
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEAP: LEARNING EXPERT ADAPTATION & PRUNING
FOR TASK-SPECIALIZED MOE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Most deployed large language model applications benefit more from specialized
models than from ever-larger generalists. While Mixture-of-Experts (MoE) mod-
els learn specialists and activate only a subset of experts per token, they typically
retain far more experts than needed for any specific task. This inflates inference
latency and memory usage without proportional performance gains. We present
LEAP (Learning Expert Adaptation and Pruning), a principled framework that
decouples model structure from behavior through agentic optimization. Our ap-
proach uses a meta–reinforcement-learning Pruning Agent to search the combina-
torial space of expert subsets, optimizing for both performance and efficiency to
identify compact, task-specific expert configurations. After pruning, we reconfig-
ure the original router as a Routing Agent and train it using PPO. Additionally, Ac-
tive Learning identifies the most informative, high-uncertainty samples to acceler-
ate model recovery and specialization. We evaluate LEAP on Llama 4 Maverick
(17B× 128E) and Qwen3-235B-A22B across three diverse tasks: HumanEval
(code generation), GSM8K (mathematical reasoning), and XSum (summariza-
tion). LEAP retains > 94% of the original model quality while using 8× fewer
activated experts per token. This translates to up to 2.5× faster per-token infer-
ence, 0.31× FLOPs, and ∼ 40% lower peak memory usage compared to the full
128-expert models. Our method establishes a Pareto-dominant accuracy–compute
frontier, consistently outperforming SoTA techniques including frequency-based
pruning, magnitude-based pruning, and vanilla fine-tuning approaches. Ablation
studies demonstrate that learned pruning significantly outperforms heuristic meth-
ods, active learning reduces labeled data requirements by 2.1×, and PPO-based
routing is essential for maintaining post-pruning performance. By transforming
expert selection and routing into a closed-loop, learnable process, LEAP provides
a practical pathway to specialized, efficient MoE models and advances toward
scalable, agentic optimization of expert systems. Code: Anonymous GitHub Repo

1 INTRODUCTION

The rapid progress of large language models (LLMs) has been driven by ever-increasing scale in both
parameters and data. Among the most successful scaling strategies are Mixture-of-Experts (MoE)
architectures, which replace a monolithic feed-forward block with a large set of specialized expert
networks, of which only a small subset is activated per input (Shazeer et al., 2017; Lepikhin et al.,
2020; Du et al., 2022). This conditional computation paradigm dramatically reduces the per-token
cost of training and inference, enabling models with hundreds of billions of parameters to achieve
state-of-the-art performance across language understanding, generation, and reasoning tasks.

Despite these advantages, MoE models remain substantially over-parameterized. In practice, only
a fraction of the experts meaningfully contribute to a given downstream task, yet the full set must
still be maintained, leading to significant inefficiencies in inference latency, memory footprint, and
deployment costs. For example, a specialized application such as Python code generation or med-
ical text summarization may require only a handful of experts, but existing approaches deploy the
entire MoE, wasting both compute and energy. This mismatch between model scale and task re-
quirements raises an important question: “How can we adapt a large, general-purpose MoE model
into a compact, task-specialized variant without sacrificing performance?”

1

https://anonymous.4open.science/r/LEAP2-4668

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overview of the LEAP framework: Agent 1 (Pruning Agent, meta-RL) searches the com-
binatorial space of expert subsets and returns the minimal set E that optimizes a performance–size
objective; the agent is then discarded. The model is pruned and the router is rewired to E . Agent 2
applies Active Learning to select the most informative batches from the training pool and performs
Joint Fine-Tuning: PPO updates the routing policy while the retained experts are updated with su-
pervised loss on AL-selected data. The result is a compact, task-specialized MoE with lower latency
and memory while preserving accuracy.

A straightforward approach is to prune experts, retaining only those that contribute most to the
target task. However, current pruning strategies are largely heuristic—such as frequency-based or
magnitude-based pruning—and fail to capture the complex synergies between experts. Simply dis-
carding low-usage experts often leads to severe knowledge loss and degraded task accuracy, requir-
ing extensive fine-tuning to recover. Moreover, static pruning overlooks the fact that expert utility
may be highly context-dependent, varying across tasks, domains, and input distributions. Thus,
a critical research challenge remains unresolved: “Can we design a principled, learning-driven
method to identify and adapt the minimal set of experts required for specialization, while preserving
both efficiency and task performance?”

To address this, we introduce LEAP (Learning Expert Adaptation and Pruning), a novel agentic
framework that addresses this challenge by combining meta-Reinforcement Learning (RL) Kael-
bling et al. (1996), Active Learning Bonwell & Eison (1991), and dynamic routing. LEAP operates
in two distinct phases. First, a Pruning Agent—formulated as a meta-RL process—explores the com-
binatorial space of expert subsets and learns to select the optimal configuration by balancing task
accuracy against model size. This ensures that pruning is not based on simple heuristics, but instead
results from an adaptive, optimization-driven process. Second, the original MoE gating network is
reconfigured into a Routing Agent, which is fine-tuned with RL and Active Learning to dynamically
route inputs to the retained experts. By explicitly decoupling structural optimization (via the Prun-
ing Agent) from runtime adaptation (via the Routing Agent), LEAP achieves both compactness and
specialization.

To further improve sample efficiency, LEAP integrates an Active Learning strategy that prioritizes
the most informative training examples during fine-tuning. This reduces the data requirement, accel-
erates convergence, and ensures that the retained experts adapt quickly to the target task. Together,
these components yield a highly specialized MoE model that is smaller, faster, and more effective,
providing a principled alternative to heuristic pruning and brute-force fine-tuning.

Our main contributions are summarized as follows:

1. We introduce LEAP, a novel framework that transforms MoE optimization into a learnable,
agentic process rather than relying on static heuristics.

2. We develop a meta-reinforcement learning approach to systematically discover optimal
expert subsets, moving beyond frequency- and magnitude-based pruning methods.

3. We demonstrate that post-pruning reinforcement learning of routing decisions, combined
with active learning for sample selection, is essential for maintaining performance after
aggressive pruning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

4. We establish new efficiency-accuracy trade-offs across diverse tasks, achieving up to 2.5×
speedup and 8× expert reduction while retaining > 94% performance.

