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Figure 1: UrbanVerse system converts real-world urban scenes from city-tour videos into physics-aware, inter-
active simulation environments, enabling scalable robot learning in urban spaces with real-world generalization.

ABSTRACT

Urban embodied AI agents, ranging from delivery robots to quadrupeds, are in-
creasingly populating our cities, navigating chaotic streets to provide last-mile
connectivity. Training such agents requires diverse, high-fidelity urban environ-
ments to scale, yet existing human-crafted or procedurally generated simulation
scenes either lack scalability or fail to capture real-world complexity. We introduce
UrbanVerse, a data-driven real-to-sim system that converts crowd-sourced city-
tour videos into physics-aware, interactive simulation scenes. UrbanVerse consists
of: (i) UrbanVerse-100K, a repository of 100k+ annotated urban 3D assets with
semantic and physical attributes, and (ii) UrbanVerse-Gen, an automatic pipeline
that extracts scene layouts from video and instantiates metric-scale 3D simulations
using retrieved assets. Running in IsaacSim, UrbanVerse offers 160 high-quality
constructed scenes from 24 countries, along with a curated benchmark of 10
artist-designed test scenes. Experiments show that UrbanVerse scenes preserve
real-world semantics and layouts, achieving human-evaluated realism comparable
to manually crafted scenes. In urban navigation, policies trained in UrbanVerse
exhibit scaling power laws and strong generalization, improving success by +6.3%
in simulation and +30.1% in zero-shot sim-to-real transfer comparing to prior
methods, accomplishing a 300 m real-world mission with only two interventions.
We invite readers to explore our anonymous Demo Page and Documentation Page.
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1 INTRODUCTION

Today’s urban spaces have emerged as key arenas for the rise of micromobility systems (Oeschger
et al., 2020). Small, lightweight Embodied AI (E-AI) agents (Zhang et al., 2024), such as wheeled
delivery robots, quadrupeds, and humanoids, are increasingly navigating city streets to provide
last-mile transportation and urban services. These mobile robots are reshaping the dynamics of city
streets by improving logistical efficiency and reducing carbon emissions. Yet, the environments
they operate in are often highly cluttered, with street infrastructure, sidewalks frequently blocked by
parked cars, and narrow passageways, all of which pose significant challenges for E-AI agents to
generalize across diverse real-world settings.

In efforts to improve generalizability, data scaling has been validated in both vision (Radford et al.,
2021) and language (Kaplan et al., 2020), where large and diverse web corpora consistently lead to
better generalization. In contrast, current urban navigation datasets remain limited in both scale and
quality. Collecting high-quality data through human demonstrations in public spaces (e.g., sidewalk
traversing) is unsafe, labor-intensive, and often impractical, and thus cannot scale (Shah et al.,
2023). Passive real-world data, such as city-tour videos shared daily on social media like YouTube,
captures diverse environments but lacks associated action labels. Moreover, both types of data are
non-interactive and lack causal action–effect dynamics, which are crucial for robust real-world
decision-making. Thus, urban simulators (Wu et al., 2025a) have emerged as a compelling alternative,
offering interactive and virtually unlimited scenes for E-AI training. Yet, current simulators either
rely on hand-crafted scenes (Dosovitskiy et al., 2017) or procedurally generated layouts defined by
hard-coded rules (Wu et al., 2025a;b). The former lacks scalability, while the latter produces rigid,
template-driven scenes that deviate from real-world distributions, such as randomly parked scooters
or cars. However, simply increasing its quantity will lead to sustained generalization if the data does
not faithfully reflect real-world distributions. This issue prompts the central question of this work:
Can we build realistic, interactive urban scenes from real-world videos for scalable robot navigation?

To address this question, we propose UrbanVerse, a data-driven real-to-sim system that bridges
the gap between synthetic simulators and the complex, real-world streets. As shown in Fig. 1
(top), UrbanVerse reconstructs interactive urban scenes with real-world distributional fidelity from
worldwide city-tour videos (walking or driving), enabling the training of “street-smart” urban agents.
At its core, UrbanVerse reconstructs digital cousin (Dai et al., 2024) scenes, by mapping a 2D scene
to a 3D simulation-ready virtual world, with layouts, semantics, and physics aligned to real-world
statistics. This combines the diversity of real data with the interactivity of simulation, enabling
unlimited scene generation while preserving street-level distributions. UrbanVerse builds on two
complementary pillars. The first is UrbanVerse-100K (Fig. 2), a curated repository of 102,530
high-quality metric-scale urban object assets, 306 skyboxes, and 288 ground materials for roads and
sidewalks. Each asset is organized within a three-level urban ontology and annotated with 33 semantic,
affordance, and physical attributes (e.g., mass, friction), forming the foundation for open-world,
physics-ready scene construction. The second is UrbanVerse-Gen (Fig. 4), an automatic pipeline
that accurately distills semantics, layouts, ground appearance, and sky from videos into an urban
scene graph representation, retrieves matched assets from UrbanVerse-100K, and instantiates multiple
digital cousin simulation scenes in IsaacSim (NVIDIA, 2025). Using YouTube city-tour footage
spanning 24 countries across six continents, UrbanVerse produces a library of 160 simulation scenes
with real-world street distributional fidelity ready for E-AI training. Together, we also introduce a 3D
artist-designed set of 10 realistic urban scenes as test-only environments for closed-loop evaluation.

UrbanVerse is evaluated through both scene generation quality assessment and its applicability to
urban E-AI policy learning. Validated on 45 video sequences from KITTI-360 (Liao et al., 2022) ,
our approach achieves high-fidelity scene reconstruction, recovering object semantics with 93.0%
accuracy and localizing objects within 1.4 m error over 198.7 m scene horizon. Building on this real-
world distributional fidelity, we train mapless urban navigation policies using a 160-scene simulation
library generated by UrbanVerse. We show that data scaling power-law emerges when training on our
high-fidelity scenes, enabling simple policies to generalize to diverse, unseen urban spaces. Deployed
across 16 real-world streets on two embodiments (a wheeled robot and a quadruped) in a zero-shot
manner, policies trained on UrbanVerse scenes consistently outperform state-of-the-art navigation
foundation models, reaching up to 89.7% success in sim-to-real transfer. Finally, our policy completes
a 337 m long-horizon mission in public spaces with only two human interventions. All assets, scenes,
and code of UrbanVerse will be open-sourced to accelerate embodied AI research.
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Simulator Scene
Creation

Layout
Realism

Scene
Diversity

Asset
Physics

# Object
Classes

# Object
Assets

# Sky
Maps

# Ground
Materials

# Robot
Types

Dynamic
Factors

Training
Paradigms

Embodied
Tasks

CARLA Hand Realistic 15 Scenes ✓ 106 935 5 30 1 Dynamic agents RL, IL Navigation, VQACrafted Weather VLA

MetaUrban Procedural Unrealistic 7 Templates ✗ 39 10,000 1 5 1 Dynamic agents RL, IL NavigationGeneration

UrbanSim Procedural Unrealistic 6 Templates ✗ 39 15,000 1 8 10 Dynamic agents RL, IL NavigationGeneration

UrbanVerse Auto Real2sim Realistic +∞ ✓ 667 102,530 306 288 20 Dynamic agents, Illumination RL, IL Navigation, VQA
Data-driven Ground appearance VLA Mobile Manipulation

Table 1: Systematic comparison of UrbanVerse with existing urban embodied-AI simulators.

2 RELATED WORK

Urban Navigation. Deep reinforcement learning (Mirowski et al., 2016) has demonstrated strong po-
tential for goal-based mapless urban navigation by removing the dependency on pre-built maps (Chap-
lot et al., 2020). Recent advances have introduced vision-based navigation foundation models (Shah
et al., 2023; Sridhar et al., 2024; Hirose et al., 2025), which leverage cross-sensor capabilities and
large-scale offline vision data to improve generalization across robot platforms and camera setups.
A major limitation of these approaches, however, is the lack of environmental interaction in the
training data. As we demonstrate in Sec. 4.3, this results in poor obstacle avoidance (Liu et al., 2025).
S2E (He et al., 2025) tackles this issue by training in interactive simulation scenes, rather than relying
on passive data for path-following, and achieves real-world obstacle avoidance. In this work