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ABSTRACT

Employing a forward diffusion chain to gradually map the data to a noise distribu-
tion, diffusion-based generative models learn how to generate the data by inferring
a reverse diffusion chain. However, this approach is slow and costly because it
needs many forward and reverse steps. We propose a faster and cheaper approach
that adds noise not until the data become pure random noise, but until they reach a
hidden noisy-data distribution that we can confidently learn. Then, we use fewer
reverse steps to generate data by starting from this hidden distribution that is made
similar to the noisy data. We reveal that the proposed model can be cast as an
adversarial auto-encoder empowered by both the diffusion process and a learn-
able implicit prior. Experimental results show even with a significantly smaller
number of reverse diffusion steps, the proposed truncated diffusion probabilistic
models can provide consistent improvements over the non-truncated ones in terms
of performance in both unconditional and text-guided image generations.

1 INTRODUCTION

Generating photo-realistic images with probabilistic models is a challenging and important task in
machine learning and computer vision, with many potential applications in data augmentation, image
editing, style transfer, etc. Recently, a new class of image generative models based on diffusion
processes (Sohl-Dickstein et al., 2015) has achieved remarkable results on various commonly used
image generation benchmarks (Song & Ermon, 2019; Ho et al., 2020; Song & Ermon, 2020; Song
et al., 2021b; Dhariwal & Nichol, 2021), surpassing many existing deep generative models, such
as autoregressive models (van den Oord et al., 2016), variational auto-encoders (VAEs) (Kingma &
Welling, 2013; Rezende et al., 2014; van den Oord et al., 2017; Razavi et al., 2019), and generative
adversarial networks (GANs) (Goodfellow et al., 2014; Radford et al., 2015; Arjovsky et al., 2017;
Miyato et al., 2018; Brock et al., 2019; Karras et al., 2019; 2020b).

This new modeling class, which includes both score-based and diffusion-based generative models,
uses noise injection to gradually corrupt the data distribution into a simple noise distribution that
can be easily sampled from, and then uses a denoising network to reverse the noise injection to
generate photo-realistic images. From the perspective of score matching (Hyvärinen & Dayan, 2005;
Vincent, 2011) and Langevin dynamics (Neal, 2011; Welling & Teh, 2011), the denoising network
is trained by matching the score function, which is the gradient of the log-density of the data, of
the corrupted data distribution and that of the generator distribution at different noise levels (Song
& Ermon, 2019). This training objective can also be formulated under diffusion-based generative
models (Sohl-Dickstein et al., 2015; Ho et al., 2020). These two types of models have been further
unified by Song et al. (2021b) under the framework of discretized stochastic differential equations.

Despite their impressive performance, diffusion-based (or score-based) generative models suffer from
high computational costs, both in training and sampling. This is because they need to perform a large
number of diffusion steps, typically hundreds or thousands, to ensure that the noise injection is small
enough at each step to make the assumption that both the diffusion and denoising processes have
the Gaussian form hold in the limit of small diffusion rate (Feller, 1949; Sohl-Dickstein et al., 2015).
In other words, when the number of diffusion steps is small or when the rate is large, the Gaussian
assumption may not hold well, and the model may not be able to capture the true score function
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Figure 1: (Best viewed in color) An illustrative depiction of diffusion models and our truncated diffusion
models. Top: The conventional denoising diffusion models add Gaussian noise gradually with a large number
of time steps, where the true posterior can be kept close to Gaussian and hence easy to fit with denoising
(score-matching) loss (marked in a solid blue box). Bottom: Truncated diffusion models truncate the diffusion
chain to keep its first few steps and small diffusion segment (marked in the dashed blue box). This truncated
diffusion chain can still be learned with previous denoising methods. Meanwhile, as the left part is truncated, the
Gaussian prior p(xT ) will have a large gap to the truncated point q(xT |x0), which is bridged with an implicit
generative distribution pψ(xT ) =

∫
pψ(xT |z)p(z)dz (marked in dashed red box).

of the data. Therefore, previous works have tried to reduce the number of diffusion steps by using
non-Markovian reverse processes (Song et al., 2020; Kong & Ping, 2021), adaptive noise scheduling
(San-Roman et al., 2021; Kingma et al., 2021), knowledge distillation (Luhman & Luhman, 2021;
Salimans & Ho, 2022), diffusing in a lower-dimension latent space (Rombach et al., 2022), etc., but
they still cannot achieve significant speedup without sacrificing the generation quality.

In this paper, we propose a novel way to shorten the diffusion trajectory by learning an implicit
distribution to start the reverse diffusion process, instead of relying on a tractable noise distribution.
We call our method truncated diffusion probabilistic modeling (TDPM), which is based on the
idea of truncating the forward diffusion chain of an existing diffusion model, such as the denoising
diffusion probabilistic model (DDPM) of Ho et al. (2020). To significantly accelerate diffusion-based
text-to-image generation, we also introduce the truncated latent diffusion model (TLDM), which
truncates the diffusion chain of the latent diffusion model (LDM) of Rombach et al. (2022). We note
LDM is the latent text-to-image diffusion model behind Stable Diffusion, an open-source
project that provides state-of-the-art performance in generating photo-realistic images given text
input. By truncating the chain, we can reduce the number of diffusion steps to an arbitrary level, but
at the same time, we also lose the tractability of the distribution at the end of the chain. Therefore, we
need to learn an implicit generative distribution that can approximate this distribution and provide the
initial samples for the reverse diffusion process. We show that this implicit generative distribution
can be implemented in different ways, such as using a separate generator network or reusing the
denoising network. The former option has more flexibility and can improve the generation quality,
while the latter option has no additional parameters and can achieve comparable results.

We reveal that DDPM and VAE have a similar relationship as TDPM and adversarial auto-encoder
(AAE, Makhzani et al. (2015)). Specifically, DDPM is like a VAE with a fixed encoder and a learnable
decoder that use a diffusion process, and a predefined prior. TDPM is like an AAE with a fixed
encoder and a learnable decoder that use a truncated diffusion process, and a learnable implicit prior.

Our truncation method has several advantages when we use it to modify DDPM for generating images
without text guidance or LDM for generating images with text guidance. First, it can generate samples
much faster by using fewer diffusion steps, without sacrificing or even enhancing the generation
quality. Second, it can exploit the cooperation between the implicit model and the diffusion model, as
the diffusion model helps the implicit model train by providing noisy data samples, and the implicit
model helps the diffusion model reverse by providing better initial samples. Third, it can adapt the
truncation level to balance the generation quality and efficiency, depending on the data complexity
and the computational resources. For generating images with text guidance, our method can speed up
the generation significantly and make it suitable for real-time processing: while LDM takes the time
to generate one photo-realistic image, our TLDM can generate more than 50 such images.
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The main contributions of our paper are as follows:

• We introduce TDPM, a new diffusion-based generative model that can shorten the diffusion
trajectory by learning an implicit distribution to start the reverse diffusion process, and
demonstrate that the learning of the implicit distribution can be achieved in various ways. We
further introduce TLDM to significantly accelerate diffusion-based text-to-image generation.

• We show TDPM can be formulated as a diffusion-based AAE.
• We show that the implicit distribution can be realized by reusing the denoising network

for the reverse diffusion process, which can reduce the reverse diffusion steps by orders of
magnitude without adding any extra parameters and with comparable generation quality.

• We reveal the synergy between the implicit model and the diffusion model, as the diffusion
process can simplify the training of the implicit model like GANs, and the implicit model
can speed up the reverse diffusion process of the diffusion model.

• We show that both TDPM and TLDM can adapt the truncation level, according to the
data complexity and the computational resources, to achieve a good balance between the
generation quality and the efficiency.

2 PRELIMINARIES ON DIFFUSION MODELS

In Gaussian diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020), starting from the data
distribution x0 ∼ q(x0), a pre-defined forward diffusion process qt produces auxiliary variables
xt=1:T by gradually adding Gaussian noise, with variance βt ∈ (0, 1) at time t, as follows:

q(x1, ...,xT |x0) :=
∏T
t=1 q(xt |xt−1), q(xt |xt−1) := N (xt;

√
1− βtxt−1, βtI). (1)

With the limit of small diffusion rate (i.e., βt is kept sufficiently small), the reverse distribution
q(xt−1 |xt) also follows a Gaussian distribution (Feller, 1949; Sohl-Dickstein et al., 2015) and can
be approximated using a neural network parameterized Gaussian distribution pθ as:

pθ(xt−1 |xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)). (2)

Moreover, with a sufficiently large T , the outcome of the diffusion chain xT will follow an isotropic
Gaussian distribution. Thus, with the pre-defined forward (inference) diffusion process and the
learned reverse (generative) diffusion process, we can sample from xT ∼ N (0, I) and run the
diffusion process in reverse to get a sample from the data distribution q(x0).

