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Abstract

The inference abilities of large-scale pretrained models are often attributed to the
size of pre-training data collected across several domains. However, these models
may memorize private and/or sensitive information during training and regurgitate
it in inference. Recently, machine unlearning has been leveraged to address such
leakage in LLMs. VLMs add a layer of complexity to this process, as the visual
context in the query may additionally contain sensitive information. To address
this issue, we explore unlearning for VLMs, specifically for the Visual Question
Answering (VQA) task. We explore the role of visual tokens for output generation
in VLMs using cross-modal attention and utilize it to formulate Cross-Modal At-
tention Guided Unlearning (CAGUL), a lightweight and efficient VLM unlearning
framework. In contrast to computationally expensive model finetuning methods,
CAGUL utilizes external modules to encode unlearning information in visual to-
kens of low importance for relevant queries. We find that the transformed visual
tokens not only prevent leakage but also retain reference model behavior. Experi-
mental results show that our method performs better or on par with finetuning-based
baselines without altering the pre-trained model parameters or incurring retraining
costs, making it a practical and effective VLM unlearning solution.

1 Introduction

Vision-Language Models (VLMs) are pre-trained on massive amounts of data sourced online and
also finetuned on domain-specific data for downstream tasks. However, training data collected from
such sources may contain personally identifiable and/or sensitive information, raising significant
privacy concerns, especially with the added complexity of visual signals. For instance, processing
visual inputs in VLMs can unintentionally disclose information such as location cues, identity of
individuals in the background, etc [34], which, paired with the language model’s knowledge, may
output private data. The unconstrained use of these models in domains such as healthcare and finance
can also be dangerous. In the LLM landscape, research efforts have been made to mitigate privacy
leakage in different ways, including machine unlearning. Specifically, machine unlearning addresses
concerns regarding leakage of training data as stipulated by the California Consumer Privacy Act
(CCPA) and GDPR’s Right to be Forgotten [4}3].

Our focus here is on VLM unlearning under practical privacy considerations. In VLMs, sensi-
tive/private information may be present in the vision component, language component, or both. So,
visual signals should also be considered when formulating the unlearning problem. Therefore, we
first explore unlearning in the context of VLMs, then formulate a realistic problem definition for VLM
unlearning. We consider the setting of VQA on biographical data paired with images of individuals
described in the data. The training data is thus in the form of paired image and text queries, such
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that an image may be paired with multiple question-answer pairs about the corresponding individual.
In this scenario, we propose framing VLM unlearning as the task of removing information from
image-text pairs that can disclose private information while retaining knowledge about non-private
pairs. For instance, a user may want to remove references to sensitive information (e.g., social security
number) but may not necessarily need other general profile information to be removed (e.g., name).

Based on this problem definition, we propose a lightweight and efficient method to achieve VLM
unlearning. Our method is motivated by the relationship between visual and text tokens represented
as cross-modal attention scores computed between the two modes of input. Kaduri et al. empirically
demonstrated that VLMs extract fine-grained details and attributes from visual tokens in a spatially
localized manner and compress visual information into a small subset of highly attended tokens [13].
In turn, prompting a VLM with this compressed image context (5% of image tokens) can achieve
performance close to that of prompting with all image tokens. Based on this observation, we
conjecture that encoding information relevant to private or non-private queries in the least attended
visual tokens can be useful for effective unlearning and propose Cross-Modal Attention Guided
Unlearning (CAGUL), a resource-efficient and interpretable method leveraging the cross-attention
mechanism for unlearning in vision-language models.

Overall, our CAGUL framework is composed of two main components. First, a discriminator module
detects whether or not a given visual input is paired with a query about private data. Then, for visual
inputs predicted to be paired with private data, we use an MLP encoder to linearly transform the visual
tokens with the lowest cross-modal attention scores. We employ standard unlearning losses defined
separately for forget and retain data to train these external modules while keeping the pre-trained
VLM parameters frozen. Intuitively, the encoder parameters learn to embed unlearning objectives
into the embeddings of the transformed visual tokens. We empirically show that this approach obtains
favorable trade-offs between forget and retain performance on FIUBench [20]. Further, we show that
our results with a frozen VLM are comparable to those of finetuning-based baseline methods.

2 Preliminaries

Vision-Language Models. VLMs provide additional visual context to language models by incor-
porating a vision component in the LLM architecture and aligning the two modalities. Besides
the language model, VLMs consist of two additional core components; a visual input processing
module typically implemented as a vision transformer-based model which extracts rich patch-specific
embeddings from an image/video input V' and a cross-modal projector such as a pretrained CLIP-like
encoder or a linear projection model, which transforms the patch embeddings to a visual embedding
Z, € R™"* in the language model’s embedding space where 7, is the number of visual tokens and
d is the embedding dimension. In the visual question-answering (VQA) task, given an image V" and
a query X with respective embeddings Z, € R™*% and Z, c R™a %4 where N4 is the number of
query tokens, the output of the VLM is obtained as Y = LLM(Z,,, Z,).

