + ∥b∥2). For example, Ji et al.
(2022) adopted this approach when analyzing the error upper bounds of the inner variable and the
solution of the linear system. While this decouples the terms, it does so at a great cost. This step
fundamentally ignores any potential underlying structure or cancellation effects between ek and δk.
The repeated application of such loose bounds over many iterations causes the dependencies on the
problem’s condition number, κ, to compound, ultimately leading to the inflated convergence rate.
Our key insight is that this pessimistic rate is not an inherent property of the algorithm itself, but
rather an analysis artifact stemming from the premature squaring of the norm. This step discards
crucial information too early in the derivation.

We introduce a more delicate analytical strategy, Decoupled Norm Analysis (DNA), that sidesteps
this bottleneck. Instead of immediately squaring the error recurrence, we first analyze the error norm
in its linear form by applying the triangle inequality: ∥ek+1∥ = ∥Aek + δk∥ ≤ ∥Aek∥ + ∥δk∥. By
keeping the analysis in the linear domain of norms for as long as possible, we can establish a tighter
recursive relationship (Lemmas 1 and 2 for AID, Lemma 5 for ITD). This approach allows for a
more refined handling of the error terms, preserving more of the underlying geometric structure.
The squaring operation is deferred to the very end of the analysis, after the full recurrence has been
unrolled (Lemma 4 for AID, Lemma 7 for ITD). This seemingly simple change of order—analyzing
the norm before squaring it—prevents the compounding of pessimistic estimates associated with the
cross-term. It is this principled deviation from the standard analytical template that allows us to
break the rate barrier and establish the significantly improved convergence rate, providing a more
faithful theoretical picture of the algorithm’s efficiency.

4.2 CONVERGENCE ANALYSIS OF AID

Proof Sketch: The proof for AID consists of three main steps: 1) Decomposing the hypergradient
estimation error into the approximation error of the inner-level solution and the error from solving
the linear system. (Lemma 3). 2) Bounding these two types of errors based on the errors in previ-
ous iterations (Lemmas 1 and 2). 3) Combining the results from the preceding steps to provide a
convergence guarantee for the AID algorithm (Theorem 1).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Before presenting the convergence analysis on AID, we first give the following useful lemmas. Now
we study the convergence of ∥v̂k − v∗k∥ and ∥ŷk − y∗k∥ for k = 1, 2, . . . ,K, where v∗k is the exact
solution of the linear system ∇2

yg(xk, ŷk)v = ∇yf(xk, ŷk). Note that the descent of the overall
outer-level objectives also depends on the error of yk. We next analyze these errors.
Lemma 1. Consider single-loop AID-based algorithm in Algorithm 1. Suppose Assumptions 1-4
hold. Let α ≤ 1

L , then we have∥∥y0k − ŷk
∥∥ ≤ αL

(∥∥ŷk−1 − y∗k−1

∥∥+ ∥xk−1 − xk∥
)
, (2)

∥ŷk − y∗k∥ ≤ (1− µα)
∥∥ŷk−1 − y∗k−1

∥∥+
L

µ
∥xk−1 − xk∥ . (3)

Remark 1. Lemma 1 demonstrates that: 1) for k = 1, . . . ,K, the error between the initial point
and the iterated solution of the inner-level problem in single-loop AID can be bounded by the error
from the previous iteration; 2) the error between the approximate solution and the exact solution
of the inner-level problem in single-loop AID can also be bounded by the error from the previous
iteration, which serves as a crucial foundation for the analysis of the algorithm’s convergence.

Then, we decompose ∥v̂k − v∗k∥ and then estimate the upper bound.
Lemma 2. Consider single-loop AID-based algorithm in Algorithm 1. Suppose Assumptions 1-4
hold. Let C0 = ρM

µ2 + L
µ . Then, we have

∥v̂k − v∗k∥ ≤ ∥v̂k − ṽ∗k∥+ C0 ∥ŷk − y∗k∥ , (4)

∥v̂k − ṽ∗k∥ ≤ (1− µη)
∥∥v̂k−1 − ṽ∗k−1

∥∥+ C0

(∥∥y0k − ŷk
∥∥+ ∥xk−1 − xk∥

)
, (5)

where ṽ∗k = (∇2
yg(xk, ŷk))

−1∇yf(xk, ŷk).
Remark 2. The purpose of Lemma 2 is to conduct a more detailed decomposition of the error
between v̂k and v∗k, because this error originates from two aspects: 1) The use of ŷk to approx-
imate y∗k in the inner-level problem. 2) The use of v̂k, obtained from solving the linear system
∇2

yg(xk, ŷk)v = ∇yf(xk, ŷk), to approximate v∗k. Therefore, Lemma 2 decouples these two factors
and controls them separately. Specifically, the first and second terms in Eq. (4) are only related to
the precision of the linear equation solution and the inner-level problem solution, respectively. 3)
Eq. (5) further expands the first term on the right-hand side of Eq. (4).

In Lemmas 1 and 2, we have already provided the relevant error terms of yk and vk. Therefore, we
will utilize the above results to analyze the error between the estimated hypergradient ∇̂Φ(xk) and
the true hypergradient ∇Φ(xk).
Lemma 3. Consider single-loop AID-based algorithm in Algorithm 1. Suppose Assumptions 1-4
hold. Define C0 as in Lemma 2. Then we have∥∥∥∇̂Φ(xk)−∇Φ(xk)

∥∥∥ ≤
(
L+

ρM

µ
+ C0L

)
∥ŷk − y∗k∥+ L ∥v̂k − ṽ∗k∥ . (6)

Unlike the previous DSNA, our proposed DNA avoids the inflation of the condition number κ caused
by repeated squaring. Combine Eq. (6) with the former lemmas, we can get the following lemma.
Lemma 4. Consider single-loop AID-based algorithm in Algorithm 1. Suppose Assumptions 1-4
hold. Define C0 as in Lemma 2. Let α = η = 1

L , C1 = 4C0L
µ , C2 = αL2C0

µ + ρM
µ2 + L

µ + LC1

µ and

C3 = L + ρM
µ + C0L. Choose the outer stepsize β such that β = min{ C1µα

4C2C3
, ηµ
2LC2

}. Then, we
have ∥∥∥∇̂Φ(xk)−∇Φ(xk)

∥∥∥2 ≤L2
(
1− µ

4L

)k

·
(∥∥∥vQ0 − ṽ∗0

∥∥∥+ C1

∥∥yN0 − y∗0
∥∥)2

+
3β2C2

2L
3

µ

k∑
t=0

(
1− µ

4L

)k−1−t

∥∇Φ(xt)∥2 .
(7)

Remark 3. Lemma 4 is a key result that supports the convergence analysis of single-loop AID-based
algorithm. Compared to the work of (Ji et al., 2022), we relax the limit of the step-size for solving
the linear system. Specifically, Ji et al. (2022) in their Corollary 2 required that η = O(κ−2),
whereas we, through a more fine-grained analysis, set eta to 1/L. This indirectly allows for a more
aggressive choice of the outer-level step size β, thereby achieving a faster convergence rate.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Based on the above conclusions, the following theorem provides a convergence analysis for single-
loop AID-based algorithm.

