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ABSTRACT

The prototypical approach to reinforcement learning involves training policies
tailored to a particular agent from scratch for every new morphology. Recent work
aims to eliminate the re-training of policies by investigating whether a morphology-
agnostic policy, trained on a diverse set of agents with similar task objectives,
can be transferred to new agents with unseen morphologies without re-training.
This is a challenging problem that required previous approaches to use hand-
designed descriptions of the new agent’s morphology. Instead of hand-designing
this description, we propose a data-driven method that learns a representation of
morphology directly from the reinforcement learning objective. Ours is the first
reinforcement learning algorithm that can train a policy to generalize to new agent
morphologies without requiring a description of the agent’s morphology in advance.
We evaluate our approach on a standard benchmark for agent-agnostic control,
and improve over the state of the art in zero-shot generalization. Importantly, our
method attains good performance without an explicit description of morphology.

1 INTRODUCTION
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Figure 1: Overview of the architecture of our pol-
icy. The agent’s morphology is represented by a
sequence of tokens, and is processed by a sequence-
to-sequence Transformer policy.

Agent-agnostic reinforcement learning is an
emerging research challenge that involves train-
ing policies that are transferable to new agents
with different morphology. Rather than train-
ing policies from scratch for every new agent, a
pretrained agent-agnostic policy can provide an
effective solution with potentially no additional
training. In the current deep learning epoch,
foundation models (Bommasani et al., 2021, p.
3) demonstrate the promising applications of
large-scale transfer learning in other domains.
Models like BERT Devlin et al. (2019), GPT-3
Brown et al. (2020), and CLIP Radford et al.
(2021) reduce the computational barrier-to-entry
often required to obtain high-performance mod-
els in downstream applications. Agent-agnostic
reinforcement learning as a framework has the
potential to enable a similar class of founda-
tion models for control if appropriately scaled.
However, being able to scale agent-agnostic re-
inforcement learning requires an effective neural architecture and a flexible representation for tasks.
In agent-agnostic reinforcement learning, tasks are defined by the morphology of the agent Huang
et al. (2020), and effectively representing morphology is an open research question. The morphology
representation is crucial in agent-agnostic reinforcement learning and directly influences how well
the agent generalizes to new tasks. In this work, we investigate how an effective representation of
morphology can be learned, rather than manually designed, as in prior work.

Existing works have tackled this question by assuming the agent obeys strict design criteria. First,
the agent must have limbs. Second, each limb must have similar propioception Wang et al. (2018);
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Table 1: Comparison of assumptions seen in existing literature. Our method is more flexible than
prior work, requiring neither graph structure, nor explicitly aligning the agent’s sensors and actuators
to its limbs in order to generalize effectively. Our approach requires less information about the
agent’s morphology than prior work, and performs 16% better in zero-shot generalization to new
morphologies than existing methods with stronger assumptions, which is discussed in Section 6.

Method \ Assumptions Graph Structure Alignment
Graph Networks Sanchez-Gonzalez et al. (2018) ✗ ✗
NerveNet Wang et al. (2018) ✗ ✗
Shared Modular Policies (SMP) Huang et al. (2020) ✗ ✗
Amorpheus Kurin et al. (2021) ✗

Ours

Huang et al. (2020); Kurin et al. (2021). These assumptions restrict agent-agnostic reinforcement
learning to rigid-body agents in a MuJoCo-like Todorov et al. (2012) simulator that exposes per-limb
observations. Deviating from prior work, we investigate an architecture that does not require these
strict assumptions , instead learning a representation of morphology with reinforcement learning. Our
approach performs 16% better (see Section 6) than existing methods in zero-shot generalization, and
requires less information about the morphology of the agent being controlled than prior art.

