Towards Personalized Privacy: User-Governed Data Contribution
for Federated Recommendation

Anonymous Author(s)

ABSTRACT

Federated recommender systems (FedRecs) have gained significant
attention for their potential to protect user privacy by keeping
user privacy data locally and only communicating model param-
eters/gradients to the server. Nevertheless, the currently existing
architecture of FedRecs assumes that all users have the same 0-
privacy budget, i.e., they do not upload any data to the server, thus
overlooking those users who are less concerned about privacy and
are willing to upload data to get a better recommendation service.
To bridge this gap, this paper explores a user-governed data con-
tribution federated recommendation architecture where users are
free to take control of whether they share data and the proportion
of data they share to the server. To this end, this paper presents a
cloud-device collaborative graph neural network federated recom-
mendation model, named CDCGNNFed. It trains user-centric ego
graphs locally, and high-order graphs based on user-shared data in
the server in a collaborative manner via contrastive learning. Fur-
thermore, a graph mending strategy is utilized to predict missing
links in the graph on the server, thus leveraging the capabilities
of graph neural networks over high-order graphs. Extensive ex-
periments were conducted on two public datasets, and the results
demonstrate the effectiveness of the proposed method.
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1 INTRODUCTION

Recommender systems [3, 35] have been shown to be an effective
technique for providing personalised content recommendation ser-
vices (e.g., videos and goods) to users based on their preferences.
Typically, the recommender system is deployed on a central server
that collects all users’ historical behavior data (e.g., clicks and pur-
chases) to train a global recommendation model, and the more data
that is collected, the more accurate the model is. However, such
recommender systems inevitably raise privacy concerns due to
their centralized data collection mechanism. Moreover, many regu-
lations, such as the General Data Protection Regulation (GDPR!),
have recently been issued to better protect users’ data privacy, so
it is desirable to investigate how to balance privacy risks against
recommendation utilities.

Recently, federated learning [22, 31], as a promising solution to
privacy-preserving machine learning, has been widely adopted in
recommender systems to mitigate privacy concerns, termed feder-
ated recommender systems (FedRec) [25, 30]. Specifically, as shown
in Figure 1 (a), the key idea of FedRec is that all of the user’s data
is retained on their own device in a decentralized fashion. In each
training round, the central server randomly selects a group of de-
vices to train locally, and then only parameters/gradients (without
actual data sharing) are aggregated to the central server to learn
a global model that will be redistributed to each device. Research
on FedRecs could be roughly classified into two categories: ma-
trix factorization based FedRecs (MF-FedRecs) [1, 4, 19] and graph
neural networks based FedRecs (GNN-FedRecs) [20, 21, 27]. MF-
FedRecs mainly learns the global item embedding table by collabo-
ratively training the local first-order user-item interaction matrix
distributed across different devices. On the other hand, GNN-based
recommender systems [29] have recently achieved state-of-the-art
results due to their superior ability to effectively capture higher-
order graph structural information compared to matrix factoriza-
tion methods. However, in federated scenarios, each device has
only a first-order user ego graph that includes the items that the
user interacts with directly. Hence, the core challenge behind GNN-
FedRecs is to learn higher-order graph structural information in a
privacy-preserving manner. For example, FedGNN [27] presents to
use a trusted third-party server to construct a high-order graph.

!https://gdpr-info.eu/
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(b) Personalized privacy budget

Figure 1: (a) 0 privacy budget federated recommender systems
that users do not upload any data to the server. (b) Person-
alized privacy budget federated recommender systems that
users are free to take control of whether they share data and
the proportion of data they share to the server.

Nevertheless, the currently existing architecture of FedRecs as-
sumes that all users have the same 0-privacy budget, meaning they
do not upload any data to the server, which is inflexible and unap-
pealing due to the following reasons: (1) it overlooks those users
who are less concerned about privacy and willing to share either
all or portions of their data to receive a better recommendation
service. (2) The model performance of FedRec is generally degraded
due to the non-identically distributed data among the users’ de-
vices [13, 17]. Thus, adopting a uniform policy where all users are
prohibited from uploading data could also hurt the revenue of plat-
forms due to the degraded model performance. (3) It requires that
users who need the recommendation service have to be involved
in model training, which brings a huge burden to the user’s device
as it requires substantial computational and storage resources as
well as communication costs.