Cross-modal Alignment. We refer to the attention scores between visual and text tokens as cross-
modal attention. The attention mechanism [29] in this multi-modal setting consists of a query
matrix Q = Z,W, and a key matrix K = Z, W/, representing the textual and visual modalities,
respectively. Formally, we can define attention weights as a function of query and key matrices:

T
A = softmax (%ﬁ%) (D

In the context of VLMs, cross-modal attention is implemented as either cross-attention or joint
self-attention. We discuss the differences in architecture in Appendix

3 Problem Setup

Suppose we have a dataset of m individuals denoted as D = {(V;, X, ;,Y; ;) | i € M,j € N;},
where M = {1,2,...,m}and N; = {1,2,...,n;} denotes indices for the n; question-answer pairs
for individual i. Without loss of generality, we assume that n; is the same across all individuals
and denote it as n. However, in general, our setting also applies to a varying number of QA pairs
per individual. The QA pairs for an individual contain information such as demographics and also
some sensitive information, e.g., medical records. Assume a pre-trained VLM with parameters 6 has
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Figure 1: Cross-Modal Attention Guided Unlearning (CAGUL) Framework

been trained on dataset D. In our unlearning setting, we assume a subset M/ C M of individuals are
concerned about the privacy of their sensitive information, but are indifferent to their non-sensitive
data being used in model training. We formulate the VLM unlearning problem in this scenario
as the forgetting of sensitive information corresponding to the individuals in M. Specifically, we
define the forget set as Dy = {(V;, X, ;,Y:;) | i € M,j € N;, and is_private(X; ;) =1}
consisting only of QA pairs for individuals in M that contain sensitive information and are marked
to be forgotten. The retain set can then be defined as D, = {(V;, X, ;,Y;,) | ¢ € M,j €
N;, and is_private(X; ;) = 0} consisting of all individuals with non-private QA pairs. The VLM
unlearning goal in this work is to forget the subset D while retaining performance on D,.. We follow
commonly adopted unlearning setup where we assume a model has already been finetuned on the
dataset, referred to as the base model, by maximizing the following log-likelihood objective:
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where 6 represents model parameters. Our goal is to facilitate unlearning from this base model.

4 Cross-Modal Attention Guided Unlearning

Here, we present Cross-Modal Attention Guided Unlearning (CAGUL) for unlearning in VLMs.
CAGUL consists of three main components: a discriminator to determine if a given image appears
in the forget set, a cross-modal attention-based visual token selection strategy, and a visual token
encoder to embed unlearning information in unimportant visual tokens. For simplicity, we formulate
our method for an example triple (V, X,Y"). An overview of our framework is shown in Figure

Discriminating Forget and Retain Images. Given the projected image tokens Z,, for a given image
V', we train a simple discriminator C to determine whether the image appears in the forget set or
not, formalized as [ = C4(Z, ), where [ € {0,1}, and [ = 1 implies that the discriminator predicts
that the image corresponding to visual tokens Z, appears in the forget set.

Cross-Modal Attention Guided Visual Token Selection. The main objectives of unlearning are to
remove a trained model’s knowledge of D, while maintaining its predictive utility on D,.. Assuming
that a classifier can accurately distinguish between images appearing in the forget set and images
only appearing in the retain set, an intuitive way of unlearning is to add noise to images in the forget
set. This results in distorted vision embeddings such that the language model is unable to get accurate
signals from the image tokens. However, in our setting, the images in the forget set provide signals to



corresponding private and non-private queries, i.e., both Dy and D,., and adding noise randomly may
achieve good forgetting, but likely degrades utility.

Instead of indiscriminately adding noise to the image tokens, we propose a visual token selection
mechanism guided by cross-modal attention between the visual and query text tokens. We hypothesize
that selectively encoding the unlearning objectives in visual tokens corresponding to images in the
forget set can guide the language model in appropriately generating its response for private and
non-private queries associated with the respective images. We are motivated by the analysis of visual
information processing in VLMs conducted by [[13], which empirically demonstrates that VLMs
extract fine-grained details and attributes from visual tokens in a spatially localized manner and
compress visual information into a small subset of highly attended tokens. Consequently, prompting
a VLM with this compressed image context (5% of image tokens) can achieve performance close to
that of prompting with all image tokens.

In either cross-attention or joint self-attention based models, we use the attention matrix A € R"™a*"™v
to determine the lowest attended image tokens with respect to the input text. We average the attention
scores across all query tokens across all attention heads to get a scalar score

1 np Mg
o S ®
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where o € R1X™ represents the attention score between the entire query and each image token,

A;h) represents the jth row of the attention matrix corresponding to attention head h, and ny, is the
number of attention heads. Then, for each attention layer, we choose the bottom-k tokens with the
lowest attention score with the query {Zy »,, Zv pys - - - s Zvp } C Zy where K = {p1,p2,...,Dr}
are the indices of the k least attended image tokens. We observe that such tokens often correspond to
arbitrary pixels in regions not contextually critical to the text prompt.