The proposed method provides a principled pathway toward building smaller, specialized, and more
efficient MoE-based language models. By combining structural optimization with agentic fine-
tuning, it marks a step forward in scalable, adaptive, and efficient model optimization. We provide
a comprehensive review of related work in Appendix A.

2 PRELIMINARIES

2.1 MOE ARCHITECTURE RECAP

Mixture-of-Experts (MoE) architectures extend the standard Transformer by replacing the feed-
forward layers with a set of E parallel expert networks (Shazeer et al., 2017). Each input token is
processed by a router (or gating network) that assigns it to a small subset of experts. Formally, given
input x, the router computes a probability distribution over experts:

g(x) = softmax(Wrx) ∈ RE , (1)

where Wr are trainable router weights. In the common top-k routing strategy, only the k experts
with the highest gate scores are activated:

S(x) = TopK(g(x), k). (2)

The output of the MoE layer is then a weighted combination of the selected experts:

h(x) =
∑

e∈S(x)

ge(x) · fe(x), (3)

where fe denotes the e-th expert network. This sparse conditional computation allows models to
scale to billions of parameters while maintaining manageable per-token compute cost.

2.2 PROBLEM SETUP

Let M denote a pre-trained MoE model with E experts per layer. For a given downstream task T ,
our goal is to identify a minimal expert subset E∗ ⊆ {1, . . . , E} with |E∗| ≪ E such that the pruned
model ME∗ maintains task performance while achieving substantial computational savings.

This presents several key challenges: (i) the combinatorial search space of expert subsets is 2E ,
making exhaustive evaluation intractable; (ii) expert utility is interdependent—removing one expert
may affect others’ contributions; and (iii) post-pruning adaptation must be sample-efficient to be
practical.

We evaluate specialized models across three dimensions:

1. Task Performance: Standard accuracy or F1 score on T , measuring the retained experts’
ability to preserve knowledge and solve the task.

2. Efficiency: Reduction in active parameters and floating-point operations (FLOPs) relative
to the original M , reflecting the structural compactness achieved.

3. Inference Latency: Wall-clock time per token or per sequence, measuring practical de-
ployment benefits in real-world inference.

The central challenge is designing a principled, scalable method to navigate this combinatorial space
and adapt ME∗ efficiently. This motivates our proposed LEAP framework, which combines rein-
forcement learning and active learning to perform both expert selection and expert adaptation in a
unified pipeline.

3 METHODOLOGY

LEAP addresses the expert pruning challenge through two specialized agents operating in sequence.
The first agent treats expert selection as a meta-learning problem, training a policy to navigate the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

combinatorial subset space efficiently. The second agent reconfigures the pruned architecture’s rout-
ing mechanism using reinforcement learning, while Active Learning accelerates adaptation to the
target task. Figure 1 provides an overview of the entire framework. On a high level, given a pre-
trained MoE model M with E experts and a downstream task T , LEAP proceeds in two stages:

1. Pruning Agent (Structural Optimization): A meta-RL agent explores subsets of experts
to identify E∗ ⊆ {1, . . . , E} that maximize task performance under a budget constraint.

2. Routing Agent (Runtime Adaptation): The original gating network is reconfigured to
route only across E∗ and is fine-tuned with RL and Active Learning, together with the
retained experts, to dynamically specialize the model.

3.1 PRUNING AGENT: META-RL FOR EXPERT SUBSET SELECTION

We formulate expert pruning as a combinatorial optimization problem and solve it using reinforce-
ment learning using the following steps (Algorithm 1 provides a structured, step-by-step pseudocode
of the procedure):

1. State: At iteration t, the state st encodes the set of experts selected so far and their cumu-
lative contribution (e.g., normalized validation accuracy on T).

2. Action: The action at corresponds to selecting an additional expert e ∈ {1, . . . , E} to
include in the candidate subset Et.

3. Reward: We define the reward at iteration t as:

Rt = α · Perf(Et)− β · |Et|
E

, (4)

where Perf(Et) is the validation accuracy (or F1 score) of the pruned model restricted to
experts Et, normalized to [0, 1]. The second term penalizes the number of active experts.
Hyperparameters α, β control the performance–efficiency trade-off.

4. Termination: The episode terminates when the agent stops selecting experts or a maximum
budget B is reached.

5. Policy Learning: The agent’s policy πθ(a|s) is optimized with Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017) using the cumulative reward. The output is the optimal
subset E∗.

Algorithm 1 Pruning Agent (Meta-RL)
1: Initialize policy πθ, empty subset E0
2: for episode = 1 to N do
3: s0 ← initial state
4: for t = 1 to T do
5: Select action at ∼ πθ(a|st)
6: Update subset Et ← Et−1 ∪ {at}
7: Compute reward Rt

8: Update state st+1

9: end for
10: Update πθ with PPO using {(st, at, Rt)}
11: end for
12: return Optimal subset E∗

3.2 CONSTRUCTING THE PRUNED MODEL

Given the selected indices E∗, we build a compact backbone by physically excising all unused
expert parameters and shrinking the router to address only the survivors. For an MoE layer with
router logits

z(ℓ)(x) = W (ℓ)
r h(ℓ)(x) + b(ℓ)r ∈ RE , (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where W
(ℓ)
r ∈ RE×d, h(ℓ)(x) ∈ Rd, and b

(ℓ)
r ∈ RE , let I(ℓ) ⊆ {1, . . . , E} denote the retained

experts for layer ℓ (in the simplest case, I(ℓ) = E∗ for all ℓ). We restrict the router to these rows:

W (ℓ,∗)
r = W (ℓ)

r [I(ℓ), :], (6)

b(ℓ,∗)r = b(ℓ)r [I(ℓ)], (7)

and compute pruned routing probabilities with proper re-normalization (with temperature τ):

g(ℓ,∗)(x) = softmax
(

1
τ

(
W (ℓ,∗)

r h(ℓ)(x) + b(ℓ,∗)r

))
∈ R|I(ℓ)|. (8)

To be noted that for multi-layer routers, we prune the final affine head as above; earlier router layers
remain unchanged.