Under the variational inference (Kingma & Welling, 2013; Blei et al., 2017) framework, viewing
q(x1, ...,xT |x0) in (1) as the inference network, we can use the evidence lower bound (ELBO) as
our learning objective. Following previous works (Sohl-Dickstein et al., 2015; Ho et al., 2020), the
negative ELBO of a diffusion probabilistic model, parameterized by θ, can be expressed as

LELBO(θ) := L0(θ) +
∑T
t=2 Lt−1(θ) + LT , L0(θ) := Eq(x0)Eq(x1 |x0) [− log pθ(x0 |x1)] , (3)

Lt−1(θ) := Eq(x0)Eq(xt |x0)[DKL (q(xt−1 |xt,x0)||pθ(xt−1 |xt))], t ∈ {2, . . . , T} (4)

LT := Eq(x0)[DKL (q(xT |x0)||p(xT ))], (5)

where DKL(q||p) = Eq[log q − log p] denotes the Kullback–Leibler (KL) divergence from distri-
butions p to q. Generally speaking, diffusion probabilistic models assume the number of diffusion
steps T to be sufficiently large to satisfy two conditions: 1) the reverse distribution at each denoising
step can be fitted with a Gaussian denoising generator pθ(xt−1|xt); 2) with a sufficiently small
diffusion rate βt, the long forward diffusion process will successfully corrupt the data, making
q(xT |x0) ≈ N (0, I), and hence approximately LT becomes zero and depends on neither x0 nor θ.

What happens if T is insufficiently large? Given a non-Gaussian data distribution q(x0), when
the number of denoising steps is reduced, the true posterior q(xt−1 |xt) is not Gaussian and usually
intractable (Feller, 1949), resulting in new challenges to current diffusion models. As noted in Xiao
et al. (2022), when βt is not sufficiently small, the diffusion step becomes larger and the denoising
distribution can be multi-modal and hence too complex to be well fitted by Gaussian. The authors
propose to define pθ(xt−1 |xt) with an implicit generator and substitute the ELBO with

min
θ

∑
t≥1 Eq(t) [Dadv(q(xt−1 |xt)∥pθ(xt−1 |xt))] , (6)
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where Dadv represents a statistical distance that relies on an adversarial training setup. This modified
objective can be minimized by leveraging the power of conditional GANs in fitting implicit multi-
modal distributions (Arjovsky et al., 2017; Goodfellow et al., 2014; Nowozin et al., 2016). While
the concept of diffusion has been used, the proposed models in Xiao et al. (2022) are shown to work
the best only when the number of diffusion steps is limited to be as few as four, and start to exhibit
deteriorated performance when further increasing that number.

3 TRUNCATED DIFFUSION AND ADVERSARIAL AUTO-ENCODING

We first introduce the idea of accelerating both the training and generation of diffusion models by
truncating the diffusion chains and describe the technical challenges. We then develop the objective
function and training algorithm for TDPM. We further reveal TDPM can also be formulated as an
AAE (Makhzani et al., 2015)) empowered by diffusion models. While DDPM can be considered as a
hierarchical version of a variational auto-encoder (VAE) with a fixed multi-stochastic-layer encoder,
our derivation shows that TDPM can be considered as a hierarchical version of an AAE with a fixed
multi-stochastic-layer encoder but a learnable implicit prior.

3.1 MOTIVATION AND TECHNICAL CHALLENGES

We propose a novel method called TDPM to speed up the diffusion process and the generative model.
The main idea is to shorten the forward diffusion chain that transforms the data into Gaussian noise,
and use a learned implicit distribution to sample the starting point of the reverse diffusion chain that
reconstructs the data. To be more precise, we adopt the DDPM framework that defines a variance
schedule {β1, β2, ..., βT }, which controls the amount of noise added at each step of the forward
diffusion process. The forward process has a simple analytical form as a Gaussian distribution:

q(xt |x0) = N (
√
ᾱtx0, (1− ᾱt)I); ᾱt =

∏t
i=1 αi, αi = 1− βi.

Here, xt is the noisy version of the data x0 at step t, and ᾱt is the cumulative product of the diffusion
coefficients αi. The forward chain of length T is designed to be long enough to make the data
distribution indistinguishable from Gaussian noise N (0, I). However, a long forward chain also
implies a high computational cost for the reverse process, which uses a learned neural network to
predict the conditional distribution of the clean data given the noisy one at each step.

The proposed TDPM cuts off the last part of the forward chain and only keeps the first Ttrunc steps
{β1, β2, ..., βTtrunc} ⊂ {β1, β2, ..., βT }. We choose Ttrunc to be much smaller than T so that we can
save a lot of computation time in generation. The benefit of this truncation is illustrated in Figure 1,
where the bottom row shows the truncated diffusion chain. We can see that the data are only partially
corrupted by noise and still retain some features of the original data. This means that we can recover
the data more easily and accurately by applying a few Gaussian denoising steps from the corrupted
data. Moreover, we do not change the diffusion rates βt for the first Ttrunc steps, so we do not
compromise the quality of the forward and reverse processes between time 0 and Ttrunc.

However, truncating the forward chain also introduces a new challenge for the reverse process. Unlike
the original chain, where the starting point of the reverse process is xT ∼ N (0, I), the truncated
chain has an unknown distribution of the corrupted data at step Ttrunc. This makes it difficult to sample
from this distribution and initiate the reverse process. To overcome this challenge, we introduce an
implicit generative model that approximates the distribution of the corrupted data by minimizing
a divergence measure between the implicit and the true noisy distributions at step Ttrunc. This way,
we can use the implicit model to sample the starting point of the reverse process and then apply the
learned denoising network to generate the data.

3.2 HAND-CRAFTED TDPM OBJECTIVE FUNCTION

Mathematically, recall that the DDPM loss in (3) consists of three terms: L0,
∑T
t=2 Lt−1, and LT .

The training objective of a conventional diffusion model focuses on terms
∑T
t=2 Lt−1 and L0. It

assumes LT does not depend on any parameter and will be close to zero by carefully pre-defining the
forward noising process such that q(xT |x0) ≈ p(xT ) = N (0, I).
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When the diffusion chains are truncated at time Ttrunc ≪ T , the forward diffusion ends at time Ttrunc,
where the marginal distribution of the forward diffusion-corrupted data can be expressed as

q(xTtrunc) :=
∫
q(xTtrunc |x0)p(x0)dx0, (7)

which takes a semi-implicit form (Yin & Zhou, 2018) whose density function is often intractable. To
reverse this truncated forward diffusion chain, we can no longer start the reverse diffusion chain from
a known distribution such as N (0, I). To this end, we propose TDPM that starts the reverse chain
at time Ttrunc from pψ(xTtrunc), an implicit distribution parameterized by ψ. We match pψ(xTtrunc) to
q(xTtrunc) via a loss term as L̃Ttrunc := D (q(xTtrunc)||pψ(xTtrunc)) , where D(q||p) is a statistical distance
between distributions q and p, such as the Jensen–Shannon divergence and Wasserstein distance. As
we keep all the diffusion steps before time Ttrunc in TDPM the same as those in DDPM, we combine
L̃Ttrunc with all the loss terms of DDPM before time Ttrunc in (3) to define the TDPM loss as

LTDPM :=
∑Ttrunc
t=1 Lt−1(θ) + L̃Ttrunc(ψ), L̃Ttrunc(ψ) := D (q(xTtrunc)||pψ(xTtrunc)) , (8)

We note while in general pψ(xTtrunc) in TDPM is intractable, we can employ a deep neural network-
based generator Gψ to generate a random sample in a single step via

xTtrunc = Gψ(z), z ∼ N (0, I). (9)
We will discuss later that we may simply let ψ = θ to avoid adding more parameters.

3.3 TDPM AS DIFFUSION-BASED ADVERSARIAL AUTO-ENCODER

Following the terminology of AAE, let us define the prior as pψ(xTtrunc), the decoder (likelihood) as

pθ(x0 |xTtrunc) :=
∫
. . .