In this paper, we make the following contributions. First, we frame learning morphology as a
sequence modelling problem, and represent an agent’s morphology as a sequence of tokens, with
corresponding learnt embeddings. In this fashion, an agent’s morphology is differentiable, and is
optimized from the reinforcement learning objective. Second, we propose an agent-agnostic neural
network architecture that generalizes effectively and does not assume the agent has limbs, nor has
per-limb observations. Third, our approach generalizes up to 32% better than existing work on large
tasks in a standard benchmark, and displays an emergent robustness to broken sensors.

2 RELATED WORKS

Generalization in reinforcement learning has a rich history, with early works demonstrating general-
ization to new tasks in robotics Sutton et al. (2011), and in video games Schaul et al. (2015); Parisotto
et al. (2016). Tasks were often defined via goal states Sutton et al. (2011), with a reinforcement
learning objective defined as minimizing the distance to the goal throughout an episode Andrychow-
icz et al. (2017); Nasiriany et al. (2019). These goal-based methods can be improved combining
them with language Jiang et al. (2019), and learnt latent spaces Eysenbach et al. (2019); Rakelly
et al. (2019). As the field matures, researchers are beginning to investigate larger-scale multi-task
reinforcement learning (MTRL) Vithayathil Varghese & Mahmoud (2020), including generalization
across all of Atari Hafner et al. (2020), and generalization to new agents with different dynamics
or morphology. The latter is an emerging topic called agent-agnostic reinforcement learning Devin
et al. (2017); III et al. (2020); Huang et al. (2020). This setting is challenging because different
agents typically have incompatible (different cardinality) observations and actions, which precludes
conventional deep reinforcement learning approaches.

Conventional deep reinforcement learning approaches expect fixed-size observations and actions,
and devising effective alternatives is an open research challenge. Existing work has shown modu-
larization can both improve multi-task generalization Chang et al. (2021); Goyal et al. (2021), and
allow processing of different-cardinality observations and actions Huang et al. (2020). Many such
approaches utilize Graph Neural Networks Gori et al. (2005); Scarselli et al. (2005), conditioning
the policy on a graph representation of the agent’s morphology. Graph-based approaches have
demonstrated the ability to generalize to novel agent morphology Huang et al. (2020), and learn
complex gaits Wang et al. (2018); Sanchez-Gonzalez et al. (2018). However, recent work has shown
that generalize can be further improved using Transformers Kurin et al. (2021), due to their success
in modelling dynamic structure via the attention mechanism Tenney et al. (2019); Vig & Belinkov
(2019). Agent-agnostic reinforcement learning methods, including those with Transformers, currently
rely on a manually-designed representation of morphology (see Section 3). Our approach differs
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Figure 2: Visualization of the architecture of our policy. Our policy is a sequence-to-sequence
deep neural network, consisting of a Transformer Vaswani et al. (2017) encoder that processes the
current state st and a sequence of observation tokens (see Section 4), with a Transformer decoder
that processes a sequence of action tokens, given the encoder hidden state. Our policy is invariant to
the dimensionality of observations and actions, and does not assume the agent has limbs.

from prior work by instead learning a representation of morphology with reinforcement learning that
produces better generalization than a manually-designed representation.

3 HOW DO WE REPRESENT MORPHOLOGY?

The goal of this section is to outline what information is needed to define a morphology. This
terminology is used, for example, to denote an interpretation of the physical rigid-body of a MuJoCo-
like Todorov et al. (2012) agent as a graph, where nodes correspond to rigid limbs, and edges indicate
two limbs are connected by a joint. This terminology is based on classical work on kinematic
chains (Denavit & Hartenberg, 1955). In this section, we will explore how morphology is used in
existing work, and will discuss its benefits and limitations. Towards this goal, we first introduce the
reader to notation that will be referred to throughout our paper.

Defining Morphology As A Graph. The morphology of a decision-making agent is often repre-
sented as a graph. Consider the agent-conditioned undirected graph Gn = (Vn, En) whose vertices
Vn each represent a limb the agent has, and whose set of edges En contains all pairs of limbs that are
connected by a joint. For the typical MuJoCo-like Todorov et al. (2012) agent from prior work, the
topology of this graph closely resembles the topology of the agent’s body.