The layer then dispatches to the top-k′ experts among I(ℓ), where k′ = min(k, |I(ℓ)|):

S(ℓ,∗)(x) = TopK
(
g(ℓ,∗)(x), k′

)
, (9)

h(ℓ,∗)(x) =
∑

e∈S(ℓ,∗)(x)

g(ℓ,∗)e (x) f (ℓ)
e (x). (10)

The resulting model–
ME∗ = { f (ℓ)

e | e ∈ I(ℓ), ℓ = 1, . . . , L } (11)

–preserves the original architecture outside MoE blocks but is smaller and task-specific.

Following this procedure, we reindex experts to a contiguous 1:|I(ℓ)| space and update dispatch
tables/kernels accordingly (reducing memory and communication). Also, capacity factors and any
load-balancing auxiliary losses are applied w.r.t. |I(ℓ)| to avoid post-prune imbalance, and the check-
points and optimizer states for removed experts are dropped to reclaim memory; remaining states
are kept intact for fine-tuning.

3.3 ROUTING AGENT: RL-BASED ROUTING ADAPTATION

Given the pruned expert set E∗ (produced by the Pruning Agent), the reconfigured gating network
acts as a Routing Agent. Its goal is to learn a policy for dispatching inputs to a small subset of
surviving experts with a favorable accuracy–efficiency trade-off. The router is optimized with rein-
forcement learning (PPO) on top of task mini-batches prioritized by Active Learning. Algorithm 2
summarizes the procedure used in our training pipeline, and here we describe the steps in detail:

1. State: For an input token (or token block) x, we define the state s = h(x) as the router-
layer embedding.

2. Action: Let g(∗)(x;ϕ) ∈ R|E∗| be the router scores restricted to E∗ with parameters ϕ.
The action selects the top-k′ experts,

a(x) = TopK
(
g(∗)(x;ϕ), k′

)
, (12)

k′ = min
(
k, |E∗|

)
. (13)

During training we inject mild exploration (Gumbel-TopK Kool et al. (2019)), while eval-
uation uses deterministic TopK.

3. Reward: The task-dependent reward balances performance and latency:

R(x) = Perf
(
ME∗(x)

)
− λ · Latency(x), (14)

where Perf(·) measures task success (e.g., token log-likelihood, accuracy, or task score on
T), Latency(·) is measured wall-clock or a calibrated proxy, and λ > 0 trades off accuracy
vs. efficiency.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2 Routing Agent optimization with PPO and Active Learning (used in router warm-up
and in the router step of joint fine-tuning).

1: Input: pruned experts E∗, dataset D, batch size B, TopK k, trade-off λ
2: Initialize routing policy πϕ (parameters ϕ), value baseline, temperature T
3: while NOT CONVERGED do
4: Active Learning: compute u(x) for x ∈ D and select B ⊂ D, |B| = B, maximizing∑

x∈B u(x)
5: for x ∈ B do
6: Encode state s← h(x)
7: Sample exploratory action a ∼ πϕ(a | s) using Gumbel-/ ϵ-TopK
8: Route x to experts in a and compute output ŷ
9: Compute reward R(x) using Eq. equation 14

10: Store transition (s, a,R(x)) for PPO
11: end for
12: Update ϕ with PPO on the collected rollouts (clipped surrogate, value loss, entropy bonus,

KL target)
13: end while
14: return Fine-tuned routing policy πϕ

4. Active Learning (AL) for data selection: At each fine-tuning iteration, AL selects the
most informative samples from the pool D to form the next mini-batch. We use router-
predictive uncertainty (entropy) as the acquisition score, which is the (softmaxed) router
scores over E∗:

u(x) = −
∑
e∈E∗

p̃e(x) log p̃e(x), (15)

p̃(x) = softmax
(
g(∗)(x;ϕ)/T

)
, (16)

for temperature T>0.
At iteration t, we pick a batch

Bt = arg max
B⊂D, |B|=B

{∑
x∈B

u(x) + ηDiv(B)

}
, (17)

where Div(B) =
∑

x∈B minx′∈B\{x}
(
1−κ(h(x), h(x′))

)
measures diversity in the router

state space (κ is cosine similarity over h(·)) and η > 0 controls the uncertainty–diversity
trade-off. This focuses routing PPO on ambiguous, high-impact, non-redundant samples,
improving convergence and label efficiency. Appendix D describes the Active Learning
steps in more details.

5. Policy learning. We optimize the routing policy πϕ(a | s) with PPO on AL-selected
mini-batches, collect rollouts with the exploratory router, compute advantages with a value-
function baseline, and optimize a clipped surrogate while maintaining a small KL target for
stability.

3.4 JOINT FINE-TUNING WITH RL

After the Pruning Agent identifies E∗ (Section 3.1), we jointly optimize the Routing Agent and
the retained experts. This joint stage is part of the main training procedure used in all reported
results. The router continues to be trained with PPO exactly as in Section 3.3 (Algorithm 2), while
the experts are adapted with a supervised task loss on the routed mini-batches. To ensure stability
and memory efficiency, we apply lightweight adapters (LoRA Hu et al. (2021)) on experts and keep
base weights frozen.

The joint objective augments PPO surrogate with supervised learning & regularization as follows:

minϕ,A −E[LPPO(ϕ)]︸ ︷︷ ︸
routing RL

+ γ Lsup(A)︸ ︷︷ ︸
expert/task loss

+ β E
[
KL

(
πϕ(·|s) ∥πϕ(∗)(·|s)

)]
− η E

[
H
(
πϕ(·|s)

)]
+ µ

∑
e ∥Ae∥22,

(18)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where ϕ denote router parameters, A = {Ae} the per-expert adapters (or trainable expert subsets),
Lsup is the supervised loss (e.g., cross-entropy or NLL) on outputs produced by the current routed
experts; β anchors the router near its initialized policy, η provides an entropy bonus, and µ regu-
larizes adapters. We reuse the Active Learning selection from Section 3.3 to prioritize informative
tokens.