Visual Token Encoder. Our method relies upon the intuition that we can encode certain information
about the unlearning objective in image tokens having low correlation with the query through a
learned transformation to facilitate unlearning. Thus, for samples predicted by the discriminator as
[ =1 (i.e., image appears in the forget set), we learn a parameterized visual token encoder F(-) that
transforms the least attended k visual embeddings to perturbed embeddings. We then replace the &
image token embeddings in Z, with the transformed representation as follows:

Z o Fw(Zv,i) ifie K
U Zw otherwise

: 4)
where Z, is the set of final visual token embeddings. The final input to the LLM is obtained as
Y =1LM(Z,,Z,).

Unlearning Objective. Our CAGUL framework has two trainable modules, discriminator C4 and
visual token encoder Fy,. The discriminator is trained with the following classification objective

Ebce = EZU [IngC¢ (”ZU)] (5)

The encoder is trained with unlearning objectives defined on the forget and retain sets separately.
Generally, the unlearning objective for retain samples is to maintain the base model’s predictive
utility. In CAGUL, we define this objective as the standard causal language modeling loss for all
samples in D,., including the non-private samples for images appearing in the forget set formulated as
Ly =Ew. xyv)op.Eyt [logpe(Y|V, X, Y<H)] (6)

In the VQA task, the forget objective can be interpreted as obtaining low utility for samples in the
forget set Dy. We leverage Preference Optimization (PO) [21] to realize this objective in CAGUL by

aligning the language model’s outputs for forget queries with refusal responses instead of the ground
truth. We compute the standard causal language modeling loss with the substituted response as

Ly =Ew,xy)~p,Ey: [logps(Y'|V, X, Y <")] @)
where Y is a refusal response such as “I cannot answer this question.” Finally, we formulate the joint

objective for CAGUL as
L="Lye+Ls+L, (3)

where Ly is the binary classification loss for the discriminator computed over all samples, L ¢ is
the PO loss computed for samples in Dy with refusal answers, and £, is the GD loss computed for
samples in D, with their ground-truth answers.



5 Experiments

Dataset. We primarily investigate VLM unlearning on the FIUBench dataset [20]], a biographical
dataset containing 8000 VQA pairs. The dataset comprises 400 unique images, each paired with 20
QA pairs. [20] investigated an unlearning setting on FIUBench where |M | individuals request that
all their information be removed from training data. In contrast, we focus on a more realistic and
complex unlearning problem, emulating real-world scenarios where information about individuals
is consolidated from different sources, and removal requests may only apply to some sources. We
formulate a setting where |V | individuals wish to remove their sensitive data from training, such
that only the VQA pairs about health and criminal records are to be forgotten. In FIUBench, this
results in Dy and D,, i.e., forget and retain sets with overlapping images, unlike the original setting
where the images could be differentiated as forget or retain. We introduce additional notations here to
represent this scenario to facilitate the discussion of experimental results. For the | M| individuals
requesting removal, we divide their corresponding VQA pairs into two subsets: D,,, which contains
health and criminal records queries to be forgotten, and D,,;,, which contains the non-sensitive queries.
The private set forms the forget set, D, = Dy, and the non-private set is included in the retain set,
Dyp C D,.. All VQA pairs for the remaining individuals are included in D,..

Setup. We run experiments with LLaMA-3.2-11B-Vision-Instruct and Qwen-2.5-VL-7B-Instruct
models and report main results with the former. We first finetune the VLM on FIUBench dataset to
ensure sufficient memorization and aim to achieve unlearning on this finetuned model, also referred
to as the base model. We assume |M | = 40 individuals request sensitive information removal and
report results when transforming k& = 200 least attended visual tokens with CAGUL trained for 12
total epochs. We provide specific details about experimental setup in Appendix [C]

Baselines. We demonstrate the effectiveness of CAGUL by evaluating it against multiple baselines.
Gradient Ascent (GA) [32] implements finetuning while maximizing the loss for samples in the forget
set; the retain set is not utilized in training. Gradient Difference (GD) [31]] additionally defines a
gradient descent loss on the retain set besides the GA loss on the forget set to prevent degradation
of model utility due to loss maximization. Similarly, KL. Minimization (KL) [31]] combines GA on
forget with a KL divergence loss between the output distribution of the unlearned model and the
target model. Preference Optimization (PO) [21]] defines gradient descent loss for both retain and
forget sets, but augments the labels in the forget set with preferred answers like “I am unable to
answer" to guide the model towards refusal response for forget examples. Furthermore, we implement
model retraining by finetuning the pre-trained VLM on only the retain set as an ideal baseline. We
implement early stopping for methods using GA loss to prevent rapid model degradation.