Vn = {1 . . . NL(n)} (1)
En = {(i, j) : i and j are connected limbs} (2)

Defining morphology in terms of Gn intuitively mirrors how the agent is physically connected;
however, it is not a complete description of the agent. Notice the number of limbs NL(n) is not
necessarily equal to the dimensionality of the action space NA(n). In order to generate an action
using a morphology defined in terms of the agent’s limbs, one needs a mapping from limbs to actions.

F act
n : {1 . . . NL(n)} −→ powerset({1 . . . NA(n)}) (3)

This mapping permits each limb to generate a different number of control signals, mentioned by
Huang et al. (2020, p. 6) , at the expense of the researcher designing this mapping ahead of time. In
prior works, a shared neural module generates control signals for each limb Sanchez-Gonzalez et al.
(2018); Wang et al. (2018); Huang et al. (2020), even when En is withheld, as is the case in newer
works such as Kurin et al. (2021, p. 4). That module requires a limb-specific input, which we call the
local observation, defined by the additional mapping F obs

n from limbs to observations.

F obs
n : {1 . . . NL(n)} −→ powerset({1 . . . NS(n)}) (4)

3
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Consequences Of The Graph Definition. One appealing quality of this definition of morphology
is that it has an intuitive physical interpretation. Given only the morphology, one can invert the
definition to recover the agent’s physical design, including the arrangement of its sensors. This
appealing quality comes at the expense of strict design criteria, however. In this section, we will
discuss several consequences of the graph definition of morphology. (1) First, this definition assumes
the agent’s physical design can be expressed as a graph, which restricts methods to MuJoCo-like
Todorov et al. (2012) agents with rigid limbs, which is not true, for example, for a car with flexible
rubber tires. We refer to this as the graph structure assumption, and categorize prior work using
this assumption in Table 1. The community is interested in the eventual application of agent-agnostic
reinforcement learning in real-world robotic systems. We speculate that a graph inductive bias may
be insufficient to represent the complex physique of certain agents. (2) Another common assumption
is that sensors and actuators are categorizable according to a particular limb. Methods with this
alignment assumption in Table 1 only maintain agnosticism to limbs, and not to individual sensors
and actuators Huang et al. (2020); Kurin et al. (2021). Some interesting reinforcement learning
problems violate this property by not having per-limb sensors, or well-defined limbs. Tackling these
problems may require more flexible methods that do not require aligning sensors to limbs.

4 MORPHOLOGY AS SEQUENCE MODELLING

Defining morphology in terms of limbs, which we discussed in Section 3, often requires making
three unrealistic assumptions about the agent (see Table 1). In this section, we will present an
alternate representation of morphology for general decision-making agents that outperforms existing
methods while being applicable to a larger space of agent types. We approach this problem by
considering two algorithmic desiderata: for a given agent n, (1) our method should be invariant to
the dimensionality of the agent’s observations and actions, and (2) our method should only be given
minimal information about the agent’s morphology. Our first insight is to interpret the reinforcement
learning policy that accepts a state vector and outputs an action vector as sequence-to-sequence
mappings, where the source sequence has NS(n) elements, and the target sequence has NA(n)
elements. This interpretation bypasses all dependence on limbs by defining morphology in terms
of which sensors and actuators comprise the agent. Inspired by the success of word embeddings
Mikolov et al. (2013) in language modelling, and their role in transferable models like BERT Devlin
et al. (2019), we propose to encode sensors and actuators as a sequence of tokens, and represent them
with learnt embeddings. We learn embeddings that represent observation and action tokens.