For each AL-selected mini-batch B:

1. Router step (PPO): Freeze A; collect rollouts with the exploratory router πϕ, compute
rewards R(x), and update ϕ with PPO (clipped surrogate; small KL target to πϕ(∗)).

2. Expert step (supervised): Freeze ϕ; route B with the current deterministic TopK policy
and take a few SGD steps on A to minimize Lsup (small LR / early stopping to prevent
drift).

4 EXPERIMENTS

We evaluate LEAP on multiple downstream tasks to test its ability to (i) identify the minimal expert
subset for specialization, (ii) preserve or improve task performance, and (iii) achieve substantial
efficiency gains in inference latency, FLOPs, and memory usage.

4.1 EXPERIMENTAL SETUP

We evaluate LEAP on two recent mixture-of-experts (MoE) large language models: Llama 4 Mav-
erick (17B×128E) Team (2025a) and Qwen3-235B-A22B Team (2025b). Both models expose
router-based sparse activation over E=128 experts per MoE layer. We benchmark three downstream
tasks spanning distinct skills: (i) code generation on HumanEval Chen et al. (2021); (ii) arithmetic
reasoning on GSM8K Cobbe et al. (2021); and (iii) abstractive summarization on XSum Narayan
et al. (2018).

We compare the proposed method against (a) the Full MoE (no pruning), (b) a Frequency Pruning
heuristic that retains the most frequently selected experts under the pre-trained router (usage mea-
sured on a held-out set), (c) Magnitude Pruning that preserves experts with the largest parameter
ℓ2-norms, and (d) Vanilla Fine-Tuning of a pruned subset without routing RL or active learning.
Besides, we also compare the results with recent state-of-the-art models like MoE-Pruner Xie et al.
(2024), TSEP Chen et al. (2022), MoE-I2 Yang et al. (2024), and NAEE Lu et al. (2024).

Task performance is measured using pass@1 on HumanEval Chen et al. (2021), exact-match accu-
racy on GSM8K Cobbe et al. (2021), and ROUGE-L F1 on XSum Lin (2004). To quantify efficiency,
we report (i) theoretical FLOPs per forward pass, (ii) peak memory footprint, and (iii) empirical la-
tency (ms/token) under identical serving settings. All experiments are run on a single-node cluster
with 8×H100 (80GB) GPUs; unless noted, mixed precision is enabled and dataloader seeds are
fixed for reproducibility. We sweep the retained expert budget |E∗| to trace performance–efficiency
trade-offs and report central tendencies over three runs.

4.2 RESULTS ON TASK PERFORMANCE

For the main results, we focus our discussion on Qwen3-235B-A22B as the base model. We also
conducted the same experiments on Llama 4 Maverick (17B×128E), and those results are provided
in Appendix B, where they exhibit a similar overall trend.

As shown in Table 1, the Qwen3-235B-A22B based LEAP architecture demonstrates a clear and fa-
vorable trade-off between task performance and computational efficiency. As the number of experts
is reduced from the full 128-expert parent, we observe a graceful degradation in performance cou-
pled with substantial improvements in efficiency metrics. The 16-expert configuration emerges as
the optimal balance. At this point, LEAP delivers massive computational savings—achieving a 2.5x
reduction in latency, a 3.2x reduction in relative FLOPs, and 1.67x reduction in memory—while
retaining over 94% of the full model’s performance on all three benchmarks. While reducing fur-
ther to 8 experts provides marginal efficiency gains, it incurs a disproportionately sharp drop in
performance, particularly on complex reasoning tasks like HumanEval and GSM8K. This analysis

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: End-task performance and efficiency scaling versus the number of retained experts
for LEAP (on Qwen3-235B-A22B). HumanEval: pass@1 (%), GSM8K: accuracy (%), XSum:
ROUGE-L F1.

Performance Metrics ↑ Efficiency Metrics ↓
Experts HumanEval GSM8K XSum (R-L) FLOPs (rel.) Latency (ms/token) Memory (GB)

128 (Full) 60.2 72.5 43.1 1.00 3.8 40.2
64 59.6 71.8 42.8 0.68 2.9 33.1
32 58.1 70.5 42.2 0.46 2.3 28.0
16 56.8 68.9 41.7 0.31 1.5 24.3
8 52.3 65.1 40.1 0.22 1.2 21.5

Table 2: Comparison at a 16-expert budget: baselines, LEAP (on Qwen3-235B-A22B), and recent
expert-selection SoTA. Performance metrics include HumanEval: pass@1 (%), GSM8K: accuracy
(%), and XSum: ROUGE-L F1. Efficiency metrics include FLOPs (relative to 128-expert Full
MoE), Latency (ms/token), and Memory (GB).

Methods Performance ↑ Efficiency ↓

HumanEval GSM8K XSum (R-L) FLOPs (rel.) Latency Memory

Reference
Full MoE (128 experts) 60.2 72.5 43.1 1.00 3.8 40.2

Baselines at 16 experts
Frequency Pruning 42.0 58.1 35.6 0.45 2.2 27.0
Magnitude Pruning 44.5 61.2 37.0 0.40 2.0 26.5
Vanilla Fine-Tuning 49.0 64.3 38.9 0.38 1.9 26.0
LEAP (ours) 56.8 68.9 41.7 0.31 1.5 24.3

SoTA models at 16 experts
MoE-Pruner Xie et al. (2024) 52.4 60.2 32.3 0.50 2.5 28.0
TSEP Chen et al. (2022) 46.3 62.1 35.6 0.48 2.4 27.5
MoE-I2 Yang et al. (2024) 57.1 60.9 39.0 0.60 3.0 30.0
NAEE Lu et al. (2024) 47.8 61.5 33.3 0.42 2.1 26.8

confirms that the 16-expert model represents the optimal trade-off on the Pareto frontier, making it
the most practical choice for deploying a highly capable yet efficient specialized model.