To mitigate above issues, this paper explores a user-governed
data contribution federated recommendation architecture where
users are free to take control of whether they share data and the
proportion of data they share to the server. In such a setting, this
paper presents a cloud-device collaborative graph neural network
federated recommendation model, named CDCGNNFed. It trains
user-centric ego graphs locally, and high-order graphs based on
user-shared data in the server in a collaborative manner via con-
trastive learning. Specifically, a graph mending strategy is first
employed to predict missing links in the graph on the server, thus
leveraging the capabilities of graph neural networks over high-
order graphs. After that, for each training round, devices and the

server independently infer and exchange embeddings, so that local
and global views of the same node can be constructed as positive
pairs for contrastive learning.

Overall, our main contributions are summarized as follows:

e To our best knowledge, this is the first work to investigate
a more fliexible and personalized privacy framework called
user-governed data contribution federated recommendation
(UGFedRec), where users have granular control over the ex-
tent to which they are willing to share data with the platform
to balance privacy risks and recommendation utilities.

o In the UGFedRec setting, we propose a cloud-device collab-
orative graph neural network federated recommendation
model, named CDCGNNFed, which trains user-centric ego
graphs locally, and high-order graphs based on user-shared
data in the server in a collaborative manner via contrastive
learning.

e We conduct extensive experiments on public real-world datasets
to validate the effectiveness of the proposed methods, and
experimental results demonstrate that the proposed method
can achieve a promising performance for the Top-K recom-
mendation.

The remainder of this paper is organized as follows. Section 2
will review related work, and Section 3 will formulate the research
problem and elaborate on the proposed method. The experiments
are discussed in Section 4, followed by a conclusion in Section 5.

2 RELATED WORK

2.1 Centralized Recommendation

Recommender systems have been shown to be an effective tech-
nique for providing personalised content recommendation services
(e.g., videos and goods) to users by collecting all users’ historical
behavior data (e.g., clicks and purchases) to train a global recom-
mendation model on the server. Methods in this field can be broadly
categorised as MF-based methods, deep learning based methods
and GNN-based methods. The main idea of MF-based methods
[15, 23] is to decompose the user-item interaction matrix into two
lower-dimensional matrices representing latent features of users
and items. Deep learning based methods [6, 8, 32] focus on leverag-
ing deep neural networks to learn intricate patterns from user-item
interaction data, often capturing non-linear relationships. In recent
years, GNN-based recommender systems [10, 29, 33] have achieved
state-of-the-art results due to their superior ability to effectively
capture higher-order graph structural information. As previously
highlighted, these methods are largely centralized, collecting user
data for model training, which raises potential data privacy con-
cerns.

2.2 Federated Recommendation

Drawing inspiration from the efficacy of federated learning in en-
suring privacy in machine learning, FedRecs have been introduced,
allowing for cloud-device model collaborative training without
actual data sharing. Research on FedRecs could be roughly classi-
fied into two categories: matrix factorization based FedRecs (MF-
FedRecs) [1, 4, 19] and graph neural networks based FedRecs (GNN-
FedRecs) [20, 21, 27]. MF-FedRecs mainly learns the global item



embedding table by collaboratively training the local first-order
user-item interaction matrix distributed across different devices.
For example, FCF [1] extends collaborative centralized filtering
to the federated model. In particular, it utilizes alternating least
squares and stochastic gradient descent to optimize user and item
embeddings on the device and server sides, respectively. On the
other hand, GNN-based recommender systems [29] have recently
achieved state-of-the-art results due to their superior ability to
effectively capture higher-order graph structural information com-
pared to matrix factorization methods. For instance, FedGNN [27]
presents to use a trusted third-party server to construct high-order
graph such that GNNs could be employed to learn user/item embed-
dings in a privacy-preserving manner. Although currently FedRecs
have attracted considerable interest in the privacy-preserving rec-
ommendation field, methods in the context of user-governed data
contribution federated recommendation remain highly unexplored.
A work similar to us is FedeRank [2], where users also have the
ability to govern the proportion of data they upload. However, a dis-
tinguishing factor from our method is that in Federank, all user data
remains local, while users can dictate the percentage of gradients
corresponding to training samples that they transmit.