H obs
n ∈ RNS(n)×D, H act

n ∈ RNA(n)×D (5)

Each token encodes the identity of a single sensor or actuator. Embeddings representing these tokens
are learned jointly with our policy directly from the reinforcement learning objective. Our policy is a
sequence-to-sequence deep neural network that maps from a source sequence with NS(n) elements
to a target sequence with NA(n) elements. We implement our policy as a variant of the Transformer
Vaswani et al. (2017) due to its success in multiple reinforcement learning settings Kurin et al. (2021);
Janner et al. (2021); Chen et al. (2021). In the following section, we describe our architecture (shown
in Figure 2), and modifications that make it suitable for agent-agnostic reinforcement learning.

Morphology Tokens. Before detailing our policy architecture, we will explore how observation
embeddings H obs

n and action embeddings H act
n can be obtained. In the previous section, we described

a corresponding set of observation tokens I obs
n and action tokens I act

n that are represented by these
embeddings. These tokens are represented by integers that uniquely identify the agent’s morphology.

I obs
n ∈ NNS(n), I act

n ∈ NNA(n) (6)

We refer to the pair (I obs
n , I act

n ) as morphology tokens. These tokens index into a pair of morphology
embeddings W obs

e , and W act
e that are weight matrices with D columns. Each weight matrix learns to

embed each sensor and actuator for each morphology in the set of N agents. In practice, not every
row will be used because different agent morphologies share a portion of the same tokens.

W obs
e ∈ R(

∏N
i=1 NS(i))×D (7)

W act
e ∈ R(

∏N
i=1 NA(i))×D (8)
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Given the pair of morphology tokens and morphology embeddings, we use an embedding lookup
operation in order to obtain the pair of observation and action token embeddings H obs

n and H act
n

for each morphology. Recall from Equation 5 these have a fixed number of columns, and a variable
number of rows, which depends on the dimensionality of the agent’s observations and actions.

H obs
n = embedding lookup

(
I obs
n , W obs

e

)
(9)

H act
n = embedding lookup

(
I act
n , W act

e

)
(10)

These observation and action token embeddings are shown in Figure 2 as a sequence of outlined
rectangles on the left of the diagram. Each colored rectangle in each sequence represents a token
embedding vector with cardinality D. Outlined yellow rectangles represent observation tokens,
and outlined red rectangles represent action tokens. While this representation of morphology does
not require the agent to have limbs, it requires instead a pair of morphology tokens that identify
the agent’s sensors and actuators. Since this representation is continuous and differentiability, one
promising option to avoid manual annotation is to infer H obs

n and H act
n using an encoder.

Embedding The Current Observation. How can we condition our policy, which is a sequence
to sequence model, on the current state? We propose to view the current state as a sequence with
NS(n) elements, embedding each element to a M -vector, and concatenate it with the matrix of
observation token embeddings H obs

n column-wise. We empirically find that passing the state through
a sinusoidal embedding function before concatenation helps the model to perform well, which may
be interpreted as increasing the expressivity of the model class Li & Pathak (2021). Our embedding
function passes the state through a series of M sinusoidal functions with geometrically increasing
frequencies k1, k2, . . . k⌊M/2⌋ from 1/10 to 1000. In Figure 2, we represent this operation with
the yellow trapezoid labelled embed on the left, and denote the subsequent concatenation of the
embedded state with H obs

n via the plus symbol.

X =
[
H obs

n ; cos (k1st) ; sin (k1st) ; . . .︸ ︷︷ ︸
M columns

]
(11)

Before processing X and H act
n with our transformer, we apply a linear transformation that maps them

to the cardinality of the Transformer hidden state. We learn two linear transformations W obs
p and

W act
p for observation and action embeddings respectively, projecting to dmodel components.

W obs
p ∈ R(D+M)×dmodel , W act

p ∈ RD×dmodel (12)

After projection, we process these embeddings with a Transformer encoder-decoder model, following
the architecture presented by Vaswani et al. (2017, p. 3). We drop autoregressive masking, which
is unnecessary in our setting. Details about the hyperparameters used with our model can be found
in Appendix B. The output of our Transformer is a sequence of NA(n) hidden states with dmodel
components. To generate actions, we learn a projection W out

p from dmodel-vectors to scalars. Our
model outputs a vector yt with NA(n) components, representing pre-activation actions.