Evaluation Metrics. We follow [20] and report multiple metrics to quantify forget and retain
performances measured on Dy and D,., respectively. For D, we compute Rouge-L and Exact Match
(EM) to measure output correctness, Adversarial Privacy Extraction (APE) for robustness against
paraphrased queries, and MinK% Prob [26] for unlearning effectiveness under Membership Inference
Attack (MIA). APE is computed as EM values when the model is prompted with multiple paraphrased
queries of each forget sample, and MinK% is computed based on the output probability of the lowest
likely tokens among generated tokens. For D,., we report Rouge-L to show utility. As our unlearning
scenario contains overlapping images between Dy and D,., we also perform a fine-grained evaluation
of non-private QA pairs of the overlapping images, i.e., on D,,;, and report Rouge-L and EM for
correctness, and Truth Ratio (TR) to quantify the model’s tendency to generate incorrect answers.
We further report accuracy scores on MME [10] and POPE [16] datasets to show the influence of
unlearning on model generalizability. We provide detailed descriptions of all metrics in Appendix [D]

Experimental Results. We include the main results from our experiments in Table|I|for LLaMA-
3.2-11B-Vision-Instruct. Here, Pretrain refers to the VLM used as is for inference, and Finetune is
the VLM trained on FIUBench to ensure adequate memorization of dataset-specific information. The
increase in performance metrics from Pretrain to Finetune across all subsets of D indicates that the
finetuned model has successfully memorized information from the dataset. However, we observe a
significant decline in the model’s generalization ability as the VLM is finetuned only on FIUBench.
Nonetheless, we use the finetuned model as the base model for unlearning methods and its evaluation.

Forget Quality. CAGUL Rouge and EM scores on Dy demonstrate effective forgetting as noted by
the significant drops in these metrics compared to Finetune. The MIA score MinK is also significantly
lower than Finetune, which indicates that unlearned models achieved with CAGUL can successfully



Table 1: Unlearning metrics of CAGUL compared with baselines on LLaMA-3.2-11B-Vision-Instruct

| Forget | Retain | General
Method | Dy | D Doy | MME | POPE

| Rouge()) EM(1) APE(l) MinK(}) | Rouge(1) | Rouge(t) EM(D) TR() | Ace(1) | Ace(1)
Pretrain 26.00 0.00 0.00 0.79 19.13 12.63 0.10 7.63 77.34 87.41
Finetune 57.33 39.68 24.59 43.32 84.55 66.88 30.69 50.63 30.58 37.70
Retrain 55.91 15.75 11.45 16.84 92.24 77.89 47.12 58.85 23.50 29.20
GA 46.83 12.04 4.44 7.31 59.71 47.65 7.74 88.31 22.96 20.08
GA+GD 46.15 9.07 5.79 6.23 95.50 83.35 74.21 58.27 6.40 5.23
GA+KL 24.31 6.16 4.48 5.71 77.43 30.55 9.33 92.11 11.20 9.87
PO+GD 30.62 0.37 0.34 4.57 91.23 84.26 61.44 56.23 18.58 45.54
CAGUL 30.84 1.70 0.43 14.86 85.15 84.32 64.35 91.67 30.58 37.70

unlearn information from D;. Similarly, the adversarial prompting score APE being low demonstrates
that CAGUL is effective against jailbreak attacks that rephrase input prompts, aiming to extract
information. Furthermore, compared to the Retrain baseline, CAGUL achieves lower values for all
forget metrics. Compared to finetuning baselines that implement GA as the forget loss, CAGUL
generally achieves lower Rouge, EM, and APE scores. For the finetuning baseline that implements
the same PO+GD loss function as CAGUL, our method achieves comparable performance on most
metrics despite keeping pre-trained parameters frozen and training smaller external modules.

Retain Performance. We report retain metrics on the full retain set D,. and the non-private subset D,,,
corresponding to the individuals in Dy. We observe that CAGUL successfully preserves the retain
utility of the finetuned base model. For the subset D,,;,,, CAGUL retains and improves knowledge
about the non-private data while simultaneously forgetting the private information of the same
individuals. The increase in D,,, metrics can be attributed to the further memorization of retain
knowledge during training of unlearning methods. Additionally, CAGUL generally outperforms
baseline unlearning methods, including Retrain, which suggests that the information encoded in
visual tokens significantly helps to preserve retain performance.

Downstream Accuracy. This metric quantifies the influence of unlearning on the model’s original
world knowledge. Our results show that CAGUL retains the performance of the finetuned base model
on both MME and POPE datasets, whereas finetuning baselines significantly degrade in performance.
We emphasize that our method does not require finetuning any component of the VLM, which ensures
that the pretrained knowledge for general tasks is not manipulated, provided that the classifier can
accurately distinguish images in the forget set from retain or general evaluation sets.