∫ [∏Ttrunc
t=1 pθ(xt−1 |xt)

]
dxTtrunc−1 . . . dx1, (10)

which is empowered by a reverse diffusion chain of length Ttrunc, and the encoder (variational
posterior) as q(xTtrunc |x0). Thus we can view q(xTtrunc) defined in (7) as the aggregated posterior
(Hoffman & Johnson, 2016; Tomczak & Welling, 2018). In addition to imposing an auto-encoding
data-reconstruction loss, the key idea of the AAE (Makhzani et al., 2015) is to also match the
aggregated posterior to a fixed prior. This idea differs AAE from a VAE that regularizes the auto-
encoder by matching the variational posterior to a fixed prior under the KL divergence. To this end,
we introduce a diffusion-based AAE (Diffusion-AAE), whose loss function is defined as

LDiffusion-AAE = −Eq(x0)Eq(xTtrunc |x0) log pθ(x0 |xTtrunc) +D(q(xTtrunc))||pψ(xTtrunc)). (11)
Diffusion-AAE has two notable differences from a vanilla AAE: 1) its encoder is fixed and has no
learnable parameters, while its prior is not fixed and is optimized to match the aggregated posterior,
and 2) its decoder is a reverse diffusion chain, with Ttrunc stochastic layers all parameterized by θ.

Note in general as the likelihood in (10) is intractable, the first loss term in (11) is intractable.
However, the loss of Diffusion-AAE is upper bounded by the loss of TDPM, as described below.
Theorem 1. The Diffusion-AAE loss in (11) is upper bounded by the TDPM loss in (8):

LDiffusion-AAE ≤ LTDPM.

3.4 MATCHING THE PRIOR TO AGGREGATED POSTERIOR

Via the loss term L̃Ttrunc := D (q(xTtrunc)||pψ(xTtrunc)) in (8), we aim to match the prior pψ(xTtrunc) to
the aggregated posterior q(xTtrunc) in TDPM. While we have an analytic density function for neither
p nor q, we can easily draw random samples from both of them. Thus, we explore the use of two
different types of statistical distances that can be estimated from samples of both q and p. We
empirically show that TDPM can achieve good performance regardless of which distance is used
for optimization.

One possible statistical distance is based on the idea of GANs (Goodfellow et al., 2014; Arjovsky
et al., 2017; Bińkowski et al., 2018), which are widely used to learn implicit distributions from
empirical data. In this setting, we use a generator Gψ(·) : Rd → Rd to transform samples from an
isotropic Gaussian p(z) into samples that approximate the corrupted data, and a discriminator
Dϕ(·) : Rd → [0, 1] to distinguish between the samples from the corrupted data distribution
q(xTtrunc |x0) and the implicit generative distribution pψ(xTtrunc). The generator and the discriminator
are trained by the following objective LGAN

Ttrunc
:

min
ψ

max
ϕ

Ex∼q(xTtrunc )
[logDϕ(x)] + Ez∼p(z) [log(1−Dϕ(Gψ(z)))]. (12)
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3.5 TRAINING ALGORITHM

As the objective in Equation 8 is a sum of different terms, following DDPM (Ho et al., 2020) to fix
the terms Σθ(xt, t) = σ2

t I , we can simplify 1
Ttrunc

∑Ttrunc
t=1 Lt−1 as an expectation defined as

Lsimple_trunc = Et,x0,ϵt

[
||ϵt − ϵθ(xt, t)||2

]
, t ∼ Unif(1, 2, . . . , Ttrunc), ϵt ∼ N (0, I) (13)

where ϵt is an injected noise at a uniformly sampled timestep index t, xt =
√
ᾱtx0 +

√
1− ᾱtϵt is a

noisy image at time t, and ϵθ is a denoising U-Net that predicts the noise in order to refine the noisy
image xt. Therefore the final simplified version of (8) is constructed as

LGAN
TDPM = Lsimple_trunc + λLGAN

Ttrunc
, . (14)

While λ, the weight of LTtrunc , can be tuned, we fix it as one for simplicity. Here the TDPM objective
consists of two parts: the denoising part ϵθ is focused on denoising the truncated chain, getting updated
from Lsimple_trunc, while the implicit part Gψ is focused on minimizing Eq[D (q(xTtrunc)||pψ(xTtrunc))],
getting updated from LGAN

Ttrunc
.

An interesting finding of this paper is that we do not necessarily need to introduce a separate set of
parameters ψ for the generator Gψ, as we can simply reuse the same parameters θ of the reverse
diffusion model (i.e., let ψ = θ) without clearly hurting the empirical performance. This suggests
that the reverse diffusion process from T to Ttrunc could be effectively approximated by a single step
using the same network architecture and parameters as the reverse diffusion steps from Ttrunc to 0.

Therefore, we provide two configurations to parameterize the implicit distributions. 1) To save
parameters, we let the implicit generator and denoising model share the same U-Net parameters but
using different time step indices. Specifically, we first use xTtrunc =Gψ(xT )= ϵθ(xT , t=Ttrunc+1),
where xT ∼ N (0, I), to generate a noisy image at time Ttrunc. 2) We further explore employing a
different model, e.g., StyleGAN2 (Karras et al., 2020a), for the implicit generator, which provides
better performance but increases the model size to get xTTrunc . Then for t=Ttrunc, . . . , 1, we iteratively
refine it as xt−1 = 1√

αt
(xt − 1−αt√

1−ᾱt
ϵθ(xt, t)) + βtzt, where zt ∼ N(0, I) when t > 1 and

z1 = 0. This process is depicted in Algorithms 1 and 2 in the Appendix. For the implementation
details, please refer to Appendix D.6 and our code at https://github.com/JegZheng/
truncated-diffusion-probabilistic-models.

3.6 RELATED WORK

In our previous discussions, we have related TDPM to several existing works such as DDPM and
AAE. A detailed discussion on other related works is provided in Appendix B.

4 EXPERIMENTS

We aim to demonstrate that TDPM can generate good samples faster by using fewer steps of reverse
diffusion. We use different image datasets to test our method and follow the same setting as other
diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021; Rombach
et al., 2022) for our backbones. We also have two ways to set up the implicit generator that starts the
reverse diffusion. One way is to reuse the denoising network, and the other way is to use a separate
network. We try both ways for generating images without any labels. For generating images from
text, we use the first way with the LDM backbone. We provide comprehensive details, toy examples,
and additional experimental results in Appendices D.4-D.8.

We use FID (lower is better) and Recall (higher is better) to measure the fidelity and diversity,
respectively, of the generated images. We use CIFAR-10 (Krizhevsky et al., 2009), LSUN-bedroom,
and LSUN-Church (Yu et al., 2015) datasets in unconditional experiments, and CUB-200 (Welinder
et al., 2010) and MS-COCO (Lin et al., 2014) for text-to-image experiments. The images consist of
32× 32 pixels for CIFAR-10 and 256× 256 pixels for the other datasets.

4.1 EFFICIENCY IN BOTH TRAINING AND SAMPLING

We first look at the results on CIFAR-10. We use DDPM (Ho et al., 2020) or improved DDPM (Nichol
& Dhariwal, 2021) as our backbones. We use 4, 49, or 99 steps of reverse diffusion, which correspond
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Table 1: Results of unconditional generation on
CIFAR-10, with the best FID and Recall in each group
marked in bold. To compare TDPM (TTrunc=0) with
GAN-based methods, we use DDPM backbone as gen-
erator and StyleGAN2 discriminator.

Method NFE FID↓ Recall↑
DDPM backbone
DDPM 1000 3.21 0.57
TDPM (TTrunc=99) 100 3.10 0.57
TDPM+ (TTrunc=99) 100 2.88 0.58
DDIM 50 4.67 0.53
TDPM (TTrunc=49) 50 3.30 0.57
TDPM+ (TTrunc=49) 50 2.94 0.58
TDPM (TTrunc=4) 5 3.34 0.57
TDPM+ (TTrunc=4) 5 3.21 0.57
Improved DDPM backbone
Improved DDPM 4000 2.90 0.58
TDPM (TTrunc=99) 100 2.97 0.57
TDPM+ (TTrunc=99) 100 2.83 0.58
Improved DDPM+DDIM 50 3.92 0.55
TDPM (TTrunc=49) 50 3.11 0.57
TDPM+ (TTrunc=49) 50 2.96 0.58
TDPM (TTrunc=4) 5 3.51 0.55
TDPM+ (TTrunc=4) 5 3.17 0.57
GAN-based
DDGAN 4 3.75 0.57
StyleGAN2 1 8.32 0.41
StyleGAN2-ADA 1 2.92 0.49
TDPM (TTrunc=0) 1 7.34 0.46

Table 2: Results on LSUN-Church and LSUN-Bedroom
(resolution 256 × 256). Similar to Table 1, TDPM
(TTrunc=0) uses DDPM backbone for the generator.