3 PROPOSED METHOD

In this section, we first formulate the research problem and then
elaborate the proposed method.

3.1 Problem formulation

Let U and I represent a set of users/devices? and items, respec-
tively. X € RIUIXITI genotes the binary user-item interaction
matrix where the element x,,; represents the implicit feedback be-
tween user u € U and item i € 7. Specifically, x,,; = 1 and x,; = 0
indicate whether there is an interaction or not, respectively. In
addition, the embedding-based recommendation model is denoted
as f(©) parameterized by ©, such as matrix factorization based
methods and graph neural network based methods. Specifically,
it maps users and items into a shared embedding space via the
model f(©) : U,I - P € R‘W‘Xd,Q € RIZIXd \where the user
embedding p,, € P and the item embedding q; € Q represent the
d-dimensional vector representations of the user u and the item i,
respectively.

In the traditional federated recommendation setting, each user
u keeps all of their own interaction data X;, € R that correspond
to the u-th row of X on their local device for the purpose of pri-
vacy protection. In addition, each device u maintain its local model
consisting of a set of local parameters that have model parameters
Oy, the user embedding p,, € R4, and the item embedding table
Qu € RII1Xd For each training round, the server selects a set of
devices, denoted Us C U, to train their models locally. Each local
device typically uploads the locally trained parameters ©,, and the
item embedding table Q, or their corresponding gradients VO,
and VQ, to the server. After that, the server will train a global
model based on the collected parameters/gradients from Us via the
aggregation function, such as FedAvg [22], and then redistributes
the global model to all devices.

2We assume that each device is only associated with a single user. Therefore, we
interchangeably use the terms "device" and "user" throughout this paper.

Although the federated recommendation architecture above can
protect users’ privacy by keeping all users’ data locally, it assumes
that all users have the same 0-privacy budget, i.e., they do not
upload any to the server, thus overlooking those users (denoted ™)
who are less concerned about privacy and willing to share either
all or portions of their data to receive a better recommendation
service. To bridge this gap, this work aims to explore a more flexible
federated recommendation framework, termed user-governed data
contribution federated recommender system (UGFedRec), where
users are free to take control of whether they share data and the
proportion of data they share with the server. Specifically, the
main difference between UGFedRec and traditional FedRec is that
each user has the option of uploading a certain percentage of the

interaction data X, € RlIl/ to the server, where 0 < |I| < |I]
is the number of data users are willing to upload to the service.
In this way, the server can also train a cloud model consisting
of model parameters f;(©g) and the item embedding table Qg €
RIZ1%d hased on the data X+ € RIU IXIZTI where |U*| < |U|
is the number of users willing to upload data. Finally, the goal of
UGFedRec is to minimize the following loss function £:

L= Ly+Ls (1)
ueld

where £, and L are loss functions for locel devices and the server,
respectively.

3.2 CDCGNNFed

This work aims to explore a more flexible and personalized pri-
vacy framework for user-governed data contribution federated
recommendation (UGFedRec). To this end, we introduce a cloud-
device collaborative graph neural network federated recommenda-
tion model, named CDCGNNFed. The architecture of the proposed
method is shown in Figure 2, we first simulate that users can freely
choose what percentage of historical interaction data to share with
the cloud server, so that the device-side model and the cloud-side
model can train models based on local data and data that users
are willing to share, respectively. To leverage the capabilities of
graph neural networks over high-order graphs, we introduce a
graph mending strategy to predict missing links in the graph on the
server. After that, the server randomly select a group of devices for
each training round, and they independently infer and exchange
embeddings, so that local and global views of the same node can be
constructed as positive pairs for contrastive learning. The detailed
algorithm is described as Algorithm 1.