Additional Results. We record the number of training parameters and execution time for all imple-
mented unlearning methods, which are included in Appendix [E] along with the results on Qwen-
2.5-VL-Instruct due to space constraints. Results show that CAGUL performance is comparable
to retraining while preserving the finetuned model’s downstream utility on MME and POPE. Fur-
thermore, CAGUL updates fewer parameters compared to finetuning baselines. Additionally, we
conduct an ablation study to understand the importance of the classifier and encoder components,
the cross-modal attention selection strategy, and the forget and retain loss functions in CAGUL
architecture. We also study the influence of CAGUL hyperparameters, i.e., the number of visual
tokens transformed by F;, and the size of the forget set Dy. These results and their discussions are
also included in Appendix [E} Overall, our empirical results show that CAGUL achieves desirable
trade-offs between forget quality and utility comparable to baseline finetuning methods while saving
on computational efficiency due to the cross-attention-based visual token transformation technique.

6 Conclusion

In this work, we propose a novel setting for unlearning in vision-language models where each user
can exercise the Right to be Forgotten for any subset of their sensitive queries. We formulate an
unlearning framework comprising a classifier to identify images in the forget set, a cross-modal
attention-based visual token selection mechanism, and a visual token encoder to embed unlearning
information in visual tokens with low correlation to the query prompt. We conducted experiments
on the FIUBench dataset using two open-source vision-language models and demonstrated that our
method achieves desirable trade-offs in performance compared to finetuning-based baseline methods.
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A Related Work

LLM Unlearning. The widespread use of LLMs has raised significant privacy concerns about user
data ingested during the training process. As a result, recent research has focused on developing meth-
ods for unlearning in LLMs to address issues regarding privacy as well as bias, harm, and toxicity [17].
Early methods generally borrow from traditional machine unlearning [4, 3] and implement loss-based
optimization techniques for forgetting, paired with varying alignment objectives for retaining model
usability [32, 21} 16, 33]]. Others utilize adaptation techniques specific to LLMs, such as achieving
unlearning through in-context learning [24], manually crafted system prompts [27]], or prompt tuning
with unlearning-specific losses to guide generation [2]]. Additionally, some works focus on model
editing methods using localization-based objectives to remove unwanted knowledge [15} 8} [11]].

VLM Unlearning. VLM unlearning is a relatively new frontier with increased complexity due to
the integration of visual signals. [7]] propose a framework for multimodal unlearning in VLMs by
decoupling the text and visual modalities. To understand the privacy vulnerabilities of VLMs, [[12]]
take an adversarial approach and develop a blackbox visual jailbreak prompting strategy. Similar to
this work, [[18]] study how image-based manipulations can cause breaches in safety-aligned VLMs. [S]]
investigate whether text-only unlearning is sufficient for safety alignment in multimodal models.
There have also been several studies benchmarking VLM unlearning. [28]] conduct an empirical study
showing that VLMs can infer private attributes from images even when the attributes do not stem
from visual depiction of humans. [25]] benchmark several VLMs to understand their limitations in
visual privacy and propose an instruction-tuning dataset to improve privacy sensitivity of VLMs.
[14] formulate unlearning as forgetting visual recognition of target concepts in images and propose
a benchmark dataset for visual concept unlearning. [20] construct a VQA dataset, FIUBench, to
benchmark VLM unlearning using several optimization-based techniques from LLM unlearning.
[19] introduce a VQA dataset with multiple images and QA pairs and evaluate standard unlearning
methods with several VLMs.

B Architecture Details

Vision-Language Models. We run our experiments using two state-of-the-art VLMs: LLaMA-3.2-
11B-Vision-Instruct and Qwen-2.5-VL-7B-Instruct. The cross-modal alignment mechanism in VLMs
is generally implemented as either cross-attention or joint self-attention. For cross-attention based
models like LLaMA-3.2-11B-Vision-Instruct, the query matrix Q and key matrix K represent the
two modalities separately, so A directly captures the attention scores between the two modalities.
In this scenario, each text token embedding is updated based on cross-attention scores computed
before input to the language model. However, for joint self-attention-based models such as Qwen-2.5-
VL-7B-Instruct, Z = (Z,, Z,) is fed in jointly as one concatenated input sequence to the language
model, where Q = ZW , and K = ZW/, are shared among all tokens. The self-attention scores can
be represented by the following block matrix:

N A“Q} , ©

Aself—attn = |:Aq'u Aqq

assuming the input is composed of an image followed by the query text for simplicity. For our
formulation, we can consider A for joint self-attention models to be the top right block A, derived
from Q = Z, W, and K = Z, W, which represents the cross-modal attention scores between
visual and text tokens. The cross-modal attention scores can be similarly extracted from the overall
attention matrix based on the location of the image and query text in the input sequence.



Table 2: Dataset statistics for varying | M|
M| | 20 | 40 | 60 | 80

Dy 273 544 817 | 1078
D, | 7727 | T456 | 7183 | 6922
Dnp | 127 256 383 522

Encoder Architectures. We implement the discriminator C using a convolutional neural network
and the visual token encoder F; as a one-layer multilayer perceptron (MLP).