Theorem 1. Consider single-loop AID-based algorithm in Algorithm 1. Suppose As-
sumptions 1-4 hold. Choose parameters α = η = 1

L . Let LΦ = L + 2L2+ρM2

µ2 +
2ρLM+L3

µ2 + ρL2M
µ3 be the smoothness parameter of Φ(·). Choose the outer stepsize β such

that β = min{ C1µα
4C2C3

, ηµ
2LC2

}. Then, 1
K

∑K−1
k=0 ∥∇Φ(xk)∥2 = O(κ

5

K), and the complexity is

Gc(ϵ) = Õ(κ5ϵ−1), Mv(ϵ) = Õ(κ5ϵ−1).

Remark 4. Compared with the work of Ji et al. (2022), our core improvement lies in controlling the
errors of both the inner solution y and the linear system solution v, where we relax the requirement
on the outer objective learning rate β from O(κ−6) to O(κ−5). Consequently, we improve the
convergence rate of single-loop AID-based algorithm from O(κ6/K) to O(κ5/K). This indicates
that the convergence gap between such algorithms and the AID algorithms with multi-step gradient
descent is not as large as the O(κ2) gap shown by Ji et al. (2022), but rather a smaller O(κ1). This
also partially supports the practice that most bilevel optimization algorithms perform only one or a
few inner updates.
Theorem 2. [Simplified version of the upper bound in Ji et al. (2022)]. Consider single-
loop AID-based algorithm in Algorithm 1. Under the same setting of Theorem 1, we have
1
K

∑K−1
k=0 ∥∇Φ(xk)∥2 = O

(
κ6

K

)
.

4.3 CONVERGENCE ANALYSIS OF ITD

Proof Sketch: Unlike AID, the hypergradient estimation error of the single-loop ITD-based algo-
rithm is introduced only by solving the inner problem. Therefore, our proof consists of three main
steps: 1) Establishing the connection between the hypergradient estimation error and the approx-
imation error of the inner-level solution (Lemma 6). 2) Bounding the approximation error of the
solution to the inner-level problem (Lemma 5). 3) Combining the results from the previous steps to
provide a convergence analysis for the ITD algorithm (Lemma 7 and Theorem 3).

To this end, we first present several useful lemmas, which will subsequently be used to prove Theo-
rem 3.
Lemma 5. Consider the single-loop ITD-based algorithm in Algorithm 2. Suppose Assumptions
1-4 hold. Let α ≤ 1

L , C4 = L+αL2+αρM , C5 = M(1−αµ)Lµ +α2ρM2, C6 = 1−µα+ LβC4

µ

and C7 = LβC5

µ . Then, we have

∥ŷk − y∗(xk)∥ ≤ C6 ∥ŷk−1 − y∗(xk−1)∥+
Lβ

µ
∥∇Φ(xk−1)∥+ C7, (8)

∥ŷk − y∗(xk)∥ ≤
(
1− µ

2L

)k

∥ŷ0 − y∗(x0)∥+
Lβ2

µ

k−1∑
j=0

(
1− µ

2L

)k−1−j

(∥∇Φ(xj)∥+ C5) .

(9)

Using the error bound for ∥ŷk − y∗k∥, we will analyze the error between the estimated hypergradient
∇̂Φ(xk) and the true hypergradient ∇Φ(xk) of the ITD algorithm in the following lemma.
Lemma 6. Consider the single-loop ITD-based algorithm in Algorithm 2. Suppose Assumptions
1-4 hold. Define C4 and C5 in Lemma 5. Let α ≤ 1

L , we have∥∥∥∇̂Φ(xk)−∇Φ(xk)
∥∥∥ ≤ C4 ∥ŷk − y∗k∥+ C5. (10)

Remark 5. Lemma 6 shows that the error between the true hypergradient and the estimated hyper-
gradient is controlled by the accuracy of the inner-level problem solution and an inherent error, part
of which arises from

∥∥y0k − ŷk
∥∥. This indicates that this non-vanishing convergence error is related

to the refinement of the inner-level problem solution, and that the single-loop method is insufficient
to bridge this gap.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Lemma 7. Consider the single-loop ITD-based algorithm in Algorithm 2. Suppose Assumptions
1-4 hold. Define C4 and C5 in Lemma 5. Let α ≤ 1

L and β ≤ µ3

2L(2L2+ρM) . Then we have∥∥∥∇̂Φ(xk)−∇Φ(xk)
∥∥∥2 ≤C2

4

(
1− µ

4L

)k

∥ŷ0 − y∗(x0)∥2

+
3Lβ2C2

4

µ

k−1∑
j=0

(
1− µ

4L

)k−1−j

(∥∇Φ(xj)∥+ C5)
2
+ 3C2

5 .

Based on the above results, the following theorem provides a convergence analysis for single-loop
ITD-based algorithm.

Theorem 3. Consider the single-loop ITD-based algorithm in Algorithm 2. Suppose As-
sumptions 1-4 hold. Choose parameters α = η = 1

L . Let LΦ = L + 2L2+ρM2

µ2 +
2ρLM+L3

µ2 + ρL2M
µ3 be the smoothness parameter of Φ(·). Choose the outer stepsize β such

that β ≤ µ3

2L(2L2+ρM) . Then, 1
K

∑K−1
k=0 ∥∇Φ(xk)∥2 = O

(
κ3

K + κ2
)

.

Remark 6. Theorem 3 demonstrates that for the single-loop ITD-based algorithm, the convergence
bound contains a non-vanishing error of order O(κ2). Under the standard Assumptions 1-4, such
an error is unavoidable. Moreover, this error upper bound of order O(κ2) matches the error lower
bound (Theorem 4), which indicates that we have achieved a tighter error upper bound through more
refined analysis. This resolves the issue in Ji et al. (2022) where there exists a gap of αµ between
the upper and lower bounds.
Theorem 4. [Simplified version of the lower bound in Ji et al. (2022)]. Consider the single-loop
ITD-based algorithm in Algorithm 2. Suppose Assumptions 1-4 hold. Let α ≤ 1

L , β ≤ 1
LΦ

and

LΦ = L+ 2L2+ρM2

µ2 + 2ρLM+L3

µ2 + ρL2M
µ3 . Then, we have ∥∇Φ(xK)∥2 ≥ Θ(κ2).

5 EXPERIMENTS

Experimental setup. We consider the following bilevel optimization problem:

f(x, y) =
1

2
xTZxx+

1

10
1T y, g(x, y) =

1

2
yTZyy − LxT y + 1T y,

where x, y ∈ R2 and Zx = Zy =

[
L 0
0 µ

]
. Thus the optimal solution of the inner-level subproblem

and the exact hypergradient have the following form:

y∗(x) = Z−1
y (Lx− 1), ∇Φ(x) = Zxx+ LZ−1

y 1. (11)

Based on the updates of single-loop ITD-based method, we have ŷk = y0k − α(Zyy
0
k − Lxk + 1).

Let the hyperparameters set as µ = 0.1, M = 0.1, ρ = 0.1, K = 10000 and α = 1/L.