3.3 Graph mending

Within the context of UGFedRec, users voluntarily contribute either
all or a portion of their interaction data to the server. Consequently,
the server constructs a user-item bipartite graph G = {U*, I, E%},
where U™ is the set of users willing to share their data, 7 denotes
the set of all items, and E¥ € U™ x I denotes the user-item inter-
action data provided by users. Nevertheless, when the volume of
user-contributed data is limited, the graph G on the server may be
disjointed, consisting of several subgraphs representing isolated
user-item interactions. As a result, simply applying a GNN directly
to these subgraphs might not effectively capture higher-order graph
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Figure 2: The architecture of the proposed method. Users can choose to upload all, some, or no data to the server. The server
employs a graph mending strategy to predict missing links, and subsequently, both the server and local devices collaboratively

learn user/item embedding in a contrastive learning fashion.

structural information, potentially leading to suboptimal outcomes.
To address this challenge, inspired by the approach in FedSage+
[34], we introduce a graph mending strategy that predicts the miss-
ing links in graph G. This enables the GNN to fully exploit its node
representation capability, ensuring more comprehensive informa-
tion capture from the graph structure. Specifically, we first employ
a graph impairing strategy to extract or "impart" a subset of links
Ercét serving as the ground truth for training graph mending
by simulating the scenario wherein links may be missing. With
the impaired links in place, we can leverage standard GNNs for
learning the node embedding over graph G as follows:

Zu,Zi = GNN(G) )
where z,, € Z,,z; € Z; are the user embedding and the item em-
bedding, respectively. GNN(-) denotes GNN-based node encoder
models. Since G is a bipartite graph in this context, we adopt Light
Graph Convolution (LGC [11]) as the encoder, which will be pro-
vided more detailed introduction in the subsequent sections. In this
way, for the pair of user-item nodes involved in the impaired link
eui € EF, we can use cosine similarity (denoted cos(-)) to calculate
the distance between the pair of nodes, and update the user/item
embeddings using the following loss function:

Lgm = Z [lcos(zu, zi)—euill2, eui = 1, eui € EF5eyi = 0,ey; ¢ EF
eui€ &
©)
Finally, we can predict the potential missing links by calculating
the cosine similarity of user-item node pairs of G, and determine
whether to establish a link by comparing it to a predefined threshold
t.

3.4 Embedding inference

After predicting the missing links on the server side, we perform
embedding inference separately on the device side and server side,
aiming to obtain the local view of the same node on the device side
and the global view on the server side.

3.4.1 Device side embedding inference. Since each device has only
a first-order user ego graph that includes the items that the user
interacts with directly. Thus, the user/item embeddings could be
learned by LGC [11] as follows:

(l+1) (l)

Cu-d ze%(:u) ,_N(u ,_N(l i-d
(l+dl) Z (l)d
' ueNG) N(, ‘/ N(u “

where e,_; and e;_; denote the user embedding and the item
embedding derived from the device side, respectively.

4

3.4.2 Server side embedding inference. Since the graph on the
server side possesses higher-order graph structural information
after graph mending, we first use the same method as in Equation
(4) to calculate the embeddings of the user and item nodes at each
layer. We then use the following layer combination method [11] to
obtain the final user/item embeddings on the server side, denoted
e,—s and e;_g, respectively.

L
ey_s = Z ale,alzs; = Z ale(l) (5)
1=0

where ¢ is the hyperparameter representmg the importance of the
I-th layer.



3.5 Device-cloud constrastive learning

After obtaining the user/item embeddings on both the local device
and the server, we allow those devices willing to upload data to the
server to exchange their corresponding user/item embeddings with
the server. As a result, for the same user/item node, we can consider
the embedding obtained from the local device as the node’s local
view, and the embedding from the server as its global view. In this
way, we can construct a positive pair, that is, {(e,_q, eu—s)|u €
U™} for contrastive learning, and treat views from different nodes
as negative pairs, that is, {(e,_g, €y—s)|u, 0 € U*,u # v}. Formally,
we follow SimCLR [5] to adopt contrastive loss InfoNCE [9] as
follows:

exp(cos(ey_g,€ey—s)/7)

LET = Z ~log (6)
wellt Zve%{*exp(cos(eu,d,eu,s)/T)
where 7 is the hyperparameter known as temperature. Analogously,

the contrastive loss of items is denoted as Lgfm. In this way, the

final self-supervised loss is Lgs1 = Lgi” + Lgfm [28].

3.6 Local and global model update

In the context of local model updates for devices, for users who
are not willing to upload their data to the server, we leverage the
data available on their local devices and update using the Bayesian
Personalized Ranking (BPR) [24] loss function Lppg as follows:.

Lopr== ), > Ino (cos(ey g e;a) ~ cos(eya e;-a)|+Allel?

ieENy jENy
™
where A is a hyperparameter for controlling the strength of the Ly
regularization. Analogously, for those users who willing to share
their data with the server and for the server-side model, we train
models using a combination of the BPR loss and self-supervised
loss, as illustrated below.