Table 3: Training hyperparameters for finetuning and unlearning methods; parameters not applicable
to method are shown as -

Hyperparameters | Finetune/Retrain | GA GA+GD GA+KL PO+GD | CAGUL

Learning rate 2x107° 1x1076 2x107° 1x107* 3x107%|2x107°
Batch size 4 4 4
Epochs 10 10 2+10
Dropout - 0.05 -
LoRA Rank r - 128 -
LoRA Alpha « - 256 -

C Experimental Setup

Dataset. We primarily investigate VLM unlearning on the FIUBench dataset [20] composed of 400
unique synthetic images obtained from the SFHQ dataset [1]], each paired with fictitious biographical
information including name, birthdate, address, phone number, occupation, income, health, and
criminal records sourced from [23| 22, 30, 19]. The dataset is formatted for VQA by extracting 20
QA pairs from the biographical data to form 8000 VQA pairs, which is represented by D in this
work. In our experiments, we select individuals for the forget set based on the splits provided in [20].
The resulting dataset statistics in terms of the number of samples in the forget set, retain set, and

non-private set are presented in Table for a varying number of |]\Z/ | used in our experiments.

Setup. As is the norm in unlearning literature for pre-trained models, we first finetune VLMs on
the entire FIUBench dataset D to ensure data memorization. In this work, we conduct experiments
with two VLMs: LLaMA-3.2-11B-Vision-Instruct and Qwen-2.5-VL-7B-Instruct. We implement
full finetuning of the language and cross-modal components for both VLMs, i.e., the language model
and the projector module for LLaMA, and the language model and visual merger module for Qwen.
We refer to this finetuned VLM as the base model for unlearning. The objective here is to obtain an
unlearned model which demonstrates forgetting of the personal information in D while maintaining
the base model’s performance for samples in D,., including D,,,.

We assume that | M| = 40 individuals request removal of their private information. We implement
LoRA finetuning for baseline methods except retraining. For CAGUL, we train only the discriminator
and visual token encoder while keeping the base model frozen as discussed in Section 4| More
specifically, we first train the discriminator for 2 epochs, then jointly train the two modules and report
results with perturbations performed on k = 200 least attended visual tokens out of 6404 for LLaMA
and k = 20 visual tokens out of 1369 tokens for Qwen. We further report trends over CAGUL’s
performance when varying & from 100 through 1000, and |M]| as {20, 40, 60, 80}. To demonstrate
the contribution of the discriminator and encoder components in CAGUL, we conduct ablation
studies where we replace/remove components during training. We also conduct experiments to show
CAGUL’s performance when the PO+GD loss is substituted with other unlearning loss variations.
Specific training hyperparameters are included in Table[3] We use 4 NVIDIA A100 GPUs with 40GB
RAM for implementations using LLaMA and 4 NVIDIA H100 with 150GB RAM for Qwen and
report performance over a single run due to the resource-intensive nature of the experiments. We
utilize the Huggingface library to implement all methods.
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D Evaluation Metrics

D.1 Forget Metrics

Rouge-L. We compute ROUGE-L scores to measure the similarity between generated text and
ground truth answers for samples in Dy.

Exact Match. Following [20], we compute Exact Match (EM) scores to quantify the correctness of
generated outputs compared to the ground truth labels. We obtain EM as an average over the ratio
of ground-truth keywords appearing in the generated text for each query. For Dy, a lower EM is
desirable.

MinK. Membership Inference Attacks (MIA) are often used to evaluate the forgetting effectiveness
of unlearning methods. We leverage Min-K% Prob [26] to quantify the presence of knowledge from
D/ in the unlearned model. To compute this metric, we first obtain the probability for each generated
token and calculate the average log likelihood over the first K% tokens with minimum probabilities.
A lower average log likelihood indicates that Dy was not included in the training data, demonstrating
effective forgetting.

Adversarial Privacy Extraction. Safety regulations in pre-trained models can often be bypassed
by rephrasing query texts. The Adversarial Privacy Extraction (APE) was formulated to verify
whether forgotten knowledge can be extracted from an unlearned model in an adversarial manner by
prompting it with paraphrased queries [20]. We compute this metric as the average EM score when
the unlearned model is queried with multiple paraphrases of each forget sample.

D.2 Retain Metrics

Rouge-L. We compute ROUGE-L scores over the entire retain set D,.. The retain objective is to
preserve the base model’s performance of this metric. For a thorough evaluation of forget and retain
performance trade-off for the M individuals requesting removal, we also provide the ROUGE-L
scores for the retain subset D,,y,.

Exact Match. For D,,,,, we compute an EM score to evaluate whether the generated outputs from
the unlearned model contain keywords specific to the ground truth to quantify CAGUL’s ability to
preserve utility.

Truth Ratio. We follow [20] and compute Truth Ratio (TR), which measures the model’s tendency
to generate factually incorrect answers versus correct ones. The likelihood of factual generation is
computed as the probability of a paraphrased version of the ground truth answer, and the likelihood
of an incorrect answer is calculated as an average over the probabilities of multiple perturbed answers
formatted like the paraphrased answer. TR is reported as the ratio of incorrect to factual likelihoods.