Results of AID-based Algorithm. Figure 1 presents the error curves of the single-loop AID-based
Algorithm. In Figure 1 (Left), we compare the error upper bound derived by Thoerem 1 with that
given by Ji et al. (2022) under different condition numbers κ. It can be observed that, under varying
condition numbers, our upper bound curve consistently lies closer above the ∥∇Φ(xk)∥2 curve.
This is achieved by refining the analysis and reducing the theoretical order of the upper bound from
O(κ6) to O(κ5). In Figure 1 (Right), under the condition number κ = 2, we compare the variation
of the error upper bound with respect to the number of outer iterations K. It can be seen that
the ∥∇Φ(xk)∥2 curve keeps decreasing as the number of iterations increases, which indicates that
the single-loop AID-based algorithm converges as K grows, thereby confirming the correctness of
Theorem 1. Moreover, we observe that our upper bound curve consistently outperforms that of Ji
et al. (2022), which demonstrates that, theoretically, we provide a tighter error upper bound for this
algorithm, thus verifying the correctness and effectiveness of our theoretical results.

Results of ITD-based Algorithm. Figure 2 illustrates the performance of the ITD-based algorithm.
From Figure 2 (Left), we first observe that in Ji et al. (2022), the gap between the reported upper and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

2 4 6 8 10
Kappa

10−7

10−5

10−3

10−1

101

103

105

E
rr

or

‖∇Φ(xK)‖2

Upper bound (Ours)

Upper bound (Ji et al. 2022)

0 2000 4000 6000 8000 10000
Iteration

10−7

10−5

10−3

10−1

101

103

105

E
rr

or

‖∇Φ(xK)‖2

Upper bound (Ours)

Upper bound (Ji et al. 2022)

Figure 1: Comparison of error curves of the single-loop AID-based Algorithm. Left: Curves of var-
ious error terms (the squared norm of the true hypergradient ∥∇Φ(xk)∥2, the upper bound provided
in Theorem 1 by us, and the upper bound provided in Theorem 2 by Ji et al. (2022)) with respect to
different condition numbers κ. Right: Curves of various error terms with respect to the number of
iterations K when the condition number κ = 2.

2 4 6 8 10
Kappa

10−2

10−1

100

101

102

E
rr

or

‖∇Φ(xK)‖2

Lower bound

Upper bound (Ours)

Upper bound (Ji et al. 2022)

2 4 6 8 10
Kappa

0.0

0.5

1.0

1.5

2.0

2.5
E

rr
or

‖∇Φ(xK)‖2

Lower bound

Upper bound (Ours)

0.32×[Upper bound (Ours)]

0.39×[Upper bound (Ours)]

Figure 2: Comparison of error curves of the single-loop ITD-based Algorithm. Left: Curves of var-
ious error terms (the squared norm of the true hypergradient ∥∇Φ(xk)∥2, the upper bound provided
in Theorem 3 by us, and the upper bound provided by Ji et al. (2022), the lower bound provided in
Theorem 4) with respect to different condition numbers κ. Right: Curves of the scaled upper bound
(×0.32 and ×0.39) with respect to different condition numbers κ.

lower bounds remains large, confirming their conclusion that both bounds still differ by an error of
order αµ. In contrast, our theoretical upper bound is substantially tighter: it lies much closer to the
empirical ∥∇Φ(xK)∥2 curve while remaining strictly above it. This demonstrates that our bound
provides a sharper characterization of the true convergence behavior.

To further verify the validity of our theoretical results, in addition to the curve of the true hypergra-
dient norm, the upper bound curve (according to Theorem 3), and the lower bound curve, we also
scale the upper bound curve in Figure 2 (Right). Specifically, we multiply it by 0.32 and 0.39, re-
spectively. The results show that, after scaling the upper bound curve with different factors, its error
values almost coincide with the true hypergradient norm curve and the lower bound curve, respec-
tively. This indicates that the difference between the upper bound and the lower bound arises from
constant factors introduced by scaling, rather than from differences in order. Thus, this supports the
conclusion of Theorem 3, namely that we have reduced the inherent error to O(κ2).

6 RELATED WORK

Hypergradient-based bilevel optimization. A variety of hypergradient-based bilevel algorithms
have been proposed, differing mainly in how they estimate hypergradients. Methods based on ap-
proximate implicit differentiation (AID) (Domke, 2012; Pedregosa, 2016; Ghadimi & Wang, 2018;

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Grazzi et al., 2020; Ji et al., 2021) estimate the product of the inverse hessian and a vector by solv-
ing linear systems with efficient iterative solvers. In contrast, iterative differentiation (ITD) methods
(Maclaurin et al., 2015; Franceschi et al., 2017; Shaban et al., 2019; Liu et al., 2021) compute hyper-
gradients by backpropagating through the inner optimization trajectory. The convergence properties
of AID- and ITD-based algorithms have been the subject of extensive study. For example, Ghadimi
& Wang (2018) and Ji et al. (2021) analyzed the convergence rates and complexities of both ap-
proaches, while Ji et al. (2022) provided a unified framework covering different inner-loop choices
and established lower bounds on the inherent error of ITD. Despite this progress, a notable gap re-
mains between the convergence rate of the single-loop and multi-loop algorithms. Motivated by this
gap, our work develops sharper convergence guarantees for single-loop methods, which are widely
used in practice. Compared with Ji et al. (2022), our analysis for AID achieves an improved con-
vergence order, while for ITD we refine the upper bound on the inherent error to match its known
lower bound.

Gradient-based bilevel optimization. In recent years, some first-order gradient-based bilevel op-
timization methods have also attracted attention. Chen et al. (2025) proposed an algorithm that
achieves near-optimal complexity under the nonconvex–strongly convex setting; however, they still
require a relatively large number of inner iterations, O(κ log(λκ)), where λ = O(κ3) denotes the
penalty strength, which is also large. This, to some extent, affects practical applicability. In addition,
Liu et al. (2024) proposed MEHA based on Moreau-envelope, where they considered the single-loop
setting and provided a convergence rate of O(1/K1/2−p + 1/Kp), with p ∈ (0, 1/2). Kwon et al.
(2023), by introducing momentum, designed F3SA, which is also a single-loop method and achieves
a convergence rate of O(K−2/3). However, compared with hypergradient-based methods, its con-
vergence rate is relatively slower. Therefore, this paper focuses on providing a sharper analysis for
hypergradient-based methods. From a technical perspective, DNA has the potential to be applied
to such gradient-based methods (Chen et al., 2022; Hong et al., 2023; Liu et al., 2024; Fang et al.,
2025), which we leave for future work.

The single-loop bilevel optimization algorithms. The single-loop methods have shown potential in
many applications. In few-shot meta-learning, MAML (Finn et al., 2017), as a classic method, per-
forms single-step gradient descent on the support set for multiple tasks in the inner-level, retaining
the iteration path, while the outer-level updates the network’s initial values using the query set. In
hyperparameter optimization, sample reweighting is a widely used application of bilevel optimiza-
tion algorithms (Ren et al., 2018; Shu et al., 2019; Wang et al., 2024), as bilevel optimization can
efficiently assign different weights to each sample. Such methods typically use the training set in the
inner-level to perform single-step gradient descent to optimize model parameters, and the validation
set in the outer loop to optimize sample weights or weighted networks. In neural architecture search,
DARTS (Liu et al., 2018) method uses a one-step update in the inner-level to update the model, and
the outer-level optimizes the architecture using validation data. It is worth noting that most of these
algorithms achieve efficiency by single-loop, which is also crucial for the large-scale practice of
bilevel optimization techniques (Choe et al., 2023; Shen et al., 2024). Therefore, in this work, we
focus on the single-loop bilevel optimization algorithms, consistent with practical applications, and
are committed to establishing sharper convergence guarantees for these algorithms.