L= Lgpr+MLssy + 12 |le]? (®)

where A1 and A3 are hyperparameters for controlling the strength
of self-supervised loss and regularization. Finally, we can employ
various parameter aggregation methods, such as FedAvg [22], to
update the global parameters and then redistribute to all devices.

4 EXPERIMENTS

In this section, we will first introduce the experimental settings,
and then report and discuss the experimental results for answering
the following research questions:
e How does the proposed method compare with other feder-
ated recommendation methods in the UGFedRec setting?
e How do various components, such as contrastive learning,
influence the performance of the proposed method?
e How do various hyperparameters influence the performance
of the proposed method?

4.1 Settings

4.1.1 Datasets. To validate the effectiveness of the proposed method,
the experiment is carried out on two public datasets, including
Gowalla [18], and Yelp20183. The statistics of datasets are described

3https://www.yelp.com/dataset/challenge

Algorithm 1 CDCGNNFed

1: Users voluntarily contributed data to the server to construct a
graph G = {U*, 1,E*}
2: Initialize model parameters ©y, p,,, Qy for each client and the

server.
3: for t=0,... do
// In the device side

> For each training round

4 Select a set of devices Us randomly
5 for each device u € U in parallel do
6: Infer local user/item embedding via (4)
7 Upload user/item embedding to the server
8 end for
// In the server side
9 Predict missing links via Equation (3)
10: Infer user/item embeddings via Equation (4) and (5)
11 Distribute user/item embeddings to the device u € Us
// Device-cloud contrastive learning
12: for each device u € U in parallel do
13: local model training via Equation (7) and/or (8)
14: Upload local gradients to the server
15: end for
16: server model training via Equation (8)

// Global model update
17: Update global model via FedAvg
18: Distribute global model to all devices
19: end for > Until model convergence

in Table 1. The Gowalla is a location-based social network dataset
consisting of users and their locations by checking-in. On the other
hand, the Yelp2018 dataset is a business review dataset that in-
cludes customers, restaurants, and the associated reviews given
by customers to these restaurants. Following [12, 26], we exclude
users and items from Gowalla and Yelp2018 that have fewer than
20 and 10 interactions, respectively. Each of the three datasets is
then partitioned into training, validation, and test sets in an 8:1:1
ratio, respectively.

Table 1: The statistics of datasets.

Datasets ‘ #Users ‘ #Items ‘ #Interactions

Gowalla
Yelp2018

1027370
1561406

29858 | 40981
31668 | 38048

4.1.2 Baselines:
¢ Cloud-based recommendation methods:

— NeuMF [12]: It is the state-of-the-art MF-based deep rec-
ommendation method, utilizing DNN to supplant the dot
product function, thereby capturing the non-linearity present
in implicit feedbacks.

— LightGCN [11]: It is the state-of-the-art GNN-based rec-
ommendation method, utilizing GNN to capture high-
order graph structure information via the linear neigh-
borhood aggregation mechanism.

e FedRecs:



Table 2: The model performance with respect to Recall@20 and NDCG@20 on Gowalla for the partial uploading case.

Share ratio 0,0.1) [0.1,02) [0.203) [0.3,04) [0405) [0506) [0.60.7) [0.7,08) [0809) [0.9,1)
FedeRank 0.1438  0.1443  0.145 01453  0.1461  0.1468  0.1474  0.1479  0.1484  0.1491
UGFed-MF 0.1442  0.145 0.145  0.1463  0.1471  0.1478  0.1486  0.1493 0.15  0.1502

Recall@20  yGFed-GNN  0.1453  0.146  0.1468  0.1498
CDCGNNFed 0.1463 0.1478 0.1502  0.1531

0.1553 0.1573 0.1618 0.1704 0.1705  0.1752
0.1556 0.1583 0.1704 0.1727 0.1778 0.1809

FedeRank 0.1206 0.1215 01228  0.1236

UGFed-MF 01227 01235 01241  0.125
NDCG@20 UGFed-GNN  0.1163  0.119  0.1216  0.1245

CDCGNNFed 0.1228 0.1236 0.1244  0.1278

0.1247 0.1253 0.1268 0.1274 0.1287  0.1294
0.1258 0.1263 0.1272 0.128 0.1295  0.1302
0.1272 0.1301 0.1328 0.1356 0.1383 0.141
0.131 0.1345 0.1379 0.1452 0.1481 0.154

Table 3: The model performance with respect to Recall@20 and NDCG @20 on Yelp 2018 for the partial uploading case.