W out
p ∈ Rdmodel (13)

yt = Transformer
(
XW obs

p , H act
n W act

p

)
W out

p (14)

With a final hyperbolic tangent activation, we generate the mean action at = tanh(yt) for the current
timestep. This conversion from Transformer outputs to actions is shown in Figure 2 by the Linear
and Squeeze boxes on the right. By framing learning morphology as sequence modelling, our model
is applicable to a larger space of agent types, given appropriate morphology tokens and sufficient
training. Furthermore, our model does not assume the agent conforms to strict design criteria seen in
prior work and detailed in Section 3. In the remaining sections, we will benchmark our model on a
standard set of agent-agnostic reinforcement learning tasks, and visualize what our model learns.

5 TRAINING PERFORMANCE

We have constructed a method that is agnostic the morphology of an agent. This model is trained
across a collection of different agents to develop generalization skills to new morphologies. To
understand how well our method succeeds we evaluate three aspects of the model. First, how quickly
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Figure 3: Average return of our method versus Amorpheus (Kurin et al., 2021) and Shared Modular
Policies (Huang et al., 2020) across 4 random seeds. Performance on the y-axis is the average return
with one episode per training morphology per seed. Dark colored lines indicate the average training
performance, and a 95% confidence interval is shown with shading around each line. The x-axis
indicates the total steps across all training morphologies. Our method frequently reaches and exceeds
the performance of baselines, improving by 85% and 53% on the Cheetah-Walker-Humanoids and
Cheetah-Walker-Humanoid-Hoppers tasks respectively, the two hardest tasks.

can we train the morphology agnostic policy. We should receive gains in sample efficiency as the
model learns how to share experience across morphologies. Second, how well does the method
generalize to novel morphologies not seen during the training process. Last, how robust is our
method to sensor issues. To answer these question, we leverage a benchmark for agent-agnostic
reinforcement learning developed by Huang et al. (2020, p. 1). This benchmark contains a set of eight
reinforcement learning tasks, where the goal is to maximize the average return over a set of N agents
with different morphologies. The agents present in this benchmark and inspired by and derived from
standard OpenAI Gym tasks: HalfCheetah-v2, Walker2d-2, Hopper-v2, and Humanoid-v2 Brockman
et al. (2016). For the Cheetahs, Walkers, Humanoids, and Hoppers tasks, there are a total of 15, 6,
8, and 3 different morphologies used in prior work Kurin et al. (2021); Huang et al. (2020). The
benchmark consists of four tasks containing morphologies of a single kind of agent (see Cheetahs,
Walkers, Humanoids, and Hoppers in Figure 3), and four tasks that mix together multiple kinds
of agents (see Walker-Humanoids, Walker-Humanoid-Hoppers, Cheetah-Walker-Humanoids, and
Cheetah-Walker-Humanoid-Hoppers in Figure 3). Solving the latter mixed tasks requires the policy
to acquire gaits that generalize to multiple kinds of agents. The two hardest tasks in the benchmark
are Cheetah-Walker-Humanoids, and Cheetah-Walker-Humanoid-Hoppers, which involve controlling
29 and 32 different agent morphologies respectively.

Our method excels at training on many morphologies at once, and sees greater improvements as
the amount of morphologies increases. Shown in Figure 3, on all tasks but Hoppers, our policy
meets and exceeds the performance of Amorpheus Kurin et al. (2021) and Shared Modular Policies
Huang et al. (2020). Furthermore, on the hardest tasks, Cheetah-Walker-Humanoids, and Cheetah-
Walker-Humanoid-Hoppers, we see an improvement of 85% and 53% respectively. This improvement
suggests that our method can scale more effectively than prior work, as it trains across up to 32
different morphologies, and maintains a strong performance gain. Our methods performs consistently
well across all tasks except Hoppers. The Hoppers task has only three morphologies, the fewest in
the benchmark, and we suspect this relates to our diminished performance.