Church Bedroom
Method NFE FID FID
DDPM backbone
DDPM 1000 7.89 4.90
TDPM (TTrunc=99) 100 4.33 3.95
TDPM+ (TTrunc=99) 100 3.98 3.67
DDIM 50 10.58 6.62
TDPM (TTrunc=49) 50 5.35 4.10
TDPM+ (TTrunc=49) 50 4.34 3.98
TDPM (TTrunc=4) 5 4.98 4.16
TDPM+ (TTrunc=4) 5 4.89 4.09
ADM backbone
ADM 1000 3.49 1.90
ADM+DDIM 250 6.45 2.31
TDPM (TTrunc=99) 100 4.41 2.24
TDPM+ (TTrunc=99) 100 3.61 1.88
TDPM (TTrunc=49) 50 4.57 2.92
TDPM+ (TTrunc=49) 50 3.67 1.89
TDPM (TTrunc=4) 5 5.61 7.92
TDPM+ (TTrunc=4) 5 4.66 4.01
GAN-based
DDGAN 4 5.25 -
StyleGAN2 1 3.93 3.98
StyleGAN2-ADA 1 4.12 7.89
TDPM (TTrunc=0) 1 4.77 5.24

Table 3: Results of ImageNet-64×64, evaluated with
FID and Recall. TDPM+ is built with a pre-trained
ADM and an implicit model trained at TTrunc using
StylGAN-XL.

Method NFE FID↓ Recall↑
ADM 1000 2.07 0.63
TDPM+ (TTrunc=99) 100 1.62 0.63
TDPM+ (TTrunc=49) 50 1.77 0.58
TDPM+ (TTrunc=4) 5 1.92 0.53
StyleGAN-XL (wo PG) 1 3.54 0.51 Figure 2: Random generation results of TDPM+

(TTrunc=4) on ImageNet-64×64.
to 5, 50, or 100 number of function evaluations (NFE). For the implicit generator, we either reuse
the denoising U-Net or use a StyleGAN2 network (respectively, we call them TDPM and TDPM+).
For comparison, we also include DDIM (Song et al., 2020) and DDGAN (Xiao et al., 2022). The
comparison with a more diverse set of baselines can be found in Table 9 in Appendix D.7.

Table 1 shows that our TDPM can get good FID with fewer NFE. TDPM+ can get even better FID,
and it is the best when NFE=100. Compared with TDPM with 0 steps of reverse diffusion (a GAN
with DDPM’s U-Net as generator and StyleGAN2 as discriminator) and StyleGAN2, TDPM with
more than 0 steps of reverse diffusion has better recall and the FID is as good as StyleGAN2-ADA
(a GAN with data augmentation for better training). This means TDPM can largely avoid the mode
missing problem in GANs. We show some examples of generated images on CIFAR-10 in Figure 13.

We also check how fast TDPM can train and sample. In training, we count how many images TDPM
needs to well fit the truncated diffusion chain and the implicit prior. Figure 3 shows that when we
use fewer steps of reverse diffusion, the diffusion part needs less time to train. But the implicit prior
needs more time to train because it has to model a harder distribution, e.g., fitting the implicit prior
with 4 diffusion steps needs similar time to directly fit it on the data. When we use 99 steps of reverse
diffusion, the diffusion chain and the implicit prior need similar time to train, and the whole model
trains faster than both GAN and DDPM. In sampling, we compare TDPM with 0, 1, 4, 49, or 99 steps
of reverse diffusion. We report both FID and the sampling time (s/image) on one NVIDIA V100
GPU in Figure 4. When we use 4 steps of reverse diffusion, the FID is much lower than 0 steps, and
the sampling time is slightly longer. When we use more steps of reverse diffusion, the FID goes down
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Figure 5: Randomly generated images of TDPM using ADM (Dhariwal & Nichol, 2021) backbone on LSUN-
Church and LSUN-Bedroom (256× 256), with Ttrunc = 4, 49, and 99. Note NFE = Ttrunc + 1 in TDPM. Each
group presents generated samples from the full model pθ(x0) (left) and its implicit prior ∼ pθ(xTtrunc) (right);
the full model sample is obtained by refining the implicit prior sample via the truncated reverse diffusion chain.

slowly, but the sampling time goes up linearly. When we use 99 steps of reverse diffusion, the FID
of TDPM is better than DDPM with 1000 steps. Because the FID does not change much when we
use more steps of reverse diffusion, we suggest using a small number of steps, such as 4 or more, to
balance the quality and speed of generation.

4.2 RESULTS ON HIGHER-RESOLUTION AND MORE DIVERSE IMAGE DATASETS

To test the performance of the proposed truncation method on high-resolution images, we train TDPM
using two different diffusion models, DDPM (Ho et al., 2020) and ADM (Dhariwal & Nichol, 2021),
as backbones on two datasets of 256× 256 resolution, LSUN-Church and LSUN-Bedroom (Yu et al.,
2015). We compare the FIDs of TDPM with those of the backbone models and some state-of-the-art
GANs in Tables 2. The results show that TDPM can generate images of similar quality with much
smaller truncation steps Ttrunc, which means that it can produce images significantly faster than the
backbone models. We also visualize the samples from the implicit distribution xTtrunc ∼ pθ(xTtrunc)
that TDPM generates and the corresponding x0 that it finishes at the end of reverse chain in Figure 5.

We further evaluate TDPM on ImageNet-1K (with resolution 64×64) that exhibits high diversity.
Here we adopt the TDPM+ configuration, where we use a pre-trained ADM (Dhariwal & Nichol,
2021) checkpoint for t < TTrunc and train a StyleGAN-XL (Sauer et al., 2022) based implicit model
at t = TTrunc (for simplicity, we choose to not use the progressive growing pipeline of StyleGAN-XL;
See Appendix D.6 for more details). We compare both FID and Recall with our backbone models in
Table 3 and show example generations in Figure 2. Similar to our observations in Table 1, TDPM has
good generation quality with small truncation steps Ttrunc. Moreover, properly training an implicit
model at Ttrunc can further improve the performance of the backbone.
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Figure 6: Quantitative text-to-image results (FID
and GPU time) across different NFE.

Table 4: Numerical results of Figure 6. The GPU time of
sampling (s/image) is measured on one NVIDIA A100.

CUB-Bird MS-COCO
NFE GPU time LDM TLDM LDM TLDM
5 0.15 100.81 10.59 48.41 16.7
50 1.57 30.85 7.32 18.25 7.47
100 4.10 11.07 6.79 8.2 7.22
250 11.21 6.82 6.72 6.3 6.29
1000 41.09 6.68 - 6.29 -

A bird with brown wings, black back, and red head.

A green train is coming down the tracks. 

NFE=100 (TTrunc = 99) NFE=50 (TTrunc = 49) NFE=5 (TTrunc = 4)

TLDM TLDM

TLDM TLDM

TLDM

TLDM

LDM LDM LDM

LDMLDMLDM

Figure 7: Example text-to-image generation results of LDM and TLDM (i.e., TDPM with LDM backbone)
finetuned on CUB-200 (top row) or MS-COCO (bottom row), setting the number of times iterating through the
reverse diffusion U-Net as 100 (left column), 50 (middle column), or 5 (right column).

4.3 TEXT-TO-IMAGE GENERATION

Besides unconditional generation tasks, we develop for text-to-image generation the TLDM, a
conditional version of TDPM that leverages as the backbone the LDM of Rombach et al. (2022),
which is a state-of-the-art publicly released model with 1.45B parameters pre-trained on LAION-
400M (Schuhmann et al., 2021). LDM consists of a fixed auto-encoder for pixel generation and a
latent-diffusion module to connect text and image embeddings. Here we fine-tune its latent-diffusion
part on CUB-200 and MS-COCO datasets with 25K and 100K steps as the baseline. Similar to the
unconditional case, we fine-tune with the LDM loss for t < TTrunc and GAN loss for t = TTrunc. More
details about the setting can be found in Appendix D.6.

The results of LDM with different DDIM sampling steps and TLDM with different truncated steps
are summarized in Figure 6 and Table 4. Similar to applying diffusion directly on the original
image-pixel space, when the diffusion chain is applied in the latent space, we observe TLDM can
achieve comparable or better performance than LDM even though it has shortened the diffusion
chain of LDM to have much fewer reverse diffusion steps. For the case that NFE is as small as
5, we note although the FID of TLDM has become higher due to using fewer diffusion steps, the
generated image using TLDM at NFE=5 is still visually appealing, as shown in Figure 7. Compared
with 50 and 250 steps using LDM, the sampling speed of TLDM using 5 steps is 10 and 50 times
faster, respectively, while largely preserving generation quality. We provide additional text-to-image
generation results of TLDM in Appendix D.8.