7 CONCLUSION

In this work, we advance the theoretical understanding of single-loop bilevel optimization algo-
rithms, a setting of growing practical relevance. For the AID method, our refined analysis improves
the convergence rate to O(κ5/K), narrowing the gap with multi-loop approaches. For the ITD
method, we establish that its convergence error is exactly O(κ2), thereby closing the open question
raised in prior work regarding its tightness. Our experimental results can corroborate the theory,
demonstrating that single-loop methods can achieve both efficiency and favorable convergence be-
havior. These findings not only bridge an important gap between theory and practice, but also
potentially suggest that the single-loop bilevel optimization methods can be strong candidates for
large-scale machine learning tasks. Beyond the specific result for the algorithm, we believe our
proposed analytical paradigm of the decoupling norm analysis opens new path for studying other
bilevel optimization algorithms, potentially tightening bounds for methods where previous analyses
have been overly pessimistic. Future work includes extending our refined analyses to nonconvex
inner problems and hessian-free methods.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility Statement. All results are theoretical, and complete proofs are provided in the
appendix with clear assumptions and detailed derivations. This ensures that all claims can be inde-
pendently verified without reliance on external data.

REFERENCES

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points i. arXiv preprint arXiv:1710.11606, 2017.

Lesi Chen, Jing Xu, and Jingzhao Zhang. On finding small hyper-gradients in bilevel optimization:
Hardness results and improved analysis. In The Thirty Seventh Annual Conference on Learning
Theory, pp. 947–980. PMLR, 2024.

Lesi Chen, Yaohua Ma, and Jingzhao Zhang. Near-optimal nonconvex-strongly-convex bilevel op-
timization with fully first-order oracles. Journal of Machine Learning Research, 26(109):1–56,
2025.

Tianyi Chen, Yuejiao Sun, Quan Xiao, and Wotao Yin. A single-timescale method for stochastic
bilevel optimization. In International Conference on Artificial Intelligence and Statistics, pp.
2466–2488. PMLR, 2022.

Yutian Chen, Matthew W Hoffman, Sergio Gómez Colmenarejo, Misha Denil, Timothy P Lilli-
crap, Matt Botvinick, and Nando Freitas. Learning to learn without gradient descent by gradient
descent. In International Conference on Machine Learning, pp. 748–756. PMLR, 2017.

Sang Choe, Sanket Vaibhav Mehta, Hwijeen Ahn, Willie Neiswanger, Pengtao Xie, Emma Strubell,
and Eric Xing. Making scalable meta learning practical. Advances in neural information process-
ing systems, 36:26271–26290, 2023.

Justin Domke. Generic methods for optimization-based modeling. In Artificial Intelligence and
Statistics, pp. 318–326. PMLR, 2012.

Youran Dong, Junfeng Yang, Wei Yao, and Jin Zhang. Efficient curvature-aware hypergradient
approximation for bilevel optimization. arXiv preprint arXiv:2505.02101, 2025.

Sheng Fang, Yong-Jin Liu, Wei Yao, Chengming Yu, and Jin Zhang. qnbo: quasi-newton meets
bilevel optimization. arXiv preprint arXiv:2502.01076, 2025.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
gradient-based hyperparameter optimization. In International conference on machine learning,
pp. 1165–1173. PMLR, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization and meta-learning. In International conference on
machine learning, pp. 1568–1577. PMLR, 2018.

Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv preprint
arXiv:1802.02246, 2018.

Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration com-
plexity of hypergradient computation. In International Conference on Machine Learning, pp.
3748–3758. PMLR, 2020.

Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang. Milenas: Efficient neural architecture search
via mixed-level reformulation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 11993–12002, 2020.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale stochastic algorithm
framework for bilevel optimization: Complexity analysis and application to actor-critic. SIAM
Journal on Optimization, 33(1):147–180, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and enhanced
design. In International conference on machine learning, pp. 4882–4892. PMLR, 2021.

Kaiyi Ji, Mingrui Liu, Yingbin Liang, and Lei Ying. Will bilevel optimizers benefit from loops.
Advances in Neural Information Processing Systems, 35:3011–3023, 2022.

Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D Nowak. A fully first-order method
for stochastic bilevel optimization. In International Conference on Machine Learning, pp. 18083–
18113. PMLR, 2023.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Risheng Liu, Yaohua Liu, Shangzhi Zeng, and Jin Zhang. Towards gradient-based bilevel optimiza-
tion with non-convex followers and beyond. Advances in Neural Information Processing Systems,
34:8662–8675, 2021.

Risheng Liu, Zhu Liu, Wei Yao, Shangzhi Zeng, and Jin Zhang. Moreau envelope for nonconvex bi-
level optimization: A single-loop and hessian-free solution strategy. In International Conference
on Machine Learning, pp. 31566–31596. PMLR, 2024.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimiza-
tion through reversible learning. In International conference on machine learning, pp. 2113–2122.
PMLR, 2015.

A.S. Nemirovski and D.B. IUdin. Problem Complexity and Method Efficiency in Optimization. A
Wiley-Interscience publication. Wiley, 1983. ISBN 9780471103455. URL https://books.
google.co.jp/books?id=6ULvAAAAMAAJ.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In International con-
ference on machine learning, pp. 737–746. PMLR, 2016.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples for
robust deep learning. In International conference on machine learning, pp. 4334–4343. PMLR,
2018.

Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-propagation
for bilevel optimization. In The 22nd international conference on artificial intelligence and statis-
tics, pp. 1723–1732. PMLR, 2019.

Han Shen, Pin-Yu Chen, Payel Das, and Tianyi Chen. Seal: Safety-enhanced aligned llm fine-tuning
via bilevel data selection. arXiv preprint arXiv:2410.07471, 2024.

Han Shen, Zhuoran Yang, and Tianyi Chen. Principled penalty-based methods for bilevel reinforce-
ment learning and rlhf. Journal of Machine Learning Research, 26(114):1–49, 2025.

Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng. Meta-
weight-net: Learning an explicit mapping for sample weighting. Advances in neural information
processing systems, 32, 2019.

Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. On the global optimality of model-
agnostic meta-learning. In International conference on machine learning, pp. 9837–9846. PMLR,
2020.

Quanziang Wang, Renzhen Wang, Yuexiang Li, Dong Wei, Hong Wang, Kai Ma, Yefeng Zheng,
and Deyu Meng. Relational experience replay: Continual learning by adaptively tuning task-wise
relationship. IEEE Transactions on Multimedia, 26:9683–9698, 2024.

Haifeng Zhang, Weizhe Chen, Zeren Huang, Minne Li, Yaodong Yang, Weinan Zhang, and Jun
Wang. Bi-level actor-critic for multi-agent coordination. In Proceedings of the AAAI conference
on artificial intelligence, volume 34, pp. 7325–7332, 2020.