6 ZERO-SHOT GENERALIZATION

In the previous section, we evaluated the training performance of our model, and demonstrated a
significant improvement when controlling many morphologies. Now we ask, how well does our model
generalize to new morphologies it was not trained on? To answer this question, we follow Kurin et al.
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Figure 4: Average return of our method versus Amorpheus (Kurin et al., 2021) and Shared Modular
Policies (Huang et al., 2020) for held-out morphologies with 4 random seeds. Performance on the y-
axis is the average return with ten episodes per held-out morphology per seed. Colored bars represent
average performance evaluated at 2.5 million environment steps, and a 95% confidence interval is
shown with error bars. Overall performance is an aggregation of all episodes from each method.
Our model improves by 16% overall, and by 28% and 32% on the Cheetah-Walker-Humanoids and
Cheetah-Walker-Humanoid-Hoppers tasks respectively, the two hardest tasks.

(2021) and hold out 3 Cheetahs, 2 Walkers, and 2 Humanoids respectively. See Appendix C for which
specific morphologies are used for testing. We then evaluate the policies learned by our method,
Amorpheus, and Shared Modular policies at 2.5 million environment steps on each morphology
that are held out. For tasks that involve multiple kinds of agents, we evaluate using all held out
morphologies for each kind. We report the average return for each method over 4 random seeds, and
ten episodes per seed, with a 95% confidence interval in Figure 4.

Despite not explicitly conditioning on morphology via graph structure or sensor-to-limb alignment,
our method improves by 16% in overall zero-shot generalization. On tasks with fewer morpholo-
gies, our methods performs on par with existing methods, with an exception on the Humanoids
tasks. We obtain an improvement of 28% on Cheetah-Walker-Humanoids, and 32% on Cheetah-
Walker-Humanoid-Hoppers, the two hardest tasks in the benchmark. The disparity between training
and testing performance on certain tasks (such as the Humanoids task) suggests observing many
morphologies during training is key to regularization that enables our model to generalize effectively.

7 VISUALIZING ROBUSTNESS

In the two previous experiments, we evaluated the training performance and zero-shot generalization
ability of our model, and displayed compelling gains. One remaining question, however, is how
resilient our model is to minor changes in the agent’s morphology, caused by one or more sensors
breaking. We investigate this question by designing an experiment where a fraction of the agent’s
sensors are replaced with noise sampled from the standard normal distribution. The goal of this
experiment is to evaluate the robustness of our model, measured by average return, as a function
of how many of the agent’s sensor readings (state features) are replaced with random noise. Our
methodology for selecting the order to corrupt sensors is described in Appendix D. An evaluation of
the robustness of our method compared to prior works is presented in Figure 5, where the average
return for each method given a certain fraction of corrupted sensors is calculated from one episode
per morphology per task using deterministic actions, with 4 random seeds per method on each task.
Training average return is plotted on the y-axis, with a 95% confidence interval.

This experiment demonstrates that our policy architecture is more robust to broken sensors than
prior works. Our policy achieves a higher area under the curve on all eight tasks. Though our
method initially performs worse than Amorpheus (illustrated in Figure 3) on the Hoppers task, broken
sensors quickly cripple existing methods. One promising hypothesis for this improved robustness
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Figure 5: Average return of our method versus Amorpheus Kurin et al. (2021) and Shared Modular
Policies Huang et al. (2020) as a function of how many sensors are corrupted by random noise.
Performance on the y-axis is the average return of 4 random seeds with one episode per training
morphology for each seed, evaluated at 2.5 million steps. Dark colored lines indicate the average
performance for each method given a fraction of sensors that are corrupted by noise sampled from a
standard normal distribution, and a 95% confidence interval is shown with shading around each line.
The x-axis indicates the fraction sensors in the agent’s observation space are corrupted with noise.
Our method consistently improves robustness, illustrated by a greater area under the curve.