5 CONCLUSION

In this paper, we investigate how to reduce the trajectory length of the diffusion chain to achieve
efficient sampling without loss of generation quality. We propose truncated diffusion probabilistic
modeling (TDPM) that truncates the length of a diffusion chain. In this way, TDPM can use a much
shorter diffusion chain, while being required to start the reverse denoising process from an intractable
distribution. We propose to learn such a distribution with an implicit generative model powered by
the same U-Net used for denoising diffusion, and validate with multiple ways to learn the implicit
distribution to ensure the robustness of the proposed TDPM. We reveal that TDPM can be cast as
an adversarial auto-encoder with a learnable implicit prior. We conduct extensive experiments on
both synthetic and real image data to demonstrate the effectiveness of TDPM in terms of both sample
quality and efficiency, where the diffusion chain can be shortened to have only a few steps.
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A PROOF

Proof of Theorem 1. As the last terms in both losses are the same, we only need to show that the first
term in (11) is smaller than or equal to L0 +

∑Ttrunc
t=2 Lt−1 in (8). Using Jensen’s inequality, we have

− Eq(x0)Eq(xTtrunc |x0) log pθ(x0 |xTtrunc)

= −Eq(x0)Eq(xTtrunc |x0) logEq(x1:Ttrunc−1 |x0,xTtrunc )

[
p(x0:Ttrunc−1 |xTtrunc)

q(x1:Ttrunc−1 |x0,xTtrunc)

]
≤ −Eq(x0)Eq(xTtrunc |x0)Eq(x1:Ttrunc−1 |x0,xTtrunc )

log
p(x0:Ttrunc−1 |xTtrunc)

q(x1:Ttrunc−1 |x0,xTtrunc)

= −Eq(x0)Eq(x1:Ttrunc |x0) log

[
p(x0:Ttrunc−1)

q(x1:Ttrunc |x0)

q(xTtrunc |x0)

p(xTtrunc)

]
=

(
−Eq(x0)Eq(x1:Ttrunc |x0) log

p(x0:Ttrunc−1)

q(x1:Ttrunc |x0)

)
− Eq(x0)Eq(xTtrunc |x0) log

q(xTtrunc |x0)

p(xTtrunc)

= (
∑Ttrunc
t=1 Lt−1 + LTtrunc)− LTtrunc

=

Ttrunc∑
t=1

Lt−1, (15)

where the second to last equality follows the same derivation of the ELBO in Ho et al. (2020).

B RELATED WORK

Diffusion probabilistic models (Sohl-Dickstein et al., 2015; Ho et al., 2020) employ a forward Markov
chain to diffuse the data to noise and learn the reversal of such a diffusion process. With the idea
of exploiting the Markov operations (Goyal et al., 2017; Alain et al., 2016; Bordes et al., 2017),
diffusion models achieve great success and inspire a variety of tasks including image generation and
audio generation (Kong et al., 2020; Chen et al., 2020; Jolicoeur-Martineau et al., 2020; Vahdat et al.,
2021). Recently, plenty of studies have been proposed to generalize diffusion model to continuous
time diffusion and improve the diffusion models in likelihood estimation (Vincent, 2011; Song &
Ermon, 2020; 2019; Nichol & Dhariwal, 2021; Song et al., 2021b;a; Kingma et al., 2021).

Another mainstream is to improve the sampling efficiency of diffusion models, which are known for
their enormous number of sampling steps. Luhman & Luhman (2021) improve diffusion processes
with knowledge distillation and San-Roman et al. (2021) propose a learnable adaptive noise schedule.
Song et al. (2020) and Kong & Ping (2021) exploit non-Markovian diffusion processes and shorten
the denoising segments. Jolicoeur-Martineau et al. (2021) and Huang et al. (2021) use better SDE
solvers for continuous-time models. Aside from these works, recently other types of generative
models such as VAEs (Kingma & Welling, 2013), GANs (Goodfellow et al., 2014), and autoregressive
models (van den Oord et al., 2016) have been incorporated to diffusion models. They are shown
to benefit each other (Xiao et al., 2022; Pandey et al., 2022; Meng et al., 2021) and have a closer
relation to our work. Xiao et al. (2022) consider the use of implicit models (Huszár, 2017; Mohamed
& Lakshminarayanan, 2016; Tran et al., 2017; Yin & Zhou, 2018; Li & Malik, 2018) to boost the
efficiency of diffusion models, where they deploy implicit models in each denoising step, which
has higher difficulty in the training as the number of diffusion steps increases. Pandey et al. (2022)
build diffusion models on top of the output of VAEs for refinement. Our work is also related if
viewing TDPM as a diffusion model on top of an implicit model, where the implicit model can be
parameterized with the U-Net or a separate network.

C DISCUSSION

Potential societal impacts: This paper proposes truncated diffusion probabilistic model as a novel
type of diffusion-based generative model. The truncated part can be trained as implicit generative
models such as GANs jointly or independently with the diffusion part. The capacities of truncated
diffusion probabilistic models are competitive to existing diffusion-based ones and efficiency is
largely improved. On the contrary of these positive effects, some negative perspectives could also be
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seen, depending on how the models are used. One major concern is the truncated diffusion technique
proposed in this paper could potentially be a way to hack the existing diffusion models if the implicit
models are maliciously used to fit the intermediate steps. For example, for some existing diffusion
models, for safety concerns, the model’s capacity to generate private data needs to be locked by hiding
the diffusion ending point into an unknown distribution. The technique of TDPM could be used to
crack these existing online diffusion models by providing intermediate noisy images or fine-tuning
the first few steps with TDPM to unlock the capacity. Besides, the capacity of generating good images
can also be misused to generate ill-intentioned images at a much lower cost.

Discussions: In this work, we mainly focus on reducing the length of the diffusion chain of a
finite-time diffusion model. Our model has shown its effectiveness in improving finite-time diffusion
models and it is non-trivial to further explore our model on continuous-time diffusion models (Song
et al., 2021b). Moreover, while in this paper DDPM is the primary baseline, TDPM can also be
built on other recent diffusion models. While pθ(xTtrunc) is parameterized as an implicit distribution,
it can also be formulated as a semi-implicit distribution (Yin & Zhou, 2018), which allows it to
be approximated with a Gaussian generator. Xiao et al. (2022) also present a closely related work.
While we share the same spirit to reduce the length of the diffusion chain, these two strategies are
not conflicting with each other. In future work we will look into the integration of these different
strategies. There also exists plenty of options in approximating pθ(xTtrunc). When truncating the
diffusion chain to be short, the implicit distribution still faces multi-modal and needs to fit with
different methods depending upon the properties that we need. For example, in order to capture all
modes, a VAE would be preferred, like done in Pandey et al. (2022). Below we provide an alternative
method proposed in Zheng & Zhou (2021) to fit the truncated distribution. Besides the training, it’s
also an open question whether TDPM can be incorporated into more advanced architectures to have
further improvements and we leave this exploration for future work.

D ALGORITHM DETAILS AND COMPLEMENTARY RESULTS

Below we provide additional algorithm details and complementary experimental results.

D.1 ADDITIONAL ANALYSIS ON THE PARAMETERIZATION OF THE IMPLICIT GENERATOR

As shown in Section 3, in general, the objective of TDPM consists of the training of the diffusion
model ϵθ (a U-Net architecture (Ronneberger et al., 2015)) with simple loss of DDPM Lsimple and the
training of an implicit prior model Gψ with objective LGAN

Ttrunc
. Without loss of generality, in our main

paper, we show two configurations to parameterize the implicit part for t = Ttrunc: 1) the implicit
generator shares the same U-Net architecture used for 0 < t < Ttrunc; 2) the implicit generator is
instantiated with a separate network. Below we explain this two configurations (denoted as TDPM+
in the main paper).

Configuration 1): At t = Ttrunc, the Unet generates the noisy image at the truncated step: xTtrunc =
ϵθ(xTtrunc+1, t = Ttrunc + 1), where xTtrunc+1 ∼ N (0, I) is the pure noise image whose pixels are iid
sampled from standard normal. For t = Ttrunc, Ttrunc − 1, . . . , 1, the same Unet iteratively refines
the noisy images by letting xt−1 = 1√

ᾱt
(xt − 1−αt√

1−ᾱt
ϵt−1) + βtzt; zt>1 ∼ N (0, I), z1 = 0, where

ϵt−1 = ϵθ(xt, t) is the predicted noise by the Unet.