11

https://books.google.co.jp/books?id=6ULvAAAAMAAJ
https://books.google.co.jp/books?id=6ULvAAAAMAAJ

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A PROOF OF THE SINGLE-LOOP AID-BASED ALGORITHM

A.1 PROOF OF LEMMA 1

Proof. By the update rule of yk, we have for each k = 1, . . . ,K,∥∥y0k − ŷk
∥∥ =α

∥∥∇yg(xk, y
0
k)
∥∥ = α ∥∇yg(xk, ŷk−1)∥

=α
∥∥∇yg(xk, ŷk−1)−∇yg(xk, y

∗
k−1) +∇yg(xk, y

∗
k−1)−∇yg(xk−1, y

∗
k−1)

∥∥
≤αL

(∥∥ŷk−1 − y∗k−1

∥∥+ ∥xk−1 − xk∥
)
.

The second conclusion holds that

∥ŷk − y∗k∥ ≤(1− µα)
∥∥y0k − y∗k

∥∥ ≤ (1− µα)
∥∥ŷk−1 − y∗k−1

∥∥+
∥∥y∗k−1 − y∗k

∥∥
(i)
≤(1− µα)

∥∥ŷk−1 − y∗k−1

∥∥+
L

µ
∥xk−1 − xk∥ ,

where (i) follows from Lemma 2.2 in Ghadimi & Wang (2018).

A.2 PROOF OF LEMMA 2

In the following two proofs, we will respectively present the two conclusions (Eq. (4) and Eq. (5))
in Lemma 2.

Proof. According to the triangle inequality, we have ∥v̂k − v∗k∥ ≤ ∥v̂k − ṽ∗k∥ + ∥ṽ∗k − v∗k∥ for
k = 1, 2, . . . ,K. Then we focus on using ∥ŷk − y∗k∥ to bound ∥ṽ∗k − v∗k∥:

∥ṽ∗k − v∗k∥ =
∥∥[∇2

yg(xk, ŷk)]
−1∇yf(xk, ŷk)− [∇2

yg(xk, y
∗
k)]

−1∇yf(xk, y
∗
k)
∥∥

≤
∥∥[∇2

yg(xk, ŷk)]
−1∇yf(xk, ŷk)− [∇2

yg(xk, y
∗
k)]

−1∇yf(xk, ŷk)
∥∥

+
∥∥[∇2

yg(xk, y
∗
k)]

−1∇yf(xk, ŷk)− [∇2
yg(xk, y

∗
k)]

−1∇yf(xk, y
∗
k)
∥∥

≤
∥∥[∇2

yg(xk, ŷk)]
−1 − [∇2

yg(xk, y
∗
k)]

−1
∥∥ · ∥∇yf(xk, ŷk)∥

+
∥∥[∇2

yg(xk, y
∗
k)]

−1
∥∥ · ∥∇yf(xk, ŷk)−∇yf(xk, y

∗
k)∥

≤ρM ∥ŷk − y∗k∥
µ2

+
L

µ
∥ŷk − y∗k∥ =

(
ρM

µ2
+

L

µ

)
∥ŷk − y∗k∥ .

Then, we can get the conclusion of Eq. (4).

Proof. By the updated rule, we can obtain that

∥v̂k − ṽ∗k∥ ≤ (1− µη)
∥∥v0k − ṽ∗k

∥∥ ≤ (1− µη)
∥∥v̂k−1 − ṽ∗k−1

∥∥+
∥∥ṽ∗k−1 − ṽ∗k

∥∥ .
For the second term

∥∥ṽ∗k−1 − ṽ∗k
∥∥, we have∥∥ṽ∗k−1 − ṽ∗k

∥∥ =
∥∥[∇2

yg(xk−1, ŷk−1)]
−1∇yf(xk−1, ŷk−1)− [∇2

yg(xk, ŷk)]
−1∇yf(xk, ŷk)

∥∥
≤
∥∥[∇2

yg(xk−1, ŷk−1)]
−1∇yf(xk−1, ŷk−1)− [∇2

yg(xk, ŷk)]
−1∇yf(xk−1, ŷk−1)

∥∥
+
∥∥[∇2

yg(xk, ŷk)]
−1∇yf(xk−1, ŷk−1)− [∇2

yg(xk, ŷk)]
−1∇yf(xk, ŷk)

∥∥
≤
∥∥[∇2

yg(xk−1, ŷk−1)]
−1 − [∇2

yg(xk, ŷk)]
−1

∥∥ · ∥∇yf(xk−1, ŷk−1)∥
+
∥∥[∇2

yg(xk, ŷk)]
−1

∥∥ ∥∇yf(xk−1, ŷk−1)−∇yf(xk, ŷk)∥ .

Furthermore,

∥∇yf(xk−1, ŷk−1)−∇yf(xk, ŷk)∥
≤
∥∥∇yf(xk−1, ŷk−1)−∇yf(xk, y

0
k)
∥∥+

∥∥∇yf(xk, y
0
k)−∇yf(xk, ŷk)

∥∥
≤L ∥xk−1 − xk∥+ L

∥∥y0k − ŷk
∥∥ .

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Then, we have∥∥[∇2
yg(xk−1, ŷk−1)]

−1 − [∇2
yg(xk, ŷk)]

−1
∥∥ · ∥∇yf(xk−1, ŷk−1)∥

≤
∥∥[∇2

yg(xk−1, ŷk−1)]
−1

∥∥ ∥∥∇2
yg(xk−1, ŷk−1)−∇2

yg(xk, ŷk)
∥∥∥∥[∇2

yg(xk, ŷk)]
−1

∥∥
· ∥∇yf(xk−1, ŷk−1)∥

≤ρ (∥ŷk−1 − ŷk∥+ ∥xk−1 − xk∥)
µ2

∥∇yf(xk−1, ŷk−1)∥

≤ρM

µ2
(∥ŷk−1 − ŷk∥+ ∥xk−1 − xk∥) .

Thus, we can obtain that∥∥ṽ∗k−1 − ṽ∗k
∥∥ ≤ρM (∥ŷk−1 − ŷk∥+ ∥xk−1 − xk∥)

µ2
+

L ∥xk−1 − xk∥+ L
∥∥y0k − ŷk

∥∥
µ

=

(
ρM

µ2
+

L

µ

)∥∥y0k − ŷk
∥∥+

(
ρM

µ2
+

L

µ

)
∥xk−1 − xk∥ .

Then, we can get the conclusion of Eq. (5).

A.3 PROOF OF LEMMA 3

Proof. According to the definition of the hypergradient, we have∥∥∥∇̂Φ(xk)−∇Φ(xk)
∥∥∥ =

∥∥∇xf(xk, ŷk)−∇2
xyg(xk, ŷk)v̂k −∇xf(xk, y

∗
k) +∇2

xyg(xk, y
∗
k)v

∗
k

∥∥
≤∥∇xf(xk, y

∗
k)−∇xf(xk, ŷk)∥+

∥∥∇2
xyg(xk, ŷk)(v

∗
k − v̂k)

∥∥
+
∥∥(∇2

xyg(xk, y
∗
k)−∇2

xyg(xk, ŷk)
)
v∗k
∥∥

≤
(
L+

ρM

µ

)
∥ŷk − y∗k∥+ L ∥v̂k − v∗k∥

Eq. (4)

≤
(
L+

ρM

µ
+ C0L

)
∥ŷk − y∗k∥+ L ∥v̂k − ṽ∗k∥ .

Then, the proof is compeleted.