D.3 General Downstream Accuracy

We report accuracy scores on two general VQA datasets: MME [10] and POPE [[16] to demonstrate
the influence of unlearning methods on the model’s generalization ability. The MME benchmark
is composed of queries related to various tasks such as existence, count, position, color, posters,
celebrities, scenes, landmarks, and artworks. The POPE benchmark quantifies object hallucinations
in VLMs, and we evaluate on the adversarial, popular, and random tasks.

D.4 Efficiency
We additionally report per-epoch training time required by each unlearning method as well as the

number of parameters that are updated during training to compare the computational efficiency of the
implemented methods.
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Table 4: Computational efficiency of CAGUL compared with baseline unlearning methods for

LLaMA-3.2-11B-Vision-Instruct

Method | Trainable Params | Execution time (s)

Retrain 9.8B 4272
GA 419M 149
GA+GD 419M 1855
GA+KL 419M 2951
PO+GD 419M 1911
CAGUL 293M 682
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Figure 2: Influence of number of visual tokens transformed

E Additional Results

E.1 Computational Efficiency.

We report the number of training parameters and per-epoch execution times in Tabled]for LLaMA-3.2-
11B-Vision-Instruct to analyze the training complexity of unlearning methods compared to retraining.
The baselines require fewer parameters than Retrain, as we implement LoRA finetuning for these
methods as opposed to the full finetuning used for Retrain. Nonetheless, CAGUL trains the fewest
number of parameters as the pre-trained VLM parameters are kept frozen in this framework and
completes training in significantly less time. We note that GA requires the least training time as
optimization is performed with respect to D only, but it causes the model to degrade quickly as
indicated by the low scores on D,. and D,,;, in Table 2. We observe similar proportions for trainable
parameters and training execution time with Qwen-2.5-VL-7B-Instruct.

E.2 Influence of Number of Visual Tokens Transformed

In CAGUL, we select the k least attended visual tokens to encode unlearning-specific objectives
via linear transformation using F,,. Here, we study the influence of the number of visual tokens
transformed on the overall performance of CAGUL by varying k as {100, 200, 400, 600, 800, 1000}
We report CAGUL performance on the forget set Dy and non-private retain set D, in Fig.[2] We
omit the results on D,., MME, and POPE as all values of k achieve the same metrics on these sets.
Our results show peak performance for both forget and retain metrics when k is set to 200 tokens. We
observe a minor dip in performance when transforming the & = 600 tokens, but CAGUL generally
achieves similar performance across different £ values.

E.3 Influence of Forget Set Size

We also study the effect of the size of forget set Dy, which relates to the number of individuals

participating in M. We vary |M | across {20, 40, 60,80} with corresponding dataset statistics shown
in Table 2| and report forget and retain metrics in Fig.|3] We observe a decreasing trend for the forget

metrics on Dy and an increasing trend for the retain performance on D,,;, as |]\Zf | becomes larger.
This result suggests that unlearning with a larger forget set size facilitates more effective forgetting of
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private data and retaining of non-private data, most likely due to the increased size of the training
subset used to learn visual token encoder weights.

Table 5: Ablation study

| Forget | Retain | General
Method | Dy D Doy | MME | POPE

| Rouge() EM({) APE(}) MinK({) | Rouge(t) | Rouge(t) EM(1) TR(1) | Acc.(1) | Acc.(1)
CAGUL | 30.84 1.70 0.43 14.86 | 8515 | 8432 6435 91.67 | 30.58 | 37.70
wlo Cy ‘ 30.94 1.84 1.28 22.93 ‘ 96.07 ‘ 84.66  65.94  92.21 ‘ 28.94 ‘ 37.41
wio Fy 56.56  37.75  23.67  41.54 84.50 65.46 2851  90.39 | 30.58 | 37.70
w/random | 31.23 1.70 0.48 12.34 | 8471 | 7158 4345 9091 | 30.58 | 37.70
w/ GA+GD | 21.35 1.01 0.61 1.32 ‘ 82.99 ‘ 21.57 0.79 77.76‘ 30.58 ‘ 37.70
w/GA+KL | 53.86  20.01  12.61 22.34 84.47 64.44 1660 87.85 | 30.58 | 37.70

E.4 Ablation Study

We conduct an ablation study to understand how CAGUL achieves unlearning and report the results
in Table

Ablating Discriminator and Encoder. First, we investigate the influence of the discriminator C
and visual token encoder F,,. We implement two versions of CAGUL, w/o Cy4 and w/o F,, where
we remove the discriminator and the visual token encoder, respectively. For CAGUL w/o C, we
train only F'y, and transform k selected visual tokens for all Dy and D,., and for CAGUL w/o F,
we only train C, and add uniform random noise to the k visual tokens for the samples identified by
C. Experiment results indicate that CAGUL can achieve good trade-offs between forget and retain
metrics without Cg, but its generalization ability is negatively affected. We note that the rouge score
for D, shows significant improvement as the encoder is trained on the full retain set, enabling the
model to memorize additional knowledge. Conversely, we observe a significant decline in forget and
retain performance for CAGUL w/o F;,, which shows the importance of F;, in our framework.