is that our model is actively ignoring certain sensors. To evaluate this hypothesis, we visualize
the attention weights throughout an episode in the final cross attention mechanism in our model
(that is, actuator-to-sensor attention) in Figure 6. For each cell in the visualization, we take the
maximum attention weight over an entire episode (rows no longer sum to one) for one trial on the
Humanoids task and Humanoid 2d Full morphology. This visualization shows that our model learns
sparse attention weights that ignore the majority of sensors, shown by the majority of dark cells in
the visualization. This quality in the attention weights suggests our model improves robustness by
sparsely attending to sensors.

8 CONCLUSION

We have presented a method for learning transferable policies between agents of different morphology,
by inferring the agent’s morphology via a learned embedding. Our approach is more scalable than
existing methods, and is able to learn composable polices for up to 32 different morphologies at
once while maintaining a performance lead of 82% in training, and 32% in zero-shot generalization
on our benchmarking task with the most morphologies. Our method operates by framing learning
morphology as a sequence modelling problem, and learns a Transformer-based policy that is invariant
to the dimensionality of the agent’s observations and actions. In addition to improving performance,
we demonstrate that our policy is more resilient to broken sensors than existing methods. Importantly,
our method attains these improvements while also relaxing the amount of information required about
the agent’s design compared to prior work. Our method does not require the agent to have limbs, graph
structure, or aligned sensors and actuators. By relaxing these assumptions, our approach improves
the applicability of agent-agnostic learning in a more general reinforcement learning context.

Our research is a step towards broadly applicable agent-agnostic reinforcement learning methods,
and there are several opportunities to expand our work. Firstly, we observed in Section 6 that our
methods benefits from observing many morphologies during training. Further scaling of our method
to agent-agnostic reinforcement learning tasks with significantly more morphologies may further
improve zero-shot generalization. Secondly, we evaluated our method on MuJoCo-like agents with
rigid limbs in this work. Applying our method to reinforcement learning tasks without an underlying
graph structure or aligned sensors and limbs (such as Atari) poses an interesting challenge. Finally,
our method requires morphology tokens (see Section 3) for each agent. Inferring these tokens from
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trajectories the agent has collected may enable our method to generalize out-of-the-box without
requiring any manual annotation of the task.
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A POLICY OPTIMIZATION

We choose to employ TD3 Fujimoto et al. (2018) for optimizing our policy because it is highly
efficient and consistently performs well for MuJoCo-like Todorov et al. (2012) agents. Efficiency is
an important consideration in agent-agnostic reinforcement learning because training with up to 32
morphologies can require large amounts of experience otherwise. Following the TD3 algorithm, we
sample exploratory actions from a normal distribution N (at, σ

2) where at is the mean action, and
the variance σ2 is a hyperparameter that controls the degree of randomness in the exploration policy
of TD3. Following prior work Huang et al. (2020) we store a separate replay buffer of transitions for
each training morphology, and alternate between collecting environment steps and training for each
morphology in lockstep. We train each agent for up to 3 million environments steps total across all
training morphologies, and run 4 random seeds per method. Our model fits on a single Nvidia 2080ti
GPU, and requires seven days of training to reach 3 million environments steps. We provide a table
of hyperparameters in Appendix B for our policy and reinforcement learning optimizer.

B HYPERPARAMETERS

In this section, we describe the hyperparameters used with our model. These include hyperparameters
in our model architecture, as well as hyperparameters for the TD3 optimizer that we use to optimize
our policy. The hyperparameters for our model architecture can be found in the below table, while
hyperparameters for TD3 can be found two tables below.

Hyperparameter Name Hyperparameter Value
D (Token Embedding Size) 32
M (Sinusoidal Embedding Size) 96
Transformer Hidden Size 128
Transformer Feedforward Size 256
Attention Heads 2
Transformer Encoder Layers 3
Transformer Decoder Layers 3
Transformer Activation relu
Dropout Rate 0.0

Table 2: Hyperparameters for our model architecture.