A.4 PROOF OF LEMMA 4

Proof. Firstly, we have

∥v̂k − ṽ∗k∥ ≤(1− µη)
∥∥v̂k−1 − ṽ∗k−1

∥∥+ C0

∥∥y0k − ŷk
∥∥+

(
ρM

µ2
+

L

µ

)
∥xk−1 − xk∥

Eq. (2)

≤ (1− µη)
∥∥v̂k−1 − ṽ∗k−1

∥∥+ C0αL
∥∥ŷk−1 − y∗k−1

∥∥
+

(
αL2C0

µ
+

ρM

µ2
+

L

µ

)
∥xk−1 − xk∥ .

Then we have

∥v̂k − ṽ∗k∥+ C1 ∥ŷk − y∗k∥

≤(1− µη)
∥∥v̂k−1 − ṽ∗k−1

∥∥+ C0αL
∥∥ŷk−1 − y∗k−1

∥∥+

(
αL2C0

µ
+

ρM

µ2
+

L

µ

)
∥xk−1 − xk∥

+ (1− µα)C1

∥∥ŷk−1 − y∗k−1

∥∥+
LC1

µ
∥xk−1 − xk∥

=(1− µη)
∥∥v̂k−1 − ṽ∗k−1

∥∥+

(
1− µα+

C0αL

C1

)
· C1

∥∥ŷk−1 − y∗k−1

∥∥
+

(
αL2C0

µ
+

ρM

µ2
+

L

µ
+

LC1

µ

)
∥xk−1 − xk∥ .

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

By the update rule of {xk}, we can obtain that

∥xk−1 − xk∥ =β
∥∥∥∇̂Φ(xk−1)

∥∥∥ ≤ β ∥∇Φ(xk−1)∥+ β
∥∥∥∇̂Φ(xk−1)−∇Φ(xk−1)

∥∥∥
Eq. (6)

≤ β ∥∇Φ(xk−1)∥+ β

(
L+

ρM

µ
+ C0L

)∥∥ŷk−1 − y∗k−1

∥∥+ βL
∥∥v̂k−1 − ṽ∗k−1

∥∥ .
Thus, we have

∥v̂k − ṽ∗k∥+ C1 ∥ŷk − y∗k∥

≤
(
1− µη + βL

(
αL2C0

µ
+

ρM

µ2
+

L

µ
+

LC1

µ

))∥∥v̂k−1 − ṽ∗k−1

∥∥
+

(
1− µα+

C0αL

C1
+

β

C1

(
L+

ρM

µ
+ C0L

)(
αL2C0

µ
+

ρM

µ2
+

L

µ
+

LC1

µ

))
· C1

∥∥ŷk−1 − y∗k−1

∥∥+ β

(
αL2C0

µ
+

ρM

µ2
+

L

µ
+

LC1

µ

)
∥∇Φ(xk−1)∥ .

We denote that C2 = αL2C0

µ + ρM
µ2 + L

µ + LC1

µ and C3 = L+ ρM
µ +C0L. Then the above equation

can rewrite as follows

∥v̂k − ṽ∗k∥+ C1 ∥ŷk − y∗k∥

≤ (1− µη + βLC2)
∥∥v̂k−1 − ṽ∗k−1

∥∥+

(
1− µα+

C0αL

C1
+

βC2C3

C1

)
· C1

∥∥ŷk−1 − y∗k−1

∥∥
+ βC2 ∥∇Φ(xk−1)∥ .

We only need to 1− µη + βLC2 ≤ 1− µη
2 , C0αL

C1
= µα

4 and βC2C3

C1
≤ µα

4 . Then we can get

β ≤ ηµ

2LC2
, β ≤ C1µα

4C2C3
, C1 =

4C0L

µ
,

C2 =

(
αL2C0

µ
+

ρM

µ2
+

L

µ
+

LC1

µ

)
α= 1

L=
4L3

µ3
+

4L2ρM

µ4
+

L2

µ2
+

LρM

µ3
+

L

µ
+

ρM

µ2
,

C3 = L+
ρM

µ
+ C0L = L+

ρM

µ
+

ρML

µ2
+

L2

µ
.

Then, we have

β ≤ C1µα

4C2C3
=

µ4(ρM + Lµ)

(4L3µ+ 4L2ρM + 2L2µ2 + 2LµρM + Lµ3)(Lµ2 + ρMµ+ ρML+ L2µ)

=O(κ−4),

β ≤ ηµ

2LC2

η= 1
L=

µ5

2L2(4L3µ+ 4L2ρM + L2µ2 + LµρM + Lµ3)
= O(κ−5).

Then, we have β ≤ min{O(κ−4),O(κ−5)} = O(κ−5). Thus, we have

∥v̂k − ṽ∗k∥+ C1 ∥ŷk − y∗k∥
≤max{1− µη

2
, 1− αµ

2
} ·

(∥∥v̂k−1 − ṽ∗k−1

∥∥+ C1

∥∥ŷk−1 − y∗k−1

∥∥)+ βC2 ∥∇Φ(xk−1)∥

=
(
1− µ

2L

)
·
(∥∥v̂k−1 − ṽ∗k−1

∥∥+ C1

∥∥ŷk−1 − y∗k−1

∥∥)+ βC2 ∥∇Φ(xk−1)∥

Accordingly, we have

(∥v̂k − ṽ∗k∥+ C1 ∥ŷk − y∗k∥)2 ≤
(
1− µ

4L

)
·
(∥∥v̂k−1 − ṽ∗k−1

∥∥+ C1

∥∥ŷk−1 − y∗k−1

∥∥)2
+

3β2C2
2L

µ
∥∇Φ(xk−1)∥2 .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Moreover, we have

∥v̂k − ṽ∗k∥+ C1 ∥ŷk − y∗k∥ ≤
(
1− µ

2L

)k

·
(∥∥∥vQ0 − ṽ∗0

∥∥∥+ C1

∥∥yN0 − y∗0
∥∥)

+ βC2

k∑
t=0

(
1− µ

2L

)k−1−t

∥∇Φ(xt)∥ .

Thus, we can obtain that

(∥v̂k − ṽ∗k∥+ C1 ∥ŷk − y∗k∥)2 ≤
(
1− µ

4L

)k

·
(∥∥∥vQ0 − ṽ∗0

∥∥∥+ C1

∥∥yN0 − y∗0
∥∥)2

+
3β2C2

2L

µ

k∑
t=0

(
1− µ

4L

)k−1−t

∥∇Φ(xt)∥2 . (12)

Therefore, we have∥∥∥∇̂Φ(xk)−∇Φ(xk)
∥∥∥2 ≤L2

(
∥v̂k − ṽ∗k∥+

C3

L
∥ŷk − y∗k∥

)2

≤L2 (∥v̂k − ṽ∗k∥+ C1 ∥ŷk − y∗k∥)2

≤L2
(
1− µ

4L

)k

·
(∥∥∥vQ0 − ṽ∗0

∥∥∥+ C1

∥∥yN0 − y∗0
∥∥)2

+
3β2C2

2L
3

µ

k∑
t=0

(
1− µ

4L

)k−1−t

∥∇Φ(xt)∥2 ,

where the second inequality is because of C3 ≤ LC1 and the specific derivation process is as follows

C3

LC1
=

µ(L+ µ)

L2
=

1

κ
+

1

κ2
< 1,

where C3 = (Lµ+ρM)·(L+µ)
µ2 and LC1 = L2(Lµ+ρM)

µ3 .