Cross-Modal Attention Selection Strategy. Another important component in CAGUL is the
cross-modal attention guided visual token selection for perturbation. Based on the reasoning that
highly attended visual tokens provide most of the signals to the language module, we choose to
perturb the k least attended tokens with ;. We implement a variant of CAGUL where the k visual
tokens to be perturbed are randomly chosen for each sample sent to the encoder and report the results
under w/ random. The random selection of visual tokens achieves mostly comparable performance for
forget metrics, but underperforms significantly for retain metrics. These results validate the selection
of the least attended tokens for perturbation in CAGUL.

Choice of Forget and Retain Loss. As discussed in Section {4} we train the encoder Fy, using
a combination of PO and GD as the forget and retain losses, respectively. We additionally run
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experiments where we substitute the loss in CAGUL with other commonly used unlearning losses:
GA + GD and GA + KL. Similar to the baseline implementations of these losses, we utilize early
stopping due to the GA loss and include results in Table[5}] We observe that CAGUL w/ GA + GD
achieves better forget metrics, but its retain performance quickly degrades despite early stopping.
CAGUL w/ GA + KL relatively preserves retain performance but does not achieve satisfactory forget
metrics thus justifying the choice of PO + GD as the unlearning loss in CAGUL. Overall, the ablation
results demonstrate the importance of the different components in the CAGUL formulation.

Table 6: Unlearning performance metrics of CAGUL compared with baseline methods on Qwen-2.5-
VL-7B-Instruct

| Forget | Retain | General
Method | Dy | D Dup | MME | POPE

| Rouge(l) EM() APB(l) MinK(1) | Rouge(1) | Rouge(t) EM(1) TR(1) | Acc(l) | Acc.(D
Pretrain | 3061  0.98 037 0.0 3627 | 3401 010 1128 | 86.68 | 86.94
Finetune | 7407  56.92 4562  2.83 7249 | 6818 5351 89.85 | 67.58 | 79.24
Retrain | 44.04 1452 1070 144 7268 | 67.80 5423 9108 | 71.31 | 76.41
GA 0.02 018 018 0.0 0.04 0.00 000 8256 | 28.99 | 45.74
GA+GD | 4539 2037 1392 058 76.88 | 7105 7847 9396 | 75.72 | 8T.02
GA+KL | 4.66 037 018 635 8.66 12.65  0.79 8853 | 68.68 | 78.93
PO+GD | 4241 5132  30.63  4.82 8108 | 7841 9630 9442 | 7242 | 86.89
CAGUL | 4082  37.13 2378  3.14 71.88 | 50.23  40.01 9156 | 68.64 | T79.62

E.5 Results on Qwen-2.5-VL-Instruct

We report the results from our experiments on Qwen-2.5-VL-Instruct in Table[6] We first finetune
Qwen-2.5-VL-Instruct on the FIUBench dataset to ensure sufficient memorization of individual
profiles from the dataset, which is demonstrated by the increased performance metrics across Dy, D,
and D,,, for Finetune compared to Pretrain. We observe that, compared to LLaMA-3.2-11B-Vision-
Instruct, Qwen-2.5-VL-Instruct preserves downstream model performance on MME and POPE to a
larger degree after finetuning.

With CAGUL, we achieve satisfactory unlearning results as most metrics measured on Dy incur
significant drops compared to Finetune. CAGUL also preserves the overall retain performance on
D, and the model’s general utility on MME and POPE datasets. However, we notice a decline
in the Rouge and EM scores for D,,, despite an increase in the TR metric. We conjecture that
this loss in performance arises as a result of the VLM’s architecture. LLaMA-3.2-11B-Vision-
Instruct implements cross-attention layers that feed image representations into the language model
discontinuously (i.e., only at a few select layers), whereas Qwen-2.5-VL-Instruct directly feeds image
representations to the language model at every layer and computes self-attention for concatenated
visual and text tokens instead of explicit cross-attention scores. As a result, encoding additional
information in the visual tokens has an increased impact on generated outputs with Qwen.

Among the baselines, although GA and GA+KL achieve superior forget performance, these methods
seriously degrade model utility despite the use of early stopping. In contrast, CAGUL mostly retains
model performance due to the use of the discriminator module Cg, which only allows samples
associated with forget images to be transformed by the encoder F,;. Unlike LLaMA results, GA+GD
achieves the best trade-off for Qwen, which is comparable to the Retrain method. Nonetheless,
CAGUL achieves better forget metrics than its baseline finetuning counterpart PO+GD, while
preserving the overall retain utility and general downstream accuracy. Note that all baseline methods
implement model fine-tuning and require significantly more resources than CAGUL, which achieves
satisfactory unlearning performance while keeping the VLM frozen.
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