In the below table, we report the standard hyperparameters that are typically exposed to the user in
TD3. Note that we employ the same TD3 hyperparameters across every task, which demonstrates our
model does not require per-task tuning.

Hyperparameter Name Hyperparameter Value
Num Random Seeds 4
Batch Size 100
Max Episode Length 1000
Max Replay Size Total 10000000
Max Environment Steps 3000000
Policy Update Interval 2
Initial Exploration Steps 10000
Policy Noise 0.2
Policy Noise Clip 0.5
τ 0.046
σ 0.126
Discount Factor 0.99
Gradient Clipping 0.1
Learning Rate 0.00005

Table 3: Hyperparameters for our TD3 implementation.

13



Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

We use identical hyperparameters for the Amorpheus Kurin et al. (2021) and Shared Modular Policies
Huang et al. (2020) baselines, except we update the learning rate to 0.0001, which we found to result
in the best performance for both methods. We use the same reinforcement learning framework as
Kurin et al. (2021) and Huang et al. (2020) for our experiments.

C HELD OUT MORPHOLOGIES

In this section, we present a table that shows which morphologies are used for training and which
morphologies are used for testing for each kind of agent. For tasks that mix multiple kinds of agents,
the training morphologies for each kind are mixed, and the testing morphologies are mixed, but no
training morphology becomes a testing morphology and vice versa.

Task Training Morphologies Testing Morphologies
Cheetahs

cheetah 2 back cheetah 3 balanced
cheetah 2 front cheetah 5 back
cheetah 3 back cheetah 6 front
cheetah 3 front
cheetah 4 allback
cheetah 4 allfront
cheetah 4 back
cheetah 4 front
cheetah 5 balanced
cheetah 5 front
cheetah 6 back
cheetah 7 full

Walkers
walker 2 main walker 3 main
walker 4 main walker 6 main
walker 5 main
walker 7 main

Humanoids
humanoid 2d 7 left arm humanoid 2d 7 left leg
humanoid 2d 7 lower arms humanoid 2d 8 right knee
humanoid 2d 7 right arm
humanoid 2d 7 right leg
humanoid 2d 8 left knee
humanoid 2d 9 full

Hoppers
hopper 3
hopper 4
hopper 5

Table 4: Morphologies used for training and testing.

D DETAILS OF ROBUSTNESS EXPERIMENT

In the main paper, we performed an experiment testing the robustness of our approach versus
Amorpheus Kurin et al. (2021) and Shared Modular Policies Huang et al. (2020) baselines. In order
to determine the order in which sensors ”break,” simulated by replacing sensor readings with random
noise sampled from the standard normal distribution, we visualized the cross attention weights in the
final decoder layer of our Transformer policy, and sorted the sensors in increasing order according to
how frequently our policy attends to them throughout an episode. Specifically, we take the average
value of the final cross attention mask throughout an episode, and average again over the queries axis,
in order to obtain a vector with NS(n) elements, representing the average attention weight applied to
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Sensors

A
ct

ua
to

rs

Humanoid 2d 9 Full

Figure 6: Visualization of the cross attention weights in the final layer of our policy model on the
Humanoids task and Humanoid 2d 9 Full morphology. Each cell in the attention matrix corresponds
to the maximum attention value for that cell over an entire episode. Cells with dark shading indicate
that our model ignores those sensors over an entire episode by zeroing their attention weights.

a given sensor by any actuator through an episode. In order to corrupt a particular fraction c of the
agent’s sensors, we replace the first ⌈c ·NS(n)⌉ sensors with random noise, according to their sorted
order as previously described. This methodology ensures that sensor corruptions are cumulative.
That is, for two given fractions c1 > c0, the sensors corrupted by c0 are also corrupted by c1.
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