A.5 PROOF OF THEOREM 1

Proof. First, based on Lemma 2 in Ji et al. (2021), we have ∇Φ(·) is LΦ-Lipschitz, where LΦ =

L+ 2L2+ρM2

µ + 2ρLM+L3

µ2 + ρL2M
µ3 = Θ(κ3). Then, we have

Φ(xk+1) ≤Φ(xk) + ⟨∇Φ(xk), xk+1 − xk⟩+
LΦ

2
∥xk+1 − xk∥2

≤Φ(xk)−
(
β

2
− β2LΦ

)
∥∇Φ(xk)∥2 +

(
β

2
+ β2LΦ

)∥∥∥∇Φ(xk)− ∇̂Φ(xk)
∥∥∥2

Eq. (7)

≤ Φ(xk)−
(
β

2
− β2LΦ

)
∥∇Φ(xk)∥2 +

(
β

2
+ β2LΦ

)
L2

(
1− µ

4L

)k

·

(∥∥∥vQ0 − ṽ∗0

∥∥∥+ C1

∥∥∥yN
0 − y∗

0

∥∥∥)2

+

(
β

2
+ β2LΦ

)
3β2C2

2L
3

µ

k∑
t=0

(
1− µ

4L

)k−1−t

∥∇Φ(xt)∥2 .

Telescoping above equation over k from 0 to K − 1, we can obtain that

Φ(xK−1) ≤Φ(x0)−
(
β

2
− β2LΦ

)K−1∑
k=0

∥∇Φ(xk)∥2 +
(
β

2
+ β2LΦ

)
4L3

µ

·
(∥∥∥vQ0 − ṽ∗0

∥∥∥+ C1

∥∥∥yN
0 − y∗

0

∥∥∥)2

+

(
β

2
+ β2LΦ

)
12β2C2

2L
4

µ2

K−1∑
k=0

∥∇Φ(xk)∥2

=Φ(x0)− β

(
1

2
− βLΦ −

(
1

2
+ βLΦ

)
12β2C2

2L
4

µ2

)K−1∑
k=0

∥∇Φ(xk)∥2

+

(
β

2
+ β2LΦ

)
4L3

µ
·
(∥∥∥vQ0 − ṽ∗0

∥∥∥+ C1

∥∥∥yN
0 − y∗

0

∥∥∥)2

.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Because β = min{ 1
8LΦ

= O(κ−3),O(κ−5)} = O(κ−5), we can obtain that

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 ≤ Φ(x0)− Φ(x∗)

βAK
+

4L3(1 + 2βLΦ)

2µAK
·
(∥∥∥vQ0 − ṽ∗0

∥∥∥+ C1

∥∥yN0 − y∗0
∥∥)2

,

where A = 1
2 −βLΦ−

(
1
2 + βLΦ

) 12β2C2
2L

4

µ2 , LΦ = L+ 2L2+ρM2

µ + 2ρLM+L3

µ2 + ρL2M
µ3 = O(κ3).

We rewrite yN0 as yN0
0 and Let N0 ≥ ln(µ)

ln(µ/(µ−L)) , Thus, we have

∥∥∥vQ0 − ṽ∗0

∥∥∥+ C1

∥∥yN0 − y∗0
∥∥ ≤ M

µ
+

2

µ
(L ∥y∗0∥+M) + 4L

(
ρM

µ2
+

L

µ

)
∥y∗0∥ = O(κ2),

because
∥∥∥yN0

0 − y∗0

∥∥∥ ≤ (1− αµ)N0
∥∥y00 − y∗0

∥∥ ≤ µ ∥y∗0∥. For the first term, we have

Φ(x0)− Φ(x∗)

βA
=

2µ2(Φ(x0)− Φ(x∗))

βµ2 − 2β2LΦ − 12β3C2
2L

4 − 24β4LΦC2
2L

4
= O(κ5).

For the second term, we have

4L3(1 + 2βLΦ)

2µAK
·
(∥∥∥vQ0 − ṽ∗0

∥∥∥+ C1

∥∥yN0 − y∗0
∥∥)2

=
4L3µ+ 8βLΦL

3µ

(1− 2βLΦ)µ2 − 12β2C2
2L

4(1 + 2βLΦ)
·
(∥∥∥vQ0 − ṽ∗0

∥∥∥+ C1

∥∥yN0 − y∗0
∥∥)2

= O(κ5).

Then, we have

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 = O
(
κ5

K
+

κ5

K

)
= O

(
κ5

K

)
.

Then, to achieve an ϵ-accurate stationary point, we have K = O(κ5ϵ−1), and hence we have the
following complexity results. 1) Gradient complexity: Gc(ϵ) = 3K = Õ(κ5ϵ−1). 2) Matrix-vector
product complexities: Mv(ϵ) = K +KQ = Õ(κ5ϵ−1).

B PROOFS OF THE SINGLE-LOOP ITD-BASED ALGORITHM

B.1 ADDITIONAL USEFUL LEMMA

Lemma 8. Consider the single-loop ITD-based algorithm in Algorithm 2. Suppose Assumptions
1-4 hold. Let α ≤ 1

L , we have∥∥∇xy
N
k (xk)−∇xy

∗
k(xk)

∥∥ ≤ (1− αµ) ∥∇xy
∗(xk)∥+ αρ

∥∥y0k − y∗(xk)
∥∥ ,

where yNk (xk) = y0k − α∇yg(xk, y
0
k) and y∗k = argminy g(xk, y) for k = 1, . . . ,K.

Proof. According to the definition, we have ∇xy
N
k (xk) = −α∇2

xyg(xk, y
0
k) and ∇xy

∗(xk) =

−[∇2
yyg(xk, y

∗
k)]

−1∇2
xyg(xk, y

∗
k). Thus, we have∥∥∇xy

N
k (xk)−∇xy

∗
k(xk)

∥∥ =
∥∥−α∇2

xyg(xk, y
0
k) + [∇2

yyg(xk, y
∗
k)]

−1∇2
xyg(xk, y

∗
k)
∥∥

≤
∥∥(I − α∇2

yyg(xk, y
∗
k)
)
[∇2

yyg(xk, y
∗
k)]

−1∇2
xyg(xk, y

∗
k)
∥∥

+
∥∥α (

∇2
xyg(xk, y

∗
k)−∇2

xyg(xk, y
0
k)
)∥∥

≤(1− αµ) ∥∇xy
∗(xk)∥+ αρ

∥∥y0k − y∗(xk)
∥∥ .

Then, the proof is completed.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.2 PROOF OF LEMMA 5

Proof. Accordingly, we have

∥ŷk − y∗(xk)∥ ≤(1− µα) ∥ŷk−1 − y∗(xk−1)∥+
L

µ
∥xk−1 − xk∥

≤(1− µα) ∥ŷk−1 − y∗(xk−1)∥+
Lβ

µ

∥∥∥∇̂Φ(xk−1)
∥∥∥

≤(1− µα) ∥ŷk−1 − y∗(xk−1)∥+
Lβ

µ

(
∥∇Φ(xk−1)∥+

∥∥∥∇̂Φ(xk−1)−∇Φ(xk−1)
∥∥∥)

≤(1− µα) ∥ŷk−1 − y∗(xk−1)∥+
Lβ

µ
(∥∇Φ(xk−1)∥+ C4 ∥ŷk−1 − y∗

k−1∥+ C5)

≤
(
1− µα+

LβC4

µ

)
∥ŷk−1 − y∗(xk−1)∥+

Lβ

µ
∥∇Φ(xk−1)∥+

LβC5

µ
.