Share ratio 0,0.1) [0.1,02) [0.2,03) [0.3,04) [0.4,05) [0506) [0.60.7) [0.7,08) [0.809) [0.9,1)
FedeRank 0.0482  0.0491  0.0498 00506  0.0511  0.0521  0.0527  0.0533  0.0541  0.0562
UGFed-MF 0.0486  0.0493  0.0498 00504  0.0512  0.0521 00529  0.0542  0.0556 0.0571

Recall@20 yGFed-GNN  0.0461  0.0475  0.0489  0.051
CDCGNNFed 0.0493 0.0505 0.0518  0.0531

0.0523 0.0541 0.0558 0.0574 0.0597  0.0615
0.0544 0.0557 0.0568 0.0582 0.0605 0.0623

FedeRank 0.041 00414 00419  0.0423
UGFed-MF 0.0415  0.042 00427  0.0432
NDCG@20 UGFed-GNN  0.0423  0.0432  0.0442  0.0454
CDCGNNFed 0.0432 0.0444  0.045  0.0461

0.0428 0.0433 0.0438 0.0444 0.0451 0.046
0.0429 0.0435 0.0442 0.0448 0.0458  0.0467
0.0462 0.0475 0.0484 0.0495 0.0497 0.045
0.0468 0.0479 0.0485 0.0498 0.0507 0.0515

Table 4: The model performance with respect to Recall@20 and NDCG @20 on Gowalla and Yelp 2018 for the no uploading and

full uploading cases.

‘ Gowalla ‘ Yelp2018

Datasets | Recall@20 NDCG@20 | Recall@20 NDCG@20
Share ratio | o 1 0 1 | o 1 0 1
NeuMF - 0.1509 - 0.1309 - 0.0586 - 0.0476

Cloud  LightGCN - 0.1811 - 0.1534 - 0.0627 - 0.0509
FedMF 0.1435 - 0.122 - 0.0482 - 0.0413 -

FedRec  FedPerGNN | 0.1442 - 0.1233 - 0.0453 - 0.0409 -
FedeRank 0.1432  0.1494 0.1197 0.1308 | 0.0476 0.0574 0.0408  0.047
UGFed-MF 0.1435 0.1504 0.122  0.1312 | 0.0482 0.0583 0.0413 0.0475
UGFedRec  (JGFed-GNN | 0.1428 0.1776 0.1117 0.1538 | 0.0457 0.0626 0.0412  0.0503
CDCGNNFed | 0.1428 0.1823 0.1117 0.1553 | 0.0457 0.0639 0.0412 0.0522

— FedMF [4]: It is a MF-FedRec method which introduces a
user-centric distributed matrix factorization framework,
leveraging the homomorphic encryption technique to en-
sure users’ privacy.

— FedPerGNN [27]: It is GNN-FedRec method which em-
ploys a trusted third-party server to allocate neighbors,
who share co-interacted items, to individual users, thereby
leveraing the capabilities of GNN on capturing the high-
order graph information.

e UGFedRecs

- FedeRank [2]: It is a MF-based UGFedRec method. In
contrast to our approach, this method still retains all user
data locally. However, it allows users to control the pro-
portion of gradients corresponding to the training samples
that are uploaded to the server.

— UGFed-MF, and UGFed-GNN: In the UGFedRec setting,
the most naive approach would be to treat the server,
collecting data voluntarily uploaded by users, as another
device equivalent to other user devices, and then proceed
with standard federated learning. Thus, we adopt MF and
GNN as base models respectively, denoted as UGFed-MF



and UGFed-GNN, to serve as baselines under this setting.
We consider items that a user hasn’t interacted with as
potential candidates and report the results averaged across
all users.