Beyond establishing this optimal internal configuration, LEAP consistently outperforms existing
specialization methods. As presented in Table 2, we can directly compare LEAP against various
baselines and state-of-the-art (SoTA) techniques on both performance and efficiency. The proposed
method handily surpasses heuristic pruning approaches such as frequency and magnitude pruning,
which not only show sharply degraded performance but also exhibit higher computational costs,
including greater FLOPs, latency, and memory usage. While the MoE-I2 method shows a marginal
performance edge on the HumanEval task, LEAP provides a more balanced and practical solution.
It delivers significantly better results on GSM8K and XSum while achieving a substantially lower
FLOPs, latency, and memory footprint than MoE-I2 (0.31 rel. FLOPs vs. 0.60 rel. FLOPs). This
combination of robust, multi-task performance and superior efficiency solidifies LEAP’s position.
These results, combined with its superior efficiency scaling, establish LEAP as the leading approach
for choosing and training the right experts under tight activation budgets. Appendix C shows detailed
ablation studies on the importance of each step in the LEAP pipeline.

4.3 THEORETICAL AND ANALYTICAL INSIGHT

In this section, we analyze the complexity of expert subset search and the convergence of the RL-
based pruning agent.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1. Complexity of Expert Subset Search: The search space for expert pruning is 2E , which is
intractable for large E. By framing pruning as an RL problem, LEAP reduces complexity
toO(NT), where N is the number of training episodes and T is the maximum subset size.
This makes the process scalable even for E = 128.

2. Convergence of RL Pruning Agent: Empirically, we observe stable convergence of the
Pruning Agent within 500 episodes using PPO. The bounded reward design prevents reward
explosion and ensures consistent selection of optimal subsets across random seeds.

These insights show that LEAP is not only effective in practice but also theoretically well-founded
in terms of tractability and stability.

5 WHY LEAP WORKS: MECHANISMS AND PRACTICAL IMPLICATIONS

Our results suggest a coherent mechanism that drives LEAP’s superior performance. First, Meta-
RL pruning solves the complex, synergy-sensitive expert selection problem by converting it into a
learnable policy that directly optimizes a performance-efficiency objective. This approach moves
beyond the myopia of heuristic pruning methods, which fail to account for the crucial interactive
effects among experts. Second, the RL-based routing adapts the gating network to the newly pruned
expert topology, recovering performance lost from structural changes and specializing decisions to
the target data distribution. Third, Active Learning (AL) concentrates the fine-tuning supervision
on inputs where the model’s uncertainty is highest, making the adaptation process highly sample-
efficient and accelerating convergence. Together, these components form a powerful, closed-loop
system where pruning and routing are intelligently and efficiently co-optimized.

The design of our framework is underpinned by several key choices that ensure its robustness and
generalizability. The decoupling of the Pruning Agent (a temporary meta-learner) from the per-
manent Routing Agent and experts ensures a clean, two-stage process. The use of robust reward
functions that explicitly balance task accuracy and efficiency ensures principled optimization over
simple heuristics. Furthermore, while we demonstrate our approach on code, reasoning, and sum-
marization, LEAP is designed to be task-agnostic. The methodology can transfer to other MoE
architectures, different modalities (such as vision or speech transformers), and even multi-task or
domain-shift scenarios, as the underlying RL and AL mechanisms are based on generalizable prop-
erties of the model and its outputs. This versatility establishes LEAP as a flexible and practical
approach for creating specialized, high-performance models under tight resource constraints.

6 CONCLUSION

This work introduces LEAP, a novel framework that directly addresses the critical challenge of de-
ploying high-capacity Mixture-of-Experts (MoE) models by transforming a large, general-purpose
architecture into a compact, task-specialized model. Our approach goes beyond static, heuristic-
driven methods by establishing a dynamic, agentic optimization loop: a meta-RL agent learns to
select the most valuable experts, while an RL-based router and Active Learning (AL) mechanism
co-adapt to repair and specialize the model’s behavior on the target distribution.

Empirically, our results demonstrate that the proposed approach yields a powerful performance–
efficiency trade-off. We demonstrate that LEAP preserves over 94% of a full MoE model’s task
performance while delivering substantial efficiency gains, including a 2.5× reduction in latency,
1.67× reduction in memory usage, and a 3.2× reduction in FLOPs. This principled methodology
consistently surpasses naive fine-tuning and traditional pruning baselines across a diverse set of tasks
spanning code, reasoning, and summarization.

In essence, LEAP provides a practical and generalizable path forward for the future of large-scale
model deployment. We believe that this perspective—of co-optimizing structural decisions with
behavioral adaptation—is a crucial step toward developing the next generation of deployable, high-
capacity, and efficient expert models. Future work will explore extending this agentic optimization
to a lifelong learning paradigm, where models can continually adapt to new tasks while preserving
existing skills, and to hardware-aware rewards that explicitly target real-world deployment con-
straints.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal.
Deep batch active learning by diverse, uncertain gradient lower bounds, 2020. URL https:
//arxiv.org/abs/1906.03671.

Charles C Bonwell and James A Eison. Active learning: Creating excitement in the classroom. 1991
ASHE-ERIC higher education reports. ERIC, 1991.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Tianyu Chen, Shaohan Huang, Yuan Xie, Binxing Jiao, Daxin Jiang, Haoyi Zhou, Jianxin Li, and
Furu Wei. Task-specific expert pruning for sparse mixture-of-experts, 2022. URL https://
arxiv.org/abs/2206.00277.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten Bosma,
Zongwei Zhou, Tao Wang, Yu Emma Wang, Kellie Webster, Marie Pellat, Kevin Robinson, Kath-
leen Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc V Le, Yonghui Wu, Zhifeng
Chen, and Claire Cui. Glam: Efficient scaling of language models with mixture-of-experts, 2022.
URL https://arxiv.org/abs/2112.06905.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity, 2022. URL https://arxiv.org/abs/2101.
03961.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks, 2019. URL https://arxiv.org/abs/1803.03635.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot, 2023. URL https://arxiv.org/abs/2301.00774.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories, 2021. URL https://arxiv.org/abs/2012.14913.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connec-
tions for efficient neural network. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 28. Curran
Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/
paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. AMC: AutoML for Model
Compression and Acceleration on Mobile Devices, pp. 815–832. Springer International Pub-
lishing, 2018. ISBN 9783030012342. doi: 10.1007/978-3-030-01234-2 48. URL http:
//dx.doi.org/10.1007/978-3-030-01234-2_48.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

10

https://arxiv.org/abs/1906.03671
https://arxiv.org/abs/1906.03671
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2206.00277
https://arxiv.org/abs/2206.00277
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2112.06905
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2012.14913
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
http://dx.doi.org/10.1007/978-3-030-01234-2_48
http://dx.doi.org/10.1007/978-3-030-01234-2_48
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A
survey. Journal of artificial intelligence research, 4:237–285, 1996.