Under this setting, the Unet-based generator plays two roles at the same time and the training will be
more challenging than using two different generators here. However, we can also see as Ttrunc gets
larger, the distribution of p(xTtrunc) will become more similar to a noise distribution, and generating
the noisy images will be more like generating noises. In this case, being able to generate both noisy
images and predicting noise becomes easier for the generator.

Configuration 2) (TDPM+): Unlike previous configuration, where the implicit generator at step
t = T shares the same U-Net architecture with t < Ttrunc. Another way is to parameterize Gψ with a
separate generator. Although this configuration increases the total parameter of the generative model,
it allows the model has better flexibility in the training stage. For example, these two networks can be
trained in parallel or leverage a pre-trained model. In our paper, we conduct the experiments by using
Stylegan2 generator architecture Karras et al. (2020b) for t = Ttrunc, resulting in an increase of 19M
and 28M for the generator parameters when handling 32× 32 and 256× 256 images.
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The process of training and sampling of these configurations are summarized in Algorithm 1 and 2.

Algorithm 1 Training
1: repeat
2: x0 ∼ q(x0)
3: t ∼ Uniform({1, . . . , Ttrunc})
4: ϵt ∼ N (0, I), z ∼ N (0, I)
5: Update with (14)
6: until converged

Algorithm 2 Sampling

1: xTtrunc+1 ∼ N (0, I)
2: if Gψ shared with ϵθ then
3: xTtrunc = ϵθ(xTtrunc+1, Ttrunc + 1)
4: else
5: xTtrunc = Gψ(xTtrunc+1)
6: end if
7: for t = Ttrunc, . . . , 1 do
8: zt ∼ N (0, I) if t > 1, else z1 = 0

9: xt−1 = 1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

)
+ βtzt

10: end for
11: return x0

D.2 ALTERNATIVES OF LEARNING THE IMPLICIT DISTRIBUTION

Another possible statistical distance is based on conditional transport (Zheng & Zhou, 2021), which is
proposed to balance the model-seeking and mode-covering behaviors when fitting an empirical data
distribution. In this setting, we use the same generator Gψ as before, but instead of a discriminator,
we use a conditional distribution πη parameterized by η to find an optimized mapping between the
samples of p and q, and a critic ϕ to measure the point-to-point cost cϕ in the feature space. The
generator, the conditional distribution, and the critic are trained by the following objective LCT

Ttrunc
:

min
ψ,η

max
ϕ

Ex∼q(xTtrunc )

[
EGψ(z)∼πη(Gψ(z) |xTtrunc )

cϕ(xTtrunc , Gψ(z))
]

+ Ez∼p(z)
[
ExTtrunc∼πη(xTtrunc |Gψ(z))cϕ(xTtrunc , Gψ(z))

]
. (16)

Similar to (14), we fit TDPM-CT with following loss

LCT
TDPM = Lsimple_trunc + λLCT

Ttrunc
. (17)

We empirically find out this objective has no significant difference than using GAN objective shown
in Equation 14 in performance-wise as long as the generator is well trained.

D.3 CONDITIONAL TRUNCATED DIFFUSION PROBABILISTIC MODELS

For conditional generation, we extend (14) and derive a conditional version of TDPM:

Lc
TDPM = Lc

simple_trunc + λLc
Ttrunc

, (18)

where Lc
simple_trunc aims to train the conditional diffusion model with

Lc
simple_trunc = EcEt,x0|c,ϵt

[
||ϵt − ϵθ(xt, c, t)||2

]
, t ∼ Unif(1, 2, . . . , Ttrunc), ϵt ∼ N (0, I), (19)

and the truncated distribution Lc
Ttrunc

can be fitted with GAN or CT:

min
ψ

max
ϕ

Ec

[
Ex∼q(xTtrunc | c)[logDϕ(x | c)] + Ez∼p(z) [log(1−Dϕ(Gψ(z, c)) | c)]

]
. (20)

min
ψ,η

max
ϕ

Ec

[
Ex∼q(xTtrunc | c)

[
EGψ(z)∼πη(Gψ(z,c) |xTtrunc ,c)

cϕ(xTtrunc , Gψ(z, c))
]

+ Ez∼p(z)
[
ExTtrunc∼πη(xTtrunc |Gψ(z,c),c)cϕ(xTtrunc , Gψ(z, c))

] ]
. (21)

D.4 ANALYSIS ON TOY EXPERIMENTS

Although we present image experiments in the main paper, our studies were firstly justified our method
on synthetic toy data as a proof of concept. We adopt representative 2D synthetic datasets used in
prior works (Gulrajani et al., 2017; Zheng & Zhou, 2021), including Swiss Roll, Double Moons,
8-modal, and 25-modal Gaussian mixtures with equal component weights. We use an empirical
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Figure 8: A comparison of DDPM (Ho et al., 2020), TDPM-GAN, and TDPM-CT on Swiss Roll toy data. We
show the effects of a truncated diffusion chain with length T =2 and T =5 (TTrunc=1 and TTrunc=4). The first row
displays the true distribution from q(x0) to q(xT−1). Each row below the first one represents the corresponding
denoising distribution pθ(xt−1 |xt). DDPM assumes p(xT ) =N (0, I) and we can observe a gap between
the true data distribution q(xT−1) and its generative distribution pθ(xT−1). TDPM learns pθ(xTtrunc), which
can be observed to well approximate the true q(xT−1), which helps the model successfully recover the clean
data distribution q(x0). Below each model, we report empirical KL divergence between data and generative
distributions as the quantitative metric. More results on different toy data can be found in Appendix D.

sample set X , consisting of |X | = 2, 000 samples and illustrate the generated samples after 5000
training epochs. We take 20 grids in the range [−10, 10] for both the x and y axes to approximate
the empirical distribution of p̂θ and q̂, and report the corresponding forward KL DKL(q̂||p̂θ) as the
quantitative evaluation metric.

Figure 8 shows the results on the Swiss Roll data. We present a short chain with T = 2 and a longer
chain with T = 5 to show the impacts of the number of diffusion steps. The first row shows that the
data distribution is diffused with accumulated noise, and with more steps the diffused distribution
will be closer to an isotropic Gaussian distribution. As one can see, truncating the diffusion chain
to a short length will result in a clear gap between q(xTtrunc) and N (0, I). When DDPM (shown in
the second row) samples from the isotropic Gaussian distribution, it becomes hard to recover the
original data distribution from pure noise with only a few steps. Although we can see DDPM can get
slightly improved with a few more steps (T = 5), as long as q(xT ) is not close to Gaussian, DDPM
can hardly recover the data distribution. By contrast, as shown in the third and fourth rows, TDPM
successfully approximates the non-Gaussian q(xTtrunc) with its implicit generator, and we can see
the remaining part of the truncated chain is gradually recovered by the denoising steps. From both
visualizations and DKL(q̂||p̂θ), we can see that TDPM is able to fit every step in such short chains.

TDPM-GAN and TDPM-CT both succeed in fitting pθ(xTtrunc) but the latter one fits slightly better
when the diffusion length is 2. When the length increases to 5, fitting the implicit distribution with
GAN becomes easier. This observation demonstrate a benefit of combining the diffusion models
and GANs. If the implicit generator is sufficiently powerful to model q(xTtrunc), then the number of
steps in need can be compressed to a small number. On the contrary, if the implicit generator cannot
capture the distribution, we need more steps to facilitate the fitting of the data distribution.

Shown in Figure 9-Figure 11, we can see 8-modal Gaussian is more similar to an isotropic Gaussian
after getting diffused, thus DDPM can recover a distribution similar to data with 5 steps. On
25-Gaussians, we can observe GAN does not suffer from mode-collapse and provide a better
approximation than CT, which results in better data distribution recovery in the final step.

18



Published as a conference paper at ICLR 2023

DDPM

True data

TDPM-GAN

TDPM-CT

Figure 9: Analogous results to Figure 8 using 8-modal Gaussian data.
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Figure 10: Analogous results to Figure 8 using 25-modal Gaussian data.
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Figure 11: Analogous results to Figure 8 using Double Moons data.
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D.5 ADDITIONAL ABLATION STUDIES

Using Pre-trained diffusion backbones: Different from the default setting, here we put the implicit
model of TDPM+ trained at t = Ttrunc and a pre-trained DDPM model1 in the same pipeline of
sampling. In this case we do not need to spend any time on pretraining the DDPM model, and
only need to train the implicit model for t = Ttrunc. As shown in Table 5, when combined with a
pre-trained DDPM for t < Ttrunc, the generation performance of TDPM trained under this two-step
procedure is comparable to TDPM trained end-to-end.

Table 5: Results of adding a separately trained implicit generator to a pre-trained diffusion model on
CIFAR-10.