4.1.3  Evaluation Metrics. To evaluate the model performance, we
employ two commonly used metrics, i.e., Recall@20 and NDCG@20
(Normalized Discounted Cumulative Gain) throughout experiments
[11, 12]. The former measures the proportion of relevant items
found within the top-20 recommendations, and the latter evaluates
not only the presence of relevant items in the top-20 but also their
ranking quality, with higher positions being more valuable. Fol-
lowing [11], we consider items that a user hasn’t interacted with
as potential candidates and report the results averaged across all
users.

4.1.4  Hyper-parameter Settings. We employ Xavier method [7] to
initialize user and item embeddings with the embedding dimension
64 for all methods. We use Adam [14] as the optimizer, and the learn-
ing rate and weight decay are search from {0.001, 0.0005, 0.0001}
and {0.005,0.0001, 0.0005, 0.00001} via grid search, respectively. In
addition, the number of devices sampled for each training round is
256 and 528 for MovieLens-1M and Yelp, respectively. The number
of GNN layers for devices and the server models is 1 and 3, respec-
tively. We will discuss settings of other hyperparameters in section
4.4. The baselines are implemented by the codes provided by the
authors.

4.2 Top-K Recommendation (RQ1)

We first validate the efficacy of our method on the prevalent top-k
recommendation task commonly seen in recommendation systems.
Our evaluation initially simulates scenarios where users have au-
tonomy over data uploading, encompassing three distinct cases:
(1) No uploading (i.e., sharing ratio of 0), which renders the model
equivalent to a traditional federated recommendation system with
a 0-privacy budget; (2) Partial uploading (with a sharing ratio be-
tween 0 and 1). Here, we employ uniform sampling to randomly
designate an upload ratio for each user; (3) Full uploading (shar-
ing ratio of 1), under which circumstance the model aligns with
a centralized recommendation system. For each case, we indepen-
dently execute the model five times using different random seeds
and report the averaged outcomes, and all results are statistically
significant with p < 0.05. The results for the partial data uploading
scenario are delineated in Tables 2 and 3 for two distinct datasets,
while results for no uploading and full uploading scenarios are
reported in Table 4. From the results, we can observer that:

e Overall, our proposed method outperforms baselines in the
majority of cases, attesting to the effectiveness of the ap-
proach we’ve introduced.

o Inmost cases, GNN-based methods outperform those built on
MF. Notably, for partial uploaded scenarios with smaller shar-
ing ratios, the advantage of GNN is less pronounced. This
can possibly be attributed to the server collating predomi-
nantly independent lower-order graphs, thereby mitigating
GNN’s potential in capturing higher-order graph structures.
However, as the sharing ratio increases, the GNN-based tech-
niques significantly overshadow MF-based methods.

e For the partial uploading case, our method, in tandem with
UGFed-MF and UGFed-GNN, frequently outperforms Feder-
ank. This observation is plausible since, unlike Federank, we
directly upload data to the server, rather than transmitting
select gradients.

e In the no uploading scenarios, our model’s performance
aligns closely with the standard federated model. The MF-
based approaches yield relatively better results. This be-
havior is understandable as there is no supplementary data
available for utilization, leading our system to revert to the
conventional federated recommendation model. Conversely,
the GNN-based method, which can only harness first-order
graph information, results in a somewhat suboptimal out-
come.

e For full uploading scenarios, our model exhibits superior
performance compared to centralized approaches. We at-
tribute this enhanced performance partly to the introduced
contrastive learning component. Moreover, by predicting
missing links, our method partly alleviates the data sparsity
issue, which subsequently enhances model performance.

4.3 Ablation Study (RQ2)

In this section, we aim to demonstrate the effect of the graph mend-
ing strategy component for predicting missing links and the device-
cloud constrastive learning component for learning local and global
views for the same node. To this end, we implement CDCGNNFed
without graph mending strategy and constrastive learning, denoted
as w/o GM and w/o CL, respectively. The experiments are carried
out on two datasets, and other settings are the same as the partial
uploading scenario. Experimental results are reported in Table 5,
from which we can observe that:

o Overall, the removal of any component results in a significant
deterioration in model performance. This underscores the
indispensability and efficacy of both components within the
model.

o Notably, the removal of the GM component leads to a more
pronounced degradation in performance for both models.
A possible explanation for this is the sparsity of the two
datasets. The GM component proves adept at predicting
missing links, effectively mitigating the challenges posed by
this sparsity.

o The performance also sees a marked decline upon the re-
moval of the CL component. This reiterates the potency of
leveraging the contrastive learning component in rendering
the learned embeddings more expressive. Concurrently, it
affirms that in the UGFedRec context, the naive approach of
viewing the server as a specialized device is suboptimal.