Wouter Kool, Herke van Hoof, and Max Welling. Stochastic beams and where to find them:
The gumbel-top-k trick for sampling sequences without replacement, 2019. URL https:
//arxiv.org/abs/1903.06059.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with condi-
tional computation and automatic sharding, 2020. URL https://arxiv.org/abs/2006.
16668.

David D. Lewis and William A. Gale. A sequential algorithm for training text classifiers, 1994.
URL https://arxiv.org/abs/cmp-lg/9407020.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base layers:
Simplifying training of large, sparse models, 2021. URL https://arxiv.org/abs/2103.
16716.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguis-
tics. URL https://aclanthology.org/W04-1013/.

Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan Huang, Bo Zhang, Junchi Yan, and Hongsheng
Li. Not all experts are equal: Efficient expert pruning and skipping for mixture-of-experts large
language models, 2024. URL https://arxiv.org/abs/2402.14800.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models, 2023. URL https://arxiv.org/abs/2305.11627.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for extreme summarization, 2018. URL https:
//arxiv.org/abs/1808.08745.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation ai scale, 2022. URL https://arxiv.org/
abs/2201.05596.

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam, and Jason Weston. Hash layers for large sparse
models, 2021. URL https://arxiv.org/abs/2106.04426.

Victor Sanh, Thomas Wolf, and Alexander M. Rush. Movement pruning: Adaptive sparsity by
fine-tuning, 2020. URL https://arxiv.org/abs/2005.07683.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach, 2018. URL https://arxiv.org/abs/1708.00489.

Burr Settles. Active Learning Literature Survey. University of Wisconsin-Madison, 2009.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer,
2017. URL https://arxiv.org/abs/1701.06538.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach
for large language models, 2024. URL https://arxiv.org/abs/2306.11695.

Meta Llama Team. Llama 4 Maverick (17B×128E) Instruct. https://huggingface.co/
meta-llama/Llama-4-Maverick-17B-128E-Instruct, 2025a. Model card; ac-
cessed 2025-09-25.

11

https://arxiv.org/abs/1903.06059
https://arxiv.org/abs/1903.06059
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/cmp-lg/9407020
https://arxiv.org/abs/2103.16716
https://arxiv.org/abs/2103.16716
https://aclanthology.org/W04-1013/
https://arxiv.org/abs/2402.14800
https://arxiv.org/abs/2305.11627
https://arxiv.org/abs/1808.08745
https://arxiv.org/abs/1808.08745
https://arxiv.org/abs/2201.05596
https://arxiv.org/abs/2201.05596
https://arxiv.org/abs/2106.04426
https://arxiv.org/abs/2005.07683
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1708.00489
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2306.11695
https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct
https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qwen Team. Qwen3 technical report, 2025b. URL https://arxiv.org/abs/2505.09388.

Yanyue Xie, Zhi Zhang, Ding Zhou, Cong Xie, Ziang Song, Xin Liu, Yanzhi Wang, Xue Lin, and
An Xu. Moe-pruner: Pruning mixture-of-experts large language model using the hints from its
router, 2024. URL https://arxiv.org/abs/2410.12013.

Cheng Yang, Yang Sui, Jinqi Xiao, Lingyi Huang, Yu Gong, Yuanlin Duan, Wenqi Jia, Miao Yin,
Yu Cheng, and Bo Yuan. Moe-i2: Compressing mixture of experts models through inter-expert
pruning and intra-expert low-rank decomposition, 2024. URL https://arxiv.org/abs/
2411.01016.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew Dai, Zhifeng
Chen, Quoc Le, and James Laudon. Mixture-of-experts with expert choice routing, 2022. URL
https://arxiv.org/abs/2202.09368.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning, 2017. URL
https://arxiv.org/abs/1611.01578.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. St-moe: Designing stable and transferable sparse expert models, 2022. URL
https://arxiv.org/abs/2202.08906.

12

https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2410.12013
https://arxiv.org/abs/2411.01016
https://arxiv.org/abs/2411.01016
https://arxiv.org/abs/2202.09368
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/2202.08906

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A RELATED WORK

A.1 MIXTURE-OF-EXPERTS (MOE) ARCHITECTURES AND ROUTING

MoE architectures scale model capacity by activating only a small subset of experts per input
(Shazeer et al., 2017). Subsequent systems research made large-scale training practical via shard-
ing and improved load balancing (Lepikhin et al., 2020; Lewis et al., 2021; Roller et al., 2021).
The Switch Transformer simplifies routing to top-1 experts while preserving quality (Fedus et al.,
2022), and GLaM further demonstrates the efficiency of sparse conditional computation at billion-
parameter scale (Du et al., 2022). Stability and routing quality have been explored via expert-choice
routing and top-k variants (Zhou et al., 2022; Zoph et al., 2022), and end-to-end systems such as
DeepSpeed-MoE reduce training and inference costs (Rajbhandari et al., 2022). Our work differs by
learning a task-specialized subset of experts with a meta-RL pruning agent, then adapting routing
via RL, rather than only improving routing within a fixed expert set.

A.2 MODEL PRUNING AND COMPRESSION FOR LLMS

Classical pruning methods include magnitude pruning (Han et al., 2015), lottery-ticket style sparse
subnets (Frankle & Carbin, 2019), and movement pruning (Sanh et al., 2020). For modern LLMs,
one-shot and structural approaches such as SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun
et al., 2024) enable accurate post-training sparsification, and LLM-Pruner explores structured trans-
former pruning (Ma et al., 2023). While these techniques compress dense models, they do not
address which experts to keep in MoE. More recently, task-specific approaches have been proposed
for MoE models, including TSEP Chen et al. (2022), MoE-Pruner Xie et al. (2024), MoE-I2 Yang
et al. (2024), and NAEE Lu et al. (2024). These methods attempt to identify important experts
using heuristics or low-rank decompositions. In contrast, LEAP formulates expert selection as a
learning-based optimization problem via meta-RL, discovering compact expert subsets tailored to
downstream tasks.

A.3 PRUNING AND SPECIALIZATION IN MOE

Prior work has studied routing quality, load balancing, and stability in MoE (Lepikhin et al., 2020;
Fedus et al., 2022; Zoph et al., 2022; Zhou et al., 2022), and converting dense layers into expertized
MLP blocks (“MoEfication”) (Geva et al., 2021). However, explicit expert subset selection for task
specialization remains under-explored relative to dense pruning. Recent pruning strategies such as
MoE-Pruner Xie et al. (2024), TSEP Chen et al. (2022), MoE-I2 Yang et al. (2024), and NAEE
Lu et al. (2024) represent important attempts at reducing redundancy in MoE by measuring expert
usage or combining pruning with decomposition. However, these methods remain largely heuristic
or structural, often failing to capture synergistic expert interactions. LEAP advances this line by
employing a meta-RL Pruning Agent to search the expert-subset space with a performance–size
objective, followed by an RL-tuned Routing Agent to regain/boost accuracy.

A.4 REINFORCEMENT LEARNING FOR MODEL OPTIMIZATION AND ROUTING

RL has been used for neural architecture search (Zoph & Le, 2017) and compression (e.g., channel
pruning with AMC) (He et al., 2018). In MoE, routing can be viewed as a policy over experts; recent
work studies stability and capacity constraints rather than explicit policy learning (Fedus et al., 2022;
Zoph et al., 2022). LEAP treats router adaptation as an RL problem (policy-gradient over routing
decisions) after structural pruning, which, to our knowledge, has not been systematically combined
with a learned expert-subset search.

A.5 ACTIVE LEARNING FOR DATA-EFFICIENT SPECIALIZATION

Active Learning (AL) aims to select informative samples to reduce labeling or fine-tuning cost (Set-
tles, 2009). Classical coresets and uncertainty/margin-based strategies (Sener & Savarese, 2018;
Lewis & Gale, 1994) and gradient-based selection such as BADGE (Ash et al., 2020) have proven
effective across modalities. Recent LLM work often adopts AL for data-efficient adaptation, but
without MoE-aware structure. LEAP integrates AL into the fine-tuning phase to focus learning

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 3: End-task performance and efficiency scaling on Llama 4 Maverick (17B×128E). Hu-
manEval: pass@1 (%), GSM8K: accuracy (%), XSum: ROUGE-L F1.

Performance Metrics ↑ Efficiency Metrics ↓
Experts HumanEval GSM8K XSum (R-L) FLOPs (rel.) Latency (ms/token) Memory (GB)

128 (Full) 58.5 70.8 42.4 1.00 4.1 38.7
64 57.9 70.2 42.0 0.65 3.1 32.4
32 56.3 68.9 41.5 0.48 2.5 27.8
16 54.9 67.2 40.8 0.33 1.7 23.9
8 50.7 63.4 39.3 0.24 1.3 20.8

Table 4: Comparison at 16-expert budget on Llama 4 Maverick: baselines, LEAP, and SoTA
methods.

Methods Performance ↑ Efficiency ↓

HumanEval GSM8K XSum (R-L) FLOPs (rel.) Latency Memory

Reference
Full MoE (128 experts) 58.5 70.8 42.4 1.00 4.1 38.7

Baselines at 16 experts
Frequency Pruning 40.8 56.3 34.2 0.47 2.4 26.5
Magnitude Pruning 43.1 59.7 36.1 0.42 2.1 25.8
Vanilla Fine-Tuning 47.5 62.8 37.6 0.40 2.0 25.3
LEAP (ours) 54.9 67.2 40.8 0.33 1.7 23.9

SoTA models at 16 experts
MoE-Pruner Xie et al. (2024) 50.6 58.8 31.7 0.52 2.6 27.2
TSEP Chen et al. (2022) 44.7 60.5 34.8 0.49 2.5 26.9
MoE-I2 Yang et al. (2024) 53.2 59.4 40.9 0.62 3.2 29.4
NAEE Lu et al. (2024) 46.3 60.1 32.6 0.44 2.2 26.1

signal where the pruned experts and the RL router benefit most, improving sample efficiency and
recovery of performance.

While prior work has focused on improving routing stability in MoE, compressing dense LLMs,
or applying Active Learning independently, none address the central challenge of task-specializing
MoE models. LEAP uniquely unifies meta-RL expert pruning, RL-driven routing adaptation, and
Active Learning, offering the first principled pathway to transform large, general-purpose MoEs into
compact, specialized models without sacrificing accuracy.

B GENERALIZATION ACROSS MODEL ARCHITECTURES

To demonstrate the generalizability of LEAP across different MoE architectures, we also evaluate
the proposed method on Llama 4 Maverick 17B×128E (Tables 3 and 4).

Like Qwen3-235B-A22B, Llama 4 Maverick 17B×128E also exhibits consistent trends: LEAP
achieves similar efficiency gains (2.4-2.5× latency reduction, ∼ 60% memory savings) while main-
taining ∼ 94% of full-model performance. The 16-expert configuration emerges as optimal across
both architectures, suggesting that LEAP’s learned pruning strategy generalizes beyond model-
specific characteristics. Notably, LEAP consistently outperforms all baseline methods on both ar-
chitectures, with performance gaps remaining stable across different model scales and expert topolo-
gies. This consistency across diverse MoE architectures validates that our meta-RL approach cap-
tures fundamental expert selection principles rather than exploiting architecture-specific artifacts.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C ABLATION STUDIES

To better understand the contribution of each component in LEAP, we provide a detailed set of
ablation experiments. We isolate the effects of the Pruning Agent, Active Learning, and RL-based
Routing on both task performance and efficiency. All experiments are conducted on the Qwen3-
235B-A22B model with a 16-expert budget unless otherwise noted. Results are averaged over three
runs.

C.1 EFFECT OF THE PRUNING AGENT

We first replace the reinforcement learning–based Pruning Agent with simple heuristic strategies. As
shown in Table 5, frequency-based pruning leads to a 12-point drop on HumanEval (from 56.8% to
44.7%), while magnitude pruning yields similar degradation. This highlights that heuristic pruning
fails to capture synergistic expert interactions, whereas the meta-RL agent consistently identifies
subsets that balance accuracy and efficiency.

Table 5: Effect of Pruning Agent on Qwen3-235B-A22B at 16 experts.
Method HumanEval ↑ GSM8K ↑ XSum (R-L) ↑ Latency (ms/token) ↓
LEAP (RL Pruning) 56.8 68.9 41.7 1.5
Frequency Pruning 44.7 58.0 35.5 2.2
Magnitude Pruning 46.1 59.1 36.8 2.0

C.2 EFFECT OF ACTIVE LEARNING

Next, we study the impact of Active Learning (AL) on data efficiency. Without AL, batches are
sampled randomly during fine-tuning. Table 6 reports the number of labeled samples required to
achieve target accuracy levels on GSM8K. We observe that AL reduces the data requirement by
∼2.1× at 65% accuracy, confirming that AL accelerates adaptation by focusing on high-uncertainty
and diverse samples.

Table 6: Effect of Active Learning on GSM8K. Number of labeled samples required to reach target
accuracy.

Method 60% Accuracy 65% Accuracy 68% Accuracy

Random Sampling 12k 18k 25k
Active Learning (ours) 6k 8.5k 12k

C.3 EFFECT OF RL-BASED ROUTING

We then evaluate the role of reinforcement learning in routing adaptation. Removing PPO training
and relying on vanilla supervised fine-tuning causes a significant drop in reasoning performance:
GSM8K accuracy decreases from 68.9% to 60.4%, while latency improvements remain unchanged.
This indicates that PPO is crucial for stabilizing routing decisions and preventing catastrophic expert
under-utilization.

C.4 JOINT CONTRIBUTION OF COMPONENTS

Finally, we remove each component individually to quantify its marginal effect. Table 7 summa-
rizes the results. The full LEAP pipeline achieves the best performance-efficiency trade-off, while
disabling any component results in noticeable degradation. The synergy of pruning, active learning,
and RL routing is therefore essential.

These ablations provide several insights into why LEAP is effective. The RL-based Pruning Agent
emerges as the most critical component, since it prevents severe knowledge loss that arises from
naive or heuristic expert subset selection. Active Learning further strengthens the framework by

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Joint ablation of LEAP components on Qwen3-235B-A22B (16 experts).
Configuration HumanEval ↑ GSM8K ↑ XSum (R-L) ↑ Memory (GB) ↓
Full LEAP (ours) 56.8 68.9 41.7 24.3
w/o RL Router 54.2 60.4 40.1 24.1
w/o Active Learning 55.0 63.7 40.9 24.2
w/o RL Pruning Agent 44.7 58.0 35.5 27.0

improving data efficiency, enabling the model to adapt with significantly fewer fine-tuning samples
while maintaining accuracy. Finally, the RL-based Routing mechanism ensures robust adaptation to
the pruned architecture, which is particularly important for complex reasoning tasks where stability
in expert utilization is crucial. Taken together, these results demonstrate that LEAP’s advantage does
not stem from a single design choice but rather from the principled integration of pruning, routing,
and data-efficient adaptation into a unified closed-loop system.

D ACTIVE LEARNING IMPLEMENTATION DETAILS

In Section 3.3 we introduced the Active Learning (AL) component that prioritizes high-uncertainty
and diverse samples for router and expert fine-tuning. Here, we provide additional implementation
details for reproducibility.

Acquisition Function: For each candidate input x in the pool D, we compute predictive uncer-
tainty using router entropy:

u(x) = −
∑
e∈E∗

p̃e(x) log p̃e(x),

where p̃(x) = softmax(g∗(x;ϕ)/T) is the temperature-scaled distribution over retained experts. To
encourage diversity, we add a penalty for cosine similarity in the router state space:

score(B) =
∑
x∈B

u(x) + η · Div(B),

where Div(B) =
∑

x∈B minx′∈B\{x}(1− κ(h(x), h(x′))).

Batching Strategy: At each iteration, we select B = 1024 examples from D using the above
scoring rule. The pool is refreshed after every round, and AL is applied for 10 rounds (total ∼10k
samples). Router PPO updates are interleaved with expert fine-tuning on these batches.

Data Splits: We follow the official train/validation/test splits for GSM8K and XSum. Active
Learning is applied only on the training pool Dtrain, while 5% of the training set is held out as
a validation set for early stopping and hyperparameter tuning. HumanEval provides only a held-
out test set; therefore, no Active Learning is applied, and we directly report results on the official
benchmark tasks. All ablations in Appendix C are conducted using these splits to ensure consistency.

Comparison Baselines: For ablation, we replace AL with random sampling of the same batch
size and number of rounds. As shown in Appendix C.2, AL reduces the number of labeled samples
required to achieve 65% GSM8K accuracy by ∼2.1×.

This procedure ensures that scarce fine-tuning supervision is concentrated on inputs that are both
uncertain and non-redundant, leading to faster adaptation and reduced training cost.

16

	Introduction
	Preliminaries
	MoE Architecture Recap
	Problem Setup

	Methodology
	Pruning Agent: Meta-RL for Expert Subset Selection
	Constructing the Pruned Model
	Routing Agent: RL-Based Routing Adaptation
	Joint Fine-Tuning with RL

	Experiments
	Experimental Setup
	Results on Task Performance
	Theoretical and Analytical Insight

	Why LEAP Works: Mechanisms and Practical Implications
	Conclusion
	Related Work
	Mixture-of-Experts (MoE) Architectures and Routing
	Model Pruning and Compression for LLMs
	Pruning and Specialization in MoE
	Reinforcement Learning for Model Optimization and Routing
	Active Learning for Data-Efficient Specialization

	Generalization Across Model Architectures
	Ablation Studies
	Effect of the Pruning Agent
	Effect of Active Learning
	Effect of RL-based Routing
	Joint Contribution of Components

	Active Learning Implementation Details