We rewrite the above equation as ∥ŷk − y∗(xk)∥ ≤ C6 ∥ŷk−1 − y∗(xk−1)∥+ Lβ
µ ∥∇Φ(xk−1)∥+

C7, where C6 = 1− µα+ LβC4

µ and C7 = LβC5

µ . Then, the proof of Eq. (8) is completed.

Since β ≤ µ3

2L(2L2+ρM) , we have C6 ≤ 1− µ
2L . Accordingly, we have

∥ŷk − y∗(xk)∥ ≤
(
1− µ

2L

)k

∥ŷ0 − y∗(x0)∥+
Lβ2

µ

k−1∑
j=0

(
1− µ

2L

)k−1−j

(∥∇Φ(xj)∥+ C5) .

Then, the proof of Eq. (9) is completed. Similar with AID in Eq. (12), we can obtain

∥ŷk − y∗(xk)∥2 ≤
(
1− µ

4L

)k

∥ŷ0 − y∗(x0)∥2 +
3Lβ2

µ

k−1∑
j=0

(
1− µ

4L

)k−1−j

(∥∇Φ(xj)∥+ C5)
2
.

(13)

B.3 PROOF OF LEMMA 6

Proof. First, according to the definition of ∇̂Φ(xk) and ∇Φ(xk), we have∥∥∥∇̂Φ(xk)−∇Φ(xk)
∥∥∥

≤∥∇1f(xk, ŷk) +∇xŷk(xk)∇2f(xk, ŷk)−∇1f(xk, y
∗
k)−∇xy

∗
k(xk)∇2f(xk, y

∗
k)∥

≤L ∥ŷk − y∗k∥+ ∥∇xŷk(xk)∇2f(xk, ŷk)−∇xŷk(xk)∇2f(xk, y
∗
k)∥

+ ∥∇xŷk(xk)∇2f(xk, y
∗
k)−∇xy

∗
k(xk)∇2f(xk, y

∗
k)∥

≤L ∥ŷk − y∗k∥+ αL2 ∥ŷk − y∗k∥+M

(
(1− αµ)

L

µ
+ αρ

∥∥y0k − y∗k
∥∥) .

For the relationship of
∥∥y0k − y∗(xk)

∥∥ and ∥ŷk − y∗(xk)∥, we have∥∥y0k − y∗(xk)
∥∥ ≤ ≤ α

∥∥∇yg(xk, y
0
k)
∥∥+ ∥ŷk − y∗(xk)∥ ≤ αM + ∥ŷk − y∗(xk)∥ .

Then, we have ∥∥∥∇̂Φ(xk)−∇Φ(xk)
∥∥∥ ≤ C4 ∥ŷk − y∗k∥+ C5, (14)

where C4 = L+ αL2 + αρM and C5 = M(1− αµ)Lµ + α2ρM2.

B.4 PROOF OF LEMMA 7

Proof. According to Lemma 6, we have∥∥∥∇̂Φ(xk)−∇Φ(xk)
∥∥∥2 ≤ (C4 ∥ŷk − y∗k∥+ C5)

2 ≤ C2
4 ∥ŷk − y∗k∥2 + 3C2

5

≤C2
4

(
1− µ

4L

)k

∥ŷ0 − y∗0∥2 +
3Lβ2C2

4

µ

k−1∑
j=0

(
1− µ

4L

)k−1−j

(∥∇Φ(xj)∥+ C5)
2
+ 3C2

5 ,

where the last inequality holds since Eq. (13).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.5 PROOF OF THEOREM 3

Proof. First, based on Lemma 2 in Ji et al. (2021), we have ∇Φ(·) is LΦ-Lipschitz, where LΦ =

L+ 2L2+ρM2

µ + 2ρLM+L3

µ2 + ρL2M
µ3 = Θ(κ3). Then, we have

Φ(xk+1) ≤Φ(xk)−
(
β

2
− β2LΦ

)
∥∇Φ(xk)∥2 +

(
β

2
+ β2LΦ

)∥∥∥∇̂Φ(xk)−∇Φ(xk)
∥∥∥2

≤Φ(xk)−
(
β

2
− β2LΦ

)
∥∇Φ(xk)∥2 +

(
β

2
+ β2LΦ

)
C2

4

(
1− µ

4L

)k

∥ŷ0 − y∗
0∥

2

+

(
β

2
+ β2LΦ

)
3Lβ2C2

4

µ

k−1∑
j=0

(
1− µ

4L

)k−1−j

(∥∇Φ(xj)∥+ C5)
2 +

(
β

2
+ β2LΦ

)
3C2

5 .

Telescoping the above equation over k from 0 to K − 1 yields

Φ(xK−1) ≤Φ(x0)−
(
β

2
− β2LΦ

)K−1∑
k=0

∥∇Φ(xk)∥2 +
(
β

2
+ β2LΦ

)
C2

4

4L

µ
∥ŷ0 − y∗0∥2

+

(
β

2
+ β2LΦ

)
3Lβ2C2

4

µ

4L

µ

K−1∑
k=0

(∥∇Φ(xk)∥+ C5)
2
+

(
β

2
+ β2LΦ

)
3C2

5K

≤Φ(x0)−A

K−1∑
k=0

∥∇Φ(xk)∥2 +B1 +B2 +

(
β

2
+ β2LΦ

)
3C2

5K,

where

A =

(
β

2
− β2LΦ

)
−
(
β

2
+ β2LΦ

)
12L2β2C2

4

µ2
, B1 =

(
β

2
+ β2LΦ

)
C2

4

4L

µ
∥ŷ0 − y∗0∥2 ,

B2 =

(
β

2
+ β2LΦ

)
36L2β2C2

4C
2
5

µ2
.

Thus we have

1

K

K−1∑
k=0

∥∇Φ(xj)∥2 ≤ Φ(x0)− Φ(x∗)

AK
+

B1 +B2

AK
+

(
β

2
+ β2LΦ

)
3C2

5

A
,

where β = O(κ−3), LΦ = O(κ3), C4 = O(1), C5 = O(κ1). Thus we have 1
A = O(κ3),

B1

A = O(κ1), B2

A = O(κ−2). Therefore, we have

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 = O
(
κ3

K
+ κ2

)
.

Therefore the proof is completed.

C THE USE OF LARGE LANGUAGE MODELS

In preparing this paper, we made limited use of ChatGPT (an OpenAI large language model) solely
for language polishing and minor improvements in clarity and readability of a few sections. The
LLM did not contribute to research ideation, technical content, experimental design, analysis, or
writing of substantive material. All research ideas, methods, results, and conclusions are entirely
those of the authors.

18

	Introduction
	Algorithms
	AID-based Bilevel Optimization Algorithm
	ITD-based Bilevel Optimization Algorithm

	Definitions and Assumptions
	Main Results
	Challenges in the Analysis and Our Approach
	Convergence Analysis of AID
	Convergence Analysis of ITD

	Experiments
	Related Work
	Conclusion
	Proof of the single-loop AID-based algorithm
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Theorem 1

	Proofs of the single-loop ITD-based algorithm
	Additional useful Lemma
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Theorem 3

	The Use of Large Language Models