4.4 Hyperparameter analysis (RQ3)

In this section, we investigate the impact of the four critical hyper-
parameters associated with our proposed method on the model’s
performance on Gowalla dataset. These hyperparameters include:
(1) Threshold ¢t = {0.2,0.4,0.6,0.8} for graph mending strategy. (2)
Temperature 7 = {0.1,0.2,0.5, 1} for constrastive learning; (3) The
number of devices |Us| = {256, 528, 1024, 2048} for each training



Table 5: Ablation studies results with respect to GG and CL
components.

‘ Gowalla ‘ Yelp2018
Method | Recall@20 NDCG@20 | Recall@20 NDCG@20
w/o GM 0.1689 0.1438 0.052 0.0412
w/o CL 0.1702 0.1442 0.0524 0.0427
CDCGNNFed | 0.1721 0.1446 0.0571 0.049

round; (4) The number of layers I = {1, 2, 3, 4} for GNN. The experi-
mental settings are the same as the partial uploading scenario, and
results are shown in Figure 3. We can observe that:

o As the threshold increases, the model’s performance initially
rises but subsequently declines. This observation is ratio-
nal, stemming from the fact that at lower thresholds, the
graph mending strategy tends to produce a higher number
of links, potentially introducing false negative links that de-
grade model performance. On the contrary, at higher thresh-
olds, fewer links are generated, resulting in the persistence
of numerous isolated subgraphs at the server end. This sit-
uation impedes the full exploitation of the Graph Neural
Network’s (GNN) inherent capabilities, leading to a drop in
model performance.

e With regard to the temperature parameter in contrastive
learning, the model’s performance significantly deteriorates
when the parameter’s value is small. A plausible explanation
for this decline is that the model’s optimization process is
dominated by the negatives. On the other hand, when the
temperature parameter has a larger value, the model also
does not perform optimally. This could be attributed to the
model requiring a greater number of epochs to converge.

o As the number of devices participating in training increases
per round, the model’s performance gradually improves and
stabilizes. A potential explanation for this improvement is
that with a growing number of participating devices, there
is a greater probability of incorporating users who actively
share their data in each round. This, in turn, enhances the
proportion of the model utilizing the contrastive learning
strategy, thereby boosting its overall performance.

e The model exhibits optimal performance when the depth of
the GNN is set to three layers. A plausible reason for this is
that with fewer layers, the GNN may not capture the higher-
order graph structural information effectively. On the other
hand, when the network is too deep, it might encounter the
over-smoothing issue [16], consequently diminishing the
model’s efficacy.

5 CONCLUSION

In this study, we contend that the prevailing FedRecs architecture
lacks adaptability and is less enticing. This is primarily because
it uniformly assumes a 0-privacy budget for all users. Such an as-
sumption fails to account for those individuals who, being less
privacy-conscious, are open to sharing either their complete data or
parts of it in exchange for enhanced recommendation services. To
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Figure 3: The performance of model with different hyper-
parameter settings on Gowalla dataset. (a) Threshold t; (b)
Temperature 7; (c) The number of devices |U|; (d) The num-
ber of layers [.

address this concern, we delve into a largely untapped area termed
as the user-governed data contribution federated recommendation
(UGFedRec). This paradigm empowers users with the autonomy to
decide if they want to share data and, if so, the extent to which they
would share with the server. Building on this concept, we introduce
a cloud-device collaborative graph neural network federated rec-
ommendation model, dubbed CDCGNNFed. This model facilitates
the training of user-centric ego graphs at the local level, while also
leveraging high-order graphs constructed from user-contributed
data on the server. The collaboration between the two is further
enriched through contrastive learning. The efficacy of our proposed
approach was validated on two public datasets. The experimental
results demonstrate that, within the context of UGFedRec settings,
our model consistently outperforms the existing baselines in the
vast majority of scenarios. In future work, we intend to explore the
integration of our framework with various base recommendation
models, such as MF-based recommendation techniques. Addition-
ally, we aim to address the cold-start problem inherent in federated
recommender systems.
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