Model (t = TTrunc) Model (t < TTrunc) FID↓

TDPM+ (Ttrunc=99)

TDPM+ (DDPM backbone) 2.88
pre-trained DDPM 2.85
TDPM+ (improved-DDPM backbone) 2.83
pre-trained improved-DDPM 2.25

TDPM+ (Ttrunc=49)

TDPM+ 2.94
pre-trained DDPM 3.05
TDPM+ (improved-DDPM backbone) 2.96
pre-trained improved-DDPM 2.60

TDPM+ (Ttrunc=4)

TDPM+ (DDPM backbone) 3.21
pre-trained DDPM 3.25
TDPM+ (improved-DDPM backbone) 3.17
pre-trained improved-DDPM 2.95

Sensitivity to noise schedule: Nichol & Dhariwal (2021) show the noise schedule affects the training
of DDPM. Here we examine if TDPM is sensitive to the choice of noise schedule. We compare the
linear schedule with cosine schedule, which adds noise in a milder manner. The results on CIFAR-10
are reported in Table 6, which suggest that TDPM is not sensitive to the choice between these two
schedules.

Table 6: Ablation study with different noise schedules on CIFAR-10. The number before and after “/" denotes
the FID using linear and cosine schedules, respectively.

Model Steps FID↓ (linear / cosine)

TDPM-GAN Ttrunc=99 3.10 / 3.47
TDPM-GAN Ttrunc=49 3.30 / 3.16
TDPM-CT Ttrunc=99 3.69 / 3.62
TDPM-CT Ttrunc=49 3.97 / 3.24

On the choice of truncated step: As the diffused distribution could facilitate the learning of the
implicit generator Gψ (Arjovsky & Bottou, 2017), where we could observe by increasing the number
of diffusion steps, the FID of TDPM consistently gets better. A natural question is on which step
should we truncate the diffusion chain. We study the signal-to-noise ratio (SNR) of different diffusion
step. Based on q(xt|x0) = N (

√
ᾱtx0, 1− ᾱtI), we calculate SNR as

SNR =

√
ᾱt√

1− ᾱt
; ᾱt =

t∏
i=1

(1− βt).

We visualize the SNR evolution across time step t > 0 in Figure 12, where we can observe the SNR
rapidly decays in the first 100 steps. According to previous studies in Arjovsky & Bottou (2017),
injecting noise into the data distribution could smoothen the data distribution support and facilitate the
GAN training. The SNR change in this interval indicates injecting noise in the level of t ∈ J1, 100K
could bring in more significant improvement for the GAN training. When the step is greater than
200, the SNR is change is no longer significant and close to zero, which indicates the implicit model

1The pre-trained checkpoints are provided by: https://github.com/pesser/pytorch_
diffusion
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might not be too informative, though it is easier to train. Our experimental observations in Figure 3
also justify this conclusion: when training a GAN at TTrunc = 4, the required number of iterations is
similar to training it on clean data; by training the GAN model at TTrunc = 99, the training of GAN is
significantly facilitated. For TTrunc > 100, we empirically examine to train a GAN and find it would
converge faster than training the diffusion model for t < TTrunc.

Comparison of model efficiency: In complement of the results in Table 1-2, we provide detailed
model size and generation time on v100 GPU. The results are summarized in Table 7. We can see
TDPM has an increasing in the total number of parameter, as it involves a discriminator to help train
the implicit model, while its sampling efficiency is also obvious.

Table 7: Comparison of model size (the added parameters corresponds to the discriminator model in
the training but not involved in the generation), and GPU time in generation.

Resolution 32×32 64×64 256×256
Model Parameter Time (s/image) Parameter Time (s/image) Parameter Time (s/image)
DDPM 36M 31.03 79M 33.01 114M 62.93
TDPM, Ttrunc=99 36M+20M 3.13 79M+21M 3.52 114M+24M 6.65
TDPM, Ttrunc=49 36M+20M 1.52 79M+21M 1.55 114M+24M 1.88
TDPM, Ttrunc=4 36M+20M 0.16 79M+21M 0.26 114M+24M 0.65
TDPM, Ttrunc=0 36M+20M 0.03 79M+21M 0.05 114M+24M 0.14

Figure 12: Signal-to-noise ratio evolution across different diffuse step T . The right sub-panel shows
a zoomed-in SNR evolution in the range of [30, 140] steps.

D.6 EXPERIMENTAL SETTINGS

D.6.1 MODEL ARCHITECTURE

Generator: Our generator structure strictly follows the U-Net structure (Ronneberger et al., 2015)
used in DDPM, improved DDPM, and ADM (Ho et al., 2020; Nichol & Dhariwal, 2021; Dhariwal
& Nichol, 2021), which consists of multiple ResNet blocks (He et al., 2016) with Attention blocks
(Vaswani et al., 2017) injected in the bottleneck. Please refer to these paper for more details on the
architecture.

A key difference between our model and previous diffusion models is that our model also train
such U-Net as an extra implicit generator Gθ that takes a latent variable z ∼ N (0, I) and a fixed
time index t = Ttrunc + 1 as input. However, this does not result in a difference in the generator
architecture. We parameterize Gθ with the same U-Net architecture for simplicity and the time
embedding t = Ttrunc + 1 is specified to be trained with the implicit loss shown in (12) and (16). We
have also tested to use all zero time embedding for t = Ttrunc + 1 and found no clear differences.

For our results of TDPM+, the generator Gψ specifically takes a StyleGAN2 architecture Karras
et al. (2020b) and there is no time-embedding in Gψ. An increase of generator parameter appears
caused by separating the implicit model and denoising U-Net. Note that the generator is trained
with GAN loss and without specially designed adaptive augmentation in Karras et al. (2020a). For
the detailed model architecture please refer to the corresponding paper or their Github repository:
https://github.com/NVlabs/stylegan2-ada-pytorch.
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Discriminator: Similar to Xiao et al. (2022), we adopt the discriminator architecture used in
Karras et al. (2020b), but without the time step input. The discriminator discriminate xTtrunc is
from the diffused distribution q(xTtrunc) or implicit generative distribution pθ(xTtrunc). Please refer to
Appendix C of Xiao et al. (2022) for the detailed design.

Navigator: Training with LCT
Ttrunc

involves an extra module named navigator (Zheng & Zhou, 2021).
We strictly follow the architecture used in Zheng & Zhou (2021), where the navigator is an MLP
taking the pairwise feature distance as inputs. There is no time embedding used in the navigator as
it is only used for the training at t = TTrunc. The feature is extracted from the layer before the final
scalar output. Please refer to their Appendix D for detailed information.

Architecture for text-to-image experiments: We adopt the 1.45B LDM model (Rombach et al.,
2022) that is pretrained on LAION-400M dataset (Schuhmann et al., 2021). The LDM model consists
of a U-Net KL-regularized autoencoder with downsampling-factor 8 (resolution 256 -> 32), a U-Net
in the latent space, and a BERT (Devlin et al., 2018) text encoder transform raw text to a sequence of
1280-dimension embeddings. We only fine-tune the latent model in our experiments. In the training
of the truncated part, the discriminator takes the first-half of the U-Net (downsampling backbone)
with a linear predicting head on top of it.

Architecture for toy experiments: The generator uses an architecture stacked with 4 linear layers
with 128 hidden units. Each intermediate layer is equipped with a time-embedding layer and
follows softplus activation. The discriminator and navigator have the same architecture, without
time-embedding layers, and using leakyReLU as the activation function.

D.6.2 TRAINING CONFIGURATIONS

Datasets: We use CIFAR-10 (Krizhevsky et al., 2009), LSUN-bedroom, and LSUN-Church (Yu
et al., 2015) datasets for unconditional generation in the main experiments. Additionally, we apply
CelebA(Liu et al., 2015) and CelebA-HQ (Lee et al., 2020) for complementary justification. For
text-to-image experiments, we use CUB-200 (Welinder et al., 2010) and MS-COCO (Lin et al., 2014).
The images consist of 32 × 32 pixels for CIFAR-10. For the other datasets, we apply center-crop
along the short edge and resize to the target resolution (64× 64 for CelebA; 256× 256 for the others).

Diffusion schedule: For all datasets, we strictly follow the diffusion process used in our backbone
models, and instantiate the truncated diffusion schedule by obtaining the first TTrunc diffusion rates
{β1, ..., βTTrunc}. For example, if our goal is to fit a model with NFE=50, to truncate the diffusion
process used in Ho et al. (2020) (β1 = 10−4, βT = 0.02, T=1000), we first initialize β1, β2, ... β1000,
and then taking the first 49 steps to complete the truncation.

Optimization: We train our models using the Adam optimizer (Kingma & Ba, 2015), where most of
the hyperparameters match the setting in Xiao et al. (2022), and we slightly modify the generator
learning rate to match the setting in Ho et al. (2020), as shown in Table 8.

We train our models using V100 GPUs, with CUDA 10.1, PyTorch 1.7.1. The training takes
approximately 2 days on CIFAR-10 with 4 GPUs, and a week on CelebA-HQ and LSUN-Church
with 8 GPUs. Table 8: Optimization hyper-parameters.

CIFAR10 CelebA CelebA-HQ LSUN

Initial learning rate for discriminator 10−4 10−4 10−4 10−4

Initial learning rate for navigator (if applicable) 10−4 10−4 10−4 10−4

Initial learning rate for generator 1× 10−5 1× 10−5 2× 10−5 2× 10−5

Adam optimizer β1 0.5 0.5 0.5 0.5
Adam optimizer β2 0.9 0.9 0.9 0.9
EMA 0.9999 0.9999 0.9999 0.9999
Batch size 128 128 64 64
# of training iterations 800k 800k 0.5M 2.4M(bedroom)/1.2M(church)
# of GPUs 4 8 8 8

For TDPM+, where we use StyleGAN2 generator as Gψ, we directly use their original training
hyper-parameters and train the model in parallel with the diffusion model. For TLDM, we set the base
learning rate as 10−5 and the mini-batch size is set to 64. For the ImageNet1K-64×64 experiments,
we use StyleGAN-XL generator as Gψ and strictly follow all the default training hyper-parameters.
To simplify the implementation and save computation, instead of applying the default progressive
growing pipeline 16 × 16 → 32 × 32 → 64 × 64, we directly train the implicit model on 64×64
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images corrupted at TTrunc. Without using the progressive growing pipeline, the result of StyleGAN-
XL shown in Table 2 is clearly worse than the progressive one reported in their paper (FID 1.51).
However, when used as the implicit model of TDPM, the final performance of TDPM becomes
competitive with this result.

Evaluation: When evaluating the sampling time, we use models trained on CIFAR-10 and generate a
batch of 128 samples. When evaluating the FID, and recall score, following the convention, we use
50k generated samples for CIFAR-10, LSUN-bedroom and LSUN-church, 30k samples for CelebA-
HQ (since the CelebA HQ dataset contains only 30k samples), 30k samples for the text-to-image
datasets. The recall scores are calculated with the recipe in Kynkäänniemi et al. (2019). In the
sampling stage, we follow our backbone to apply the same guidance in the diffusion part (t < TTrunc)
if applicable. Specifically, for LDM backbone, we use classifier-free guidance (Ho & Salimans, 2022)
with scale 1.5 and there are no DDIM steps for TDLM.

D.7 ADDITIONAL RESULTS ON UNCONDITIONAL GENERATION

Table 9: Full comparison of unconditional generation on CIFAR-10. Models are grouped by the orders of
sampling steps, with the best FID, and Recall in each group marked in bold. The TDPM+ results are produced
using ADM and StyleGAN2 backbone. TDPM with NFE=1 is equivalent to training a GAN with the DDPM
architecture as the generator.

Model NFE ↓ FID↓ Recall ↑
Improved DDPM (Nichol & Dhariwal, 2021) 4000 2.90 -
UDM (Kim et al., 2021) 2000 2.33 -
Likelihood SDE (Song et al., 2021a) 2000 2.87 -
Score SDE (VE) (Song et al., 2021b) 2000 2.20 0.59
Score SDE (VP) (Song et al., 2021b) 2000 2.41 0.59
NCSN (Song & Ermon, 2019) 1000 25.3 -
Adversarial DSM (Jolicoeur-Martineau et al., 2020) 1000 6.10 -
VDM (Kingma et al., 2021) 1000 4.00
D3PMs (Austin et al., 2021) 1000 7.34 -
DiffuseVAE (Pandey et al., 2022), T=1000 1000 8.72 -
DDPM (Ho et al., 2020) 1000 3.21 0.57

Recovery EBM (Gao et al., 2021) 180 9.58 -
Gotta Go Fast (Jolicoeur-Martineau et al., 2021) 180 2.44 -
LSGM (Vahdat et al., 2021) 147 2.10 0.61
Probability Flow (VP) (Song et al., 2021b) 140 3.08 0.57
DiffuseVAE (Pandey et al., 2022), T=100 100 11.71 -
TDPM, Ttrunc=99 (ours) 100 2.97 0.57
TDPM+, Ttrunc=99 (ours) 100 2.83 0.58

FastDDPM, T=50 (Kong & Ping, 2021) 50 3.41 0.56
DDIM, T=50 (Song et al., 2020) 50 4.67 0.53
SNGAN+DGflow (Ansari et al., 2021) 25 9.62 0.48
TDPM, Ttrunc=49 (ours) 50 3.11 0.57
TDPM+, Ttrunc=49 (ours) 50 2.96 0.58

Progressive distiallation (Salimans & Ho, 2022) 8 2.57 -
Denoising Diffusion GAN (Xiao et al., 2022), T=8 8 4.36 0.56
Progressive distiallation (Salimans & Ho, 2022) 4 3.00 -
Denoising Diffusion GAN (Xiao et al., 2022), T=4 4 3.75 0.57
TDPM, Ttrunc=4 (ours) 5 3.51 0.55
TDPM+, Ttrunc=4 (ours) 5 3.17 0.57
Progressive distiallation (Salimans & Ho, 2022) 2 4.51 -
Denoising Diffusion GAN (Xiao et al., 2022), T=2 2 4.08 0.54
TDPM, Ttrunc=1 (ours) 2 4.47 0.53
TDPM+, Ttrunc=1 (ours) 2 3.86 0.56
DDPM Distillation (Luhman & Luhman, 2021) 1 9.36 0.51
SNGAN (Miyato et al., 2018) 1 21.7 0.44
AutoGAN (Gong et al., 2019) 1 12.4 0.46
TransGAN (Jiang et al., 2021) 1 9.26 -
StyleGAN2 w/o ADA (Karras et al., 2020a) 1 8.32 0.41
StyleGAN2 w/ ADA (Karras et al., 2020a) 1 2.92 0.46
StyleGAN2 w/ Diffaug (Zhao et al., 2020) 1 5.79 0.42
Progressive distiallation (Salimans & Ho, 2022) 1 9.12 -
Denoising Diffusion GAN (Xiao et al., 2022), T=1 1 14.6 0.19
TDPM, Ttrunc=0 (ours) 1 7.34 0.46
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TDPM-GAN TDPM-CT TDPM-CTTDPM-GAN

Figure 13: Qualitative results on CIFAR-10 and CelebA (64× 64).

TTrunc  =  99 TTrunc  =  49 TTrunc  =  4

Figure 14: Qualitative results of TDPM on LSUN-Church (256 × 256), with Ttrunc = 99, 49, and 4. Note
NFE = Ttrunc + 1 in TDPM. Each group presents generated samples from pθ(x0) (left) and pθ(xTtrunc) (right).

TTrunc  =  99 TTrunc  =  49 TTrunc  =  4

Figure 15: Analogous qualitative results to Figure 14 on LSUN-Bedroom. Produced by TDPM.

TTrunc  =  99 TTrunc  =  49 TTrunc  =  4

Figure 16: Analogous qualitative results to Figure 14 on CelebA-HQ. Produced by TDPM.
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TTrunc  =  99 TTrunc  =  49 TTrunc  =  4

Figure 17: Analogous qualitative results to Figure 14 on LSUN-Church. Produced by TDPM-CT.

TTrunc  =  99 TTrunc  =  49 TTrunc  =  4

Figure 18: Analogous qualitative results to Figure 14 on LSUN-Bedroom. Produced by TDPM-CT.

TTrunc  =  99 TTrunc  =  49 TTrunc  =  4

Figure 19: Analogous qualitative results to Figure 14 on CelebA-HQ. Produced by TDPM-CT.
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D.8 ADDITIONAL RESULTS ON TEXT-TO-IMAGE GENERATION

A white and gray bird with black wings.

An airplan flying over a body of water. 

A sign reads “TDPM”. 

Busy city street at dusk with sun setting. 

Figure 20: Additional text-to-image generation results with different text prompt, produced by TLDM
with Ttrunc = 49.
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A clock tower near the river.

A cluster of flower on the wooden table. 

The bathroom has a big mirror. 

The bagel is put in a squre plate.

Figure 21: Additional text-to-image generation results with different text prompt, produced by TLDM
with Ttrunc = 4.
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