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Abstract

Procedural text contains rich anaphoric phe-
nomena yet has not received much attention
in NLP. To fill this gap, we investigate the
textual properties of two types of procedural
text, recipes and chemical patents, and gener-
alize an anaphora annotation framework devel-
oped for the chemical domain for modelling
anaphoric phenomena in recipes. We apply this
framework to annotate the RecipeRef corpus
with both bridging and coreference relations.
Through comparison to chemical patents, we
show the complexity of anaphora resolution
in recipes. We demonstrate empirically that
transfer learning from the chemical domain im-
proves resolution of anaphora in recipes, sug-
gesting transferability of general procedural
knowledge. The corpus is made available at
withheld_ for_review.

1 Introduction

Anaphora resolution is a core component in in-
formation extraction tasks (Poesio et al., 2016;
Rosiger, 2019) and critical for various downstream
natural language processing tasks, such as named
entity recognition (Dai et al., 2019) and machine
translation (Stanovsky et al., 2019). It consists
of two primary anaphoric types, coreference (Ng,
2017; Clark and Manning, 2015) and bridging
(Asher and Lascarides, 1998; Rosiger et al., 2018).
Most anaphora corpora (Pradhan et al., 2012; Ghad-
dar and Langlais, 2016a; Poesio et al., 2008), how-
ever, only focus on either coreference or bridging.
To fill the gap in anaphora resolution, it is becom-
ing increasingly important to have both types anno-
tated.

Current research on anaphora resolution is
mostly based on declarative text (Pradhan et al.,
2012; Ghaddar and Langlais, 2016b; Rosiger,
2018a; Hou et al., 2018), such as news or dia-
logue. Procedural text, such as patents describing
chemical synthesis or instruction manuals, has re-
ceived more limited attention although it is critical

for human knowledge (Yamakata et al., 2020). In
turn, correct resolution of entities is the cornerstone
of procedural text comprehension—resolution of
anaphora in these texts is required to determine
what action applies to which entity.

We focus in this work on the procedural text
type of recipes. As shown in Fig 1, recipes have
rich and complex anaphora phenomena. Here, the
expression the biscuits appears several times in text;
while each occurrence relates to the same biscuits
concept, their state and semantic meaning vary.

We aim to address anaphora resolution in pro-
cedural text, especially for recipes, identifying
anaphoric references and determining the relation-
ships among the entities. We generalize an existing
anaphora annotation schema developed for chem-
ical patents (Fang et al., 2021a,b) to the context
of recipes and define four types of anaphora rela-
tionships, encompassing coreference and bridging.
We then create a dataset based on this schema and
achieve high inner annotator agreement with two
annotators experienced with the domain. We fur-
ther analyze the textual properties of procedural
texts, i.e. chemical patents and recipes, and explore
the feasibility of applying transfer learning from
the chemical domain to solve recipe anaphora res-
olution problem. The dataset and related code are
publicly available.!

Our contributions in this paper include: (1) gen-
eralisation of the anaphora annotation framework
from chemical patents for modelling anaphoric phe-
nomena in recipes; (2) creation of a publicly acces-
sible recipe anaphora resolution dataset based on
the annotation framework; (3) investigation of the
textual properties of chemical patents and recipes;
and (4) demonstration of the benefit of utilizing pro-
cedural knowledge from the chemical domain to
solve recipe anaphora resolution via transfer learn-
ing.

'[link withhold for anonymous submission]


withheld_for_review

Preheat the oven to 400F.
Lightly grease a baking sheet.

Entity|
Place the biscuits on the prepared baking sheet and use the palm of your hand to flatten the dough to 1/4 inch in thickness.
CEmn
[Enznl [Entity]

Divide the sauce evenly among the biscuits, top with a pinch of the oregano, then layer the mozzarella, pepperoni (if using), and Parmesan cheese.

| Entity ]
nngmienm’ﬂ‘mn‘t—m—d‘:me -associated

the cheese

Make sure

!ngmdl’ﬂ'ﬂ!-sﬂm-d‘ﬂm!!-assnﬂaﬂI

Allow the biscuits

is covering and bake until the biscuits are golden, about 15 minutes.

to coal slightly and serve warm.

Figure 1: Annotated excerpt of anaphora resolution in the recipes. Different color of links represent different
anaphora relation types. Detailed anaphora relation definition can be seen Section 3.3.

2 Related Work

Anaphora relation subsumes two referring types,
coreference — expressions in the text that refer
to the same entity (Clark and Manning, 2015; Ng,
2017), and bridging — expressions that are linked
via semantic, lexical, or encyclopedic relations
(Asher and Lascarides, 1998; Hou et al., 2018).

Existing anaphora corpora mostly focus on
declarative text across various domains (Poesio
et al., 2008; Pradhan et al., 2012; Ghaddar and
Langlais, 2016b; Cohen et al., 2017). A few proce-
dural corpora are annotated for anaphora resolution
but most only have coreference annotated (Mysore
et al., 2019; Friedrich et al., 2020).

Pradhan et al. (2012) propose the CoNLL 2012
corpus for generic coreference resolution. It con-
sists of three languages, English, Chinese and Ara-
bic, in declarative texts including news and maga-
zine articles. This corpus follows the OntoNotes
5.0 (Weischedel et al., 2013) annotation, modelling
coreference in terms of two subtypes: Identity,
where the anaphoric references and referents are
identical, and Appositive, where a noun phrase
is modified by an intermediately-adjacent noun
phrase. It models coreference as a clustering task
and the direction of relations is not preserved. Fol-
lowing the same annotation framework largely, the
WikiCoref corpus (Ghaddar and Langlais, 2016b)
annotates Wikipedia texts.

BioNLP-ST 2011 (Nguyen et al., 2011) is a gene-
related coreference corpus based on abstracts from
biomedical publications. It consists of four types of
coreference: RELAT (relative pronouns or relative
adjectives, e.g. that), PRON (pronouns, e.g. if),

DNP (definite NPs or demonstrative NPs, e.g. NPs
that begin with the) and APPOS (coreferences in
apposition). As it only focuses on gene-related
annotation, the coreference is limited. CRAFT-
ST 2019 (Cohen et al., 2017) annotates 97 full
biomedical articles for coreference resolution based
on the OntoNotes 5.0 annotation framework with
minor adaptations. Compared to the BioNLP 2011
corpus, it contains a wider range of annotations
and is not limited to only abstracts. SCIERC (Luan
et al., 2018) contains 500 abstracts from scientific
articles. They annotate coreference of any two
expressions that point to the same entity.

Due to the complexities of defining bridging
(Zeldes, 2017; Hou et al., 2018), different corpora
have adopted different definitions of bridging. Ac-
cording to Rosiger et al. (2018), bridging can be
divided into: referential, where the anaphoric refer-
ences rely on the referent to be interpretable (e.g. a
new town hall - the door, the old oak tree - leaves,
etc.), and lexical, describing lexical-semantic rela-
tions, such as meronymy or hyponymy (e.g. Europe
and Spain are in a whole-part relation). The AR-
RAU corpus (Poesio et al., 2008) consists of three
types of declarative text: news, dialogue and nar-
rative text. The bridging annotations are mostly
lexical, with few referential. The ISNotes corpus
(Hou et al., 2018) is based on 50 Wall Street Jour-
nal (WSJ) texts from the OntoNotes corpus, and
contains both coreference and referential bridging.
Similar to ISNotes, BASHI (Rosiger, 2018a) is
based on another 50 WSJ texts from OntoNotes
with referential bridging. With the same annota-
tion scheme as BASHI, SciCorp (Rosiger, 2016)



focuses on scientific text and referential bridging.

There are a few domain-specific anaphora cor-
pora for procedural text. The ChEMU-ref corpus
(Fang et al., 2021a) contains 1,500 chemical patent
excerpts describing chemical reactions. Based on
generic and chemical knowledge, they model five
types of anaphora relationships, i.e. Coreference,
Transfers, Reaction-associated, Work-up and Con-
tained. Friedrich et al. (2020) propose the SOFC-
Exp corpus based on 45 material sciences articles
for the information extraction task. As this cor-
pus mainly focuses on named entity extraction and
relation extraction, coreference is presented as a
supplemented annotation based on the notion of
coindexation between a common noun or a pro-
noun and a more specific mention appears earlier in
the text. Mysore et al. (2019) work on 230 synthe-
sis procedures and capture coreference within text
in parenthesis, coreferent abbreviation, etc. The In-
Script corpus (Modi et al., 2016) consists of 1,000
stories from 10 different scenarios and annotates
coreference for noun phrases.

Recent work in recipe comprehension includes
visual instructions (Huang et al., 2017; Nishimura
et al., 2020) and linguistic texts (Agarwal and
Miller, 2011; Kiddon et al., 2015; Jiang et al., 2020)
across Japanese (Harashima and Hiramatsu, 2020;
Harashima et al., 2016) and English (Batra et al.,
2020; Marin et al., 2019). Most research models
linguistic recipes as a workflow graph based on
actions (Kiddon et al., 2015; Mori et al., 2014; Ya-
makata et al., 2020), where the vertices represent
name entities (e.g. action, food, etc.) and edges
represent processing information (e.g. action com-
plement, food complement, etc.). Although interac-
tions among ingredients can be derived via action
nodes, this approach doesn’t sufficiently capture
anaphoric phenomena, i.e. coreference and bridg-
ing. The RISeC corpus (Jiang et al., 2020) identi-
fies candidate expressions for zero anaphora verbs
in English recipes. However, they do not capture
generic anaphoric phenomena.

Most research handles coreference and bridg-
ing separately due to limited data availability. For
coreference resolution, span ranking models (Lee
et al., 2017, 2018) have become the benchmark
method over mention ranking models (Clark and
Manning, 2015, 2016a,b; Wiseman et al., 2015,
2016). Various span ranking variants have pro-
posed (Zhang et al., 2018; Grobol, 2019; Kantor
and Globerson, 2019) and achieved strong perfor-

mance. With the increasing amount of coreference
corpora, transfer learning (Brack et al., 2021; Xia
and Van Durme, 2021) involving pretraining on a
source domain and fine-tuning on a target domain
has shown great potential to improve coreference
resolution. Bridging methods can be categorised
into: (1) rule-based methods (Hou et al., 2014,
Rosiger et al., 2018; Rosiger, 2018b) and (2) ma-
chine learning methods (Hou, 2018a,b, 2020; Yu
and Poesio, 2020). Hou (2020) modelled bridging
resolution as a question answering task and fine-
tuned the question answering model from generic
question answering corpora. By utilizing transfer
learning, they achieved a stronger performance on
the bridging task. Yu and Poesio (2020) proposed
a joint training framework for bridging and coref-
erence resolution based on the end-to-end corefer-
ence model (Lee et al., 2017). Similar to corefer-
ence, they modelled bridging as a clustering task.
They achieved great improvement over the bridging
task. However, the impact on the coreference task
is not clear. Fang et al. (2021a) adopted the same
end-to-end framework for joint training anaphora
resolution. They modelled bridging as a mention
pair classification task and showed improvement
on both subtasks.

3 Annotation Scheme

In this section, we describe our adopted annota-
tion scheme for recipe anaphora annotation. The
complete annotation guideline is available at [Link
withhold for anonymous submission].

3.1 Corpus Selection

We create our RecipeRef dataset by random sam-
pling texts from RecipeDB (Batra et al., 2020), a
large diverse recipe database containing 118,171
English recipes with 268 processes and more than
20,262 ingredients. It consists of ingredient lists
and instruction sections. We select the instruction
section of recipes for the corpus, detailing the steps
for preparing the recipe.

3.2 Mention Types

As our goal is to capture anaphoric phenomena in
recipes, we focus on ingredient-related expressions.
Verbs (e.g. bake, chop, etc.) are not annotated. In
line with previous work (Pradhan et al., 2012; Co-
hen et al., 2017; Fang et al., 2021a; Ghaddar and
Langlais, 2016b), we leave out singleton mentions,
i.e. mentions that are not involved in anaphora rela-



tions (as defined in Section 3.3) are not annotated.
Mention types that are considered for anaphora
relations are listed below.

Ingredient Terms In recipes, ingredient terms
are essential as they indicate what ingredients are
used, in the form of individual words or phrases,
such as butter, endive heads, red peppers, garlic
powder, etc.

Referring Expressions We consider referring ex-
pressions to be pronouns (e.g. it, they, etc.) and
generic phrases (e.g. soup, the pastry mixture, etc.)
used to represent ingredients previously introduced.
We adopt several assumptions for mentions:

* Premodifiers: One of the key challenges
in procedural text is to track down the
state change of entities. It is critical to
include premodifiers as they play an im-
portant role in identifying an entity’s state.
We consider ingredients with premodifiers
as atomic mentions, e.g. chopped chicken,
roasted red peppers and four sandwiches.

¢ Numbers: In some cases, individual number
expressions can be used to imply the ingre-
dients and are considered as mentions. For
example, / in “Beat eggs, 1 at a time”, three
in “Combine together to make a sandwich.
Repeat to make three”.

3.3 Relation Types

One of the core components in procedural com-
prehension is understanding entities state (Dalvi
et al., 2018; Tandon et al., 2018). Recipes contain
rich information about the change of ingredients
state. As shown in Fig 1, to obtain the biscuits in
line 6, the biscuits in line 1 has gone through sev-
eral processes, involving physical (e.g. flatten) and
chemical change (e.g. bake). Capturing interaction
relations among ingredients benefits in understand-
ing ingredients (i.e. where is the ingredient from)
and detailing the relation types with states gives a
deeper understanding of recipes (i.e. how to get the
ingredient).

There are two basic types of anaphora: corefer-
ence and bridging. In recipes, we define bridging
as three subtypes of referring relations based on the
state of entities. The overall schema of anaphora
relations in recipes is shown in Fig 2.

In anaphora resolution, an antecedent is a lin-
guistic expression that provides the interpretation

~ Still the same state
No change

> Coreference (one to one)
State is the same

« Same entity <
* State change * Transformed (one to one)
State change: Chop, peel, boil, cook, efc.
Mention physical and chemical
Source ingredients , Ingredient(without-state-change)
O .
Mi still in the same state ~ -associated (one to many)
\ 17“}“_'0 ¢ No change Ingredient state is still the same. mix, pour, efc.
of entities

"\ Source ingredients
with state change

State change:
physical and chemical

, Ingredient(with-state-change)
-associated (one to many)

Chop, peel, boil, cook, etc. when mixing
ingredients

Three types of change:
1. No changes

2. Physical changes
3. Chemical changes

Figure 2: Overall schema for anaphora relations in
recipes.

for a second expression, anaphor, which cannot be
interpreted in isolation or only has little meaning
on its own. Anaphors are linked to antecedents via
anaphora relations. Consistent with previous work,
we limit anaphors to link to antecedents appear-
ing earlier in the text, and the direction of links is
preserved.

3.3.1 Coreference

Coreference focuses on expressions that refer to the
same entity in the real-world (Clark and Manning,
2015; Ng, 2017). In procedural text, the state of an
entity can be changed by the action applied to the
entity. To distinguish this subtle information, we
consider mentions are coreferent when they point
to the same entity and there is no state change, such
as a physical or chemical change.

Also, the entity can be repeated in text. To elim-
inate ambiguity in linking coreferent antecedents,
the closet antecedent is linked for a given anaphor.

3.3.2 Bridging

As discussed in Section 3.3.1, we aim to preserve
the state change information of entities in proce-
dural text. In the case of recipes, we define three
types of bridging relation based on the entity state.

TRANSFORMED A one-to-one anaphoric link
for a set of ingredients that is meaning-wise the
same but has undergone physical/chemical change
(e.g. peeling, baking, boiling, etc.). For example,
in Fig 1, the biscuits in line 4 and 5 are linked as
TRANSFORMED because of the bake action that
changes the state of the biscuits in line 4.

INGREDIENT(WITHOUT-STATE-CHANGE)-

ASSOCIATED A one-to-many relationship
between a processed food and its source ingre-
dients, where the source ingredients have not
undergone a state change (i.e. physical/chemical
change). As shown in Fig 1, the cheese in line
5 refers to its source ingredients the mozzarella



Combination ~ Chemical ...5-Isopropylisoxazol-3-carboxylic acid (1.00 g, 6.45 mmol) was dissolved in methanol (20 mL), and thionyl chloride (1.51 g,
Process Patents 12.9 mmol) was slowly Jd@&dl at 0°C. The reaction solution was slowly warmed to 25°C and stirred for 12 hour...
Recipes .. Jiixl 2 tablespoons of the olive oil, chili powder, allspice, salt, and pepper in a small bowl and brush the turkey all over with
pes the spice mixture...
Removal Chemical ...the mixture was JEXfractedl three times with ethyl acetate (50 mL). The combined ethyl acetate layer was washed with saturated
Process Patents brine (50 mL) and dried over anhydrous sodium sulfate...
Recipes ...add chicken thighs to the broth and simmer until cooked through, about 10 minutes. Jf€mo¥el chicken with slotted spoon and

set aside; when cool enough to handle, slice thinly. continue to simmer broth, return to pot...

Table 1: Examples of processes in chemical patents and recipes.

and Parmesan cheese in line 4 and there is
no state change. Thus, they are annotated
as  INGREDIENT(WITHOUT-STATE-CHANGE)-
ASSOCIATED.

INGREDIENT(WITH-STATE-CHANGE)-
ASSOCIATED A one-to-many relationship
between a processed food and its source ingre-
dients which have undergone a state change.
As an example, the biscuits in Fig 1 line 6 is a
combination of previous source ingredients (i.e.
the sauce, a pinch of the oregano, pepperoni, the
cheese and the biscuits) via baking. They are
linked as INGREDIENT(WITH-STATE-CHANGE)-
ASSOCIATED as bake changes the state of the
previous ingredients.

3.4 Comparison with Chemical Patents

As shown in Table 1, chemical patents and recipes
have commonalities. They use similar language to
describe the application of processes (e.g. combi-
nation, removal, etc.) to source entities to obtain
new entities, making it feasible to generalize the
anaphora annotation scheme from chemical patents
(Fang et al., 2021a,b) to recipes.

However, there are some key differences in the
annotation schemes.

* Domain Differences: Some relation types de-
fined for chemical patents are domain-specific,
e.g. the WORK-UP relation is specific to chem-
istry. Such relation types cannot be directly
applied to the general domain.

* Determining State Change: In both chemi-
cal patents and recipes, anaphora resolution
aims to capture anaphoric relation among
mentions involving possible state changes. In
the chemical domain, we are most concerned
with chemical changes (e.g. oxidation, acidifi-
cation, etc.). However, in the recipe domain,
we are also interested in physical changes (e.g.
chop, slice, etc.).

* Rich Semantic Meaning in Recipes: Ingre-
dient terms in recipes may represent a combi-
nation of ingredients. As shown in Fig 1, the
biscuits in line 6 represent a combination of
previous ingredients and not just the biscuit in-
gredient itself. However, in chemical patents,
chemical names have specific meanings and
cannot be semantically extended. This is a key
challenge in resolving anaphora in recipes.

* Variance in Instruction Descriptions: Al-
though chemical patents and recipes have
similar structures, instruction descriptions in
recipes are more variable. In chemical patents,
processed entities are mostly directly used
in the immediately following process after
a mention. However, processed entities in
recipes can be mentioned far later in text.

* Hierarchical Structure in Recipe Relation
Types: Anaphora relation types in recipes are
defined in a hierarchy (as shown in Fig 2). A
simplified version of recipe anaphora resolu-
tion task, i.e. without considering state change,
can be easily derived. In chemical patents,
there is no clear way simplifying the scheme
while presenting anaphoric relations.

4 Task definition

Following the definition in Fang et al. (2021a),
anaphora resolution is modelled as a two-step task,
mention detection and anaphora relation detection.

As anaphora relation types in recipes are
defined in a hierarchy, we can derive a
simplified version of recipe anaphora resolu-
tion task by removing state changes. As
such, COREFERENCE and TRANSFORMED can
be merged without considering state changes
and similarly for INGREDIENT(WITHOUT-STATE-
CHANGE)-ASSOCIATED and INGREDIENT(WITH-
STATE-CHANGE)-ASSOCIATED relationships. We
evaluate recipe anaphora resolution both with and
without state change.



RecipeRef =~ ChEMU-ref
Excerpts 80 1,125
Sentences 999 5,768
Tokens/Sentences 12.6 27.6
Mentions 1,408 17,023
Mentions/Excerpts 17.6 15.1
Coref. 229/415 3,243
Coref./Excerpts 29/52 29
Bridging* 1,104 /918 12,796
Bridging*/Excerpts ~ 13.8/11.5 11.4
TR 186/ - -
IwoA 91/918 -
IwA 827/ - -

Table 2: Corpus annotation statistics. For

ChEMU-ref corpus, we include its training and
development set. “Coref.”, “TR”, “IwoA” and
“IwA” denote COREFERENCE, TRANSFORMED,
INGREDIENT(WITHOUT-STATE-CHANGE)-
ASSOCIATED and INGREDIENT(WITH-STATE-
CHANGE)-ASSOCIATED, respectively. "/" in relation
categories shows the separation in with and without
state change scenarios. “Bridging*” is the total number
of bridging relations across all subtypes. Bridging
subtypes are different in ChEMU-ref corpus, hence we
calculate the total number of bridging relations.

For evaluation, we use precision, recall and F1.
Although our recipe corpus models coreference as
a one-to-one relation and it is transitive, we follow
the coreference evaluation of the ChEMU-ref cor-
pus and do not use traditional coreference evalua-
tion metrics (Luo, 2005; Recasens and Hovy, 2011;
Moosavi and Strube, 2016). Surface coreference,
where a coreferent anaphor links to the closest an-
tecedent, and atom coreference, where a coreferent
anaphor links to a correct antecedent, are applied to
evaluate coreference resolution (Kim et al., 2012).

For manual annotation, we use the Brat rapid
annotation tool.” To achieve high quality, we went
through 8 rounds of annotation training and refine-
ment of the anaphora annotation with two annota-
tors experienced with the domain. In each round of
training, they independently annotated 10 recipes
(different for each round of annotation) and met af-
terwards to compare annotation results. Further re-
finement of annotation guidelines were made based
on the discussion.

After annotation training, we reached a high in-
ner annotator agreement (IAA) between annotators.
Krippendorff’s a score, F1 score at mention level
and relation level are 0.85, 0.88 and 0.67, respec-
tively. As a comparison, it was 0.45, 0.51 and

https://brat.nlplab.org/

0.29 at the beginning, respectively. The individual
annotation is in progress.

We use 80 harmonized recipes as our current
corpus for experimentation. The statistics of this
recipe corpus in comparison with the ChEMU-ref
corpus (Fang et al., 2021a) are shown in Table 2.

S Methodology

To investigate the benefit of utilizing transfer learn-
ing from chemical domain, we follow the config-
uration of Fang et al. (2021a), modelling bridging
as a classification task and adopting the benchmark
end-to-end neural coreference model (Lee et al.,
2017, 2018) for joint training of the two anaphora
resolution types.

For each span x;, the model learns: (1) a mention
score S, for mention detection:

Sm(i) = ws - FFNNg(s;)

(2) a distribution P(-) over possible antecedent
spans Y (7) for coreference resolution:

exp(se(i; y))

P(y) = > ey exp(se(i )

where s.(7, y) is the output of a feed-forward neural
network with span pair embedding s; ,,, and (3) a
pair-wise score s (i, y) of each possible antecedent
span y for bridging resolution:

sp(1,y) = softmax(wy, - FFNNy(s; 4))

A span representation s; is the concatenation of
output token representations (z;) from a bidirec-
tional LSTM (BiLSTM) (Hochreiter and Schmid-
huber, 1997), the syntactic head representation (h;)
obtained from an attention mechanism (Bahdanau
etal., 2015), and a feature vector of mention (¢(7)):

5 = [TgTART()» TEND()s Piir §(1)]

where START (i) and END(i) represent the starting
and ending token index for span ¢, respectively.

A span pair embedding s; , is obtained by the
concatenation of each span embedding (s(7), s(y))
and the element-wise multiplication of the span em-
beddings (s(7) o s(y)) and a feature vector (¢(i,y))
for span pair ¢ and y:

Siy = [S(i), S(y)v S(Z) o S(y)v ¢(Z7 y)]


https://brat.nlplab.org/

For mention loss, we unitize cross-entropy loss:

AT
Ly == m; xlog(sigmoid (s (i)))
i=1
+ (1 — m;) * log(1 — sigmoid(s,,(7)))

0
mi:{l

GOLD,, is the set of gold mentions that are in-
volved in anaphora relations.

For coreference resolution, we compute the loss
as follows, where GOLD,(7) is the gold coreferent
antecedents that span ¢ refers to:

where:

span i ¢ GOLD,,
span ¢ € GOLD,,

AT
L. =log H P(@)

i=1 g€V (i) () GOLD,(3)
For bridging resolution, the loss is obtained by

multiclass cross-entropy:

K. \T

Ly =— Z Z Z bi,j,c IOg(Sb(ia Y, C))

c=11i=1 y

where K represents the number of bridging cate-
gories, s,(1, j, ¢) denotes the prediction of s(z, )
under category c, and:

0
biyjyc = {1

where GOLDj(c) is the gold bridging relation un-
der category c.
We compute total loss as L = Ly, + L, f, where

span pair(i, j) ¢ GOLDy(c)
span pair (7, j) € GOLDy(c)

L. for coreference
Lyey =14 Ly for bridging
L.+ Ly for joint training

6 Experiments

In this section, we present experimental results both
with and without state change for recipe anaphora
resolution. We use a similar configuration to Lee
et al. (2018). Specifically, we use the concatena-
tion of 300-dimensional GloVe embeddings (Pen-
nington et al., 2014), 1024-dimensional ELMo
word representations (Peters et al., 2018) and 8-
dimensional character embeddings that are learned
from a character CNN with windows of 3, 4, and
5 characters as the pretrianed token embeddings.

Each feed-forward neural network consists of two
hidden layers with 150 dimensions and rectified
linear units (Nair and Hinton, 2010). The gold
mentions are separated in coreference and bridging.
For joint training, the gold mentions are combined.

We use 10-fold cross-validation to evaluate our
model on recipe anaphora resolution. Since end-to-
end model performance varies due to random ini-
tialization (Lee et al., 2017), we randomly shuffle
the dataset 5 times and run cross-validation 3 times
for each shuffle. Averaged results are reported.

Table 3 show our primary results without state
change. For coreference resolution, we show ex-
perimental results on both surface and atom coref-
erence metrics. For bridging resolution, we focus
on overall bridging results. Since surface and atom
coreference metrics show the same trends in per-
formance, we use surface coreference and overall
bridging to compute overall results.

Overall, joint training achieves 26.2% F score
for surface coreference and 26.9% I score for
bridging, with +1.4% and +0.9% F} score abso-
lute improvement over the component-wise models.
As such, joint training improves the performance
of both tasks. Compared to precision, recall in
anaphor and relation detection is lower, indicating
the complexity in anaphoric forms in recipes.

We also experimented with joint coreference res-
olution and change-of-state classification, and ob-
served similar trends in the results, at reduced per-
formance levels due to the difficulty in predicting
state changes (as shown in Appendix A).

As discussed in Section 3.4, chemical patents
and recipes share similar text structures. We ar-
gue that the structure information can be beneficial
for the anaphora resolution task. We hence experi-
ment with utilizing transfer learning from chemical
domain to recipes. Specifically, we pretrain the
anaphora resolution model on the ChEMU-ref cor-
pus (Fang et al., 2021a,b) with 10,000 epochs and
fine-tune it with the recipe corpus.

Table 4 shows results with transfer learning,
demonstrating consistent improvement over coref-
erence and bridging resolution. Overall, we achieve
27.9% F score for relation prediction under joint
training and transfer learning, obtaining +0.8% F}
score absolute improvement. Incorporating proce-
dural knowledge also improves component-wise
models by +0.5% and 0.7% F7 score (absolute) for
surface coreference and bridging, respectively.

We performance error analysis on 5 randomly se-



Relation Method Py Ra Fa Pr Rr Fr
Coref, (Surface) COeference  620£10 3784508 4614508 336409 204+£06 248407
orel- ISurlace)  joint_train -~ 65.24+0.9 37.5+£09 46.7+08 368+£09 21.0+0.6 26.2=+0.7
Coref, (Atomy ~ Coreference 620410 378408 461408 468+ 11 261407 329407
orel. (Afom joint_train  65.2+0.9 375409 467+08 504+11 267+0.7 344408
Bridei bridging 561412 351+09 417408 363+£09 215408 260+07
ndgmng joint_train 577+ 13 355+09 4274+08 380+08 21.9+0.7 26.9+0.7
Overall joint_train  62.1+£0.7 37.0+0.5 460405 374+07 218+05 271405

Table 3: Anaphora resolution results on 10 fold cross validation without considering state change. Models were
trained over 10,000 epochs, and averaged over 3 runs with 5 different random seeds (total 5*3*10 runs). Models are
trained for “coreference”, “bridging” or “joint_train” (both tasks jointly). “F'4” denotes the F1 score for anaphor

prediction, and “F’r” for relation prediction.

Relation  Method Fa Fr
coreference  46.1 £0.8 24.8 +0.7

Coref. - w/transfer 467 £0.8 253 +0.7
(Surface) joint_train 467+ 0.8 262 +0.7
-w/transfer 453 +0.9 269 +0.7

coreference  46.1 £0.8 329 +0.7

Coref. - w/transfer 46.7 £0.8 33.5+£0.8
(Atom) joint_train 467+ 0.8 344+0.8
-w/transfer 453 +0.9 339+0.8

bridging 41.7+0.8 26.0+0.7

Bridging _° w/ transfer 40.6 0.9 26.7 £0.7
joint_train 4277+0.8 269+0.7

- w/ transfer 434 +08 27.94+0.7

Overall joint_train 46.0+0.5 27.1+05
vera - w/ transfer 452 +0.6 279405

Table 4: Experiments with transfer learning, without
considering state change. “F4” denotes the F1 score for
anaphor prediction, and “F'r” for relation prediction.

lected batches from 10-fold cross-validation based
on joint training models. Overall, models suf-
fer from (1) semantic understanding of ingredi-
ent terms. As we discussed in section 3.4, in-
gredient terms can semantically represent a mix-
ture, e.g. the biscuits in Fig 1 line 6 represents
a mixture of previous ingredients. Models can-
not tell the subtle differences and incorrectly link
those ingredient terms as COREFERENCE. (2) de-
tection of state change. Models fail to cap-
ture the state transition of entities, mostly falsely
inferring TRANSFORMED as COREFERENCE
and inferring INGREDIENT(WITHOUT-STATE-
CHANGE)-ASSOCIATED as INGREDIENT(WITH-
STATE-CHANGE)-ASSOCIATED.

Errors in coreference resolution occur also due
to (1) imbalance of coreference and bridging and
(2) entities with different expressions. As shown
in Table 2, coreference relations are not common
in recipe anaphora, making it harder for models

to capture coreference links. Models also fail to
capture the coreference relationship of entities in
the face of variations in expression.

In bridging resolution, models also tend to
predict anaphoric links as INGREDIENT(WITH-
STATE-CHANGE)-ASSOCIATED due to its domi-
nation in recipe anaphora relations. Furthermore,
within the INGREDIENT(WITH-STATE-CHANGE)-
ASSOCIATED relationship, models over-predict the
relations for a given anaphor. One of the possi-
ble reasons is the individual span-pair prediction,
which makes it hard to capture the interactions
within anaphors. Simultaneously evaluating candi-
date antecedents might address this issue.

By incorporating procedural knowledge via
transfer learning, models achieve better perfor-
mance. However, models suffer more severely
from false negatives due to the difference in the
annotation scheme, as discussed in Section 3.4.

Future directions include (1) Joint learning
with COREFERENCE and TRANSFORMED relations.
These only differ in whether or not state change
is considered; considering them together may be
effective. (2) Incorporation of external knowledge
including world knowledge about ingredient enti-
ties; this may further improve transfer learning.

7 Conclusion

We investigate the textual properties in chemical
patents and recipes and generalized the annota-
tion guideline for chemical patents to recipes. We
create a publicly available recipe anaphora res-
olution corpus based on the adopted annotation
scheme. We further define two tasks for modelling
anaphoric phenomena in recipes, with and without
state change. Our experiment shows the benefit of
utilizing joint training setting and transfer learning
from chemical domain.
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A Additional Experimental Results

In the following tables, we provide detailed experiment results described in the main paper.

Table 5 provides anaphora resolution results with state changes on 10 fold cross validation.

Table 6 provides a full comparison of transfer learning per anaphora relation with state change on 10
fold cross validation.

Table 7 provides a full comparison of transfer learning per anaphora relation without state change on
10 fold cross validation.

Relation Method Py Ra Fa Pr Rr Fr

coreference 46.5+22 133+£0.7 19.7+£09 227+2.0 6.2+0.5 92£0.7
joint_train  48.6 =19 153+0.7 22.0+09 28.7+1.7 8.6+05 125+0.7

coreference  46.5 £ 2. 133+£07 19709 279+£2.1 75+£05 11.2£08
joint_train  48.6 153+£07 220+09 335+18 98=+05 144+0.7

22
+1.9
bridging 517+10 253+0.6 332+06 363+08 194+06 245=+0.6
+1.0
23

Coref. (Surface)

Coref. (Atom)

Bridging joint_train  52.6 246406 327407 377+08 191+06 247406
g bridging  470£23 166+09 230+12 329419 132408 173+09
joint_train  52.0+23 160+£09 229411 375422 132+08 17.9+1.0

woa | bridging 59+1.6 33+11 37+11 31+11 23+£11 23+1.0
joint_train 43413 24407 27407 25+10 09+04 1.1+04

[wa bridging 55212 368L£10 429:+09 379409 227108 273407
joint_train 556+ 1.2 358+10 423409 394+10 224+08 275+0.7

Overall joint_train 5164+ 0.8 215404 299405 363+07 173405 23.0+05

Table 5: Anaphora resolution results on 10 fold cross validation with considering state change. Models were trained
over 10,000 epochs, and averaged over 3 runs with 5 different random seeds (total 5*3*10 runs). Models are trained
for “coreference”, “bridging” or “joint_train” (both tasks jointly). “F4” denotes the F1 score for anaphor prediction,
and “Fr” for relation prediction.

Relation Method Pa R Fa Pr Rr Fr

coreference 45.6 +2.3 139+0.8 20.0+1.0 279+2.1 83+0.6 11.9+0.8
joint_train 434 +23 1234+07 181+£1.0 245+19 6.5+0.5 9.7+ 0.6
coreference 45.6 =23 139+0.8 20.0+1. 329 +22 94+0.6 13.7+0.8
joint_train 434 +23 123+0.7 18.1 29.1 £2.1 7.6 05 11.3+£0.7

1.0
£1.0
bridging 534+£10 249+£05 333+£06 389+08 198+0.6 257=+0.6
+0.6
1.0

Coref. (Surface)

Coref. (Atom)

Bridging joint_train 552+ 1.0 25.6+0.6 34.3 396+08 197+05 258406
g bridging  506£22 178+09 243:+£10 378421 143:+08 189409
joint_train  53.8+24 165+09 2354+12 363+£22 129+08 173409

woa bridging 44414 19406 23407 12405 05+£02 0.6+02
joint_train  5.0+15 29+11 33+11 26+11 19+1.0 2.0+1.0

[wa bridging  569+12 354£10 424+£09 405+09 23107 285+07
joint_train 582+ 1.2 37.8+1.0 444409 415+09 234+07 29.0+0.7

Overall joint_train 532408 213+04 300405 379407 175404 23.6+05

Table 6: Experiments with transfer learning on 10 fold cross validation with considering state change. Models were
trained over 10,000 epochs, and averaged over 3 runs with 5 different random seeds (total 5*3*10 runs). Models are
trained for “coreference”, “bridging” or “joint_train” (both tasks jointly). “F'4” denotes the F1 score for anaphor
prediction, and “F’r” for relation prediction.
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Relation Method Py Ra Fy Pr Rr Fr
coreference 63.3+09 37.8+08 46.7+0.8 3444+09 205+06 253=+0.7
joint_train 664 +1.0 3544+09 453+09 39.7+1.0 21.0+0.6 269+0.7

coreference 633 +£09 37.8+08 46.7+08 478=+1.1 263+£0.7 335+038
joint_train 664 +1.0 354+09 453£09 522+12 258407 33.9+038

Coref. (Surface)

Coref. (Atom)

Bridei bridging 555+ 1.3 33.1+09 406409 380410 215407 267+07
ndgmng joint_train 584+ 1.2 358409 434+08 403+1.0 223+06 27.9+0.7
Overall joint_train  63.0+07 358+0.6 452406 398+0.6 220+05 279405

Table 7: Experiments with transfer learning on 10 fold cross validation without considering state change. Models
were trained over 10,000 epochs, and averaged over 3 runs with 5 different random seeds (total 5*3*10 runs).
Models are trained for “coreference”, “bridging” or “joint_train” (both tasks jointly). “F'4” denotes the F1 score for
anaphor prediction, and “Fr” for relation prediction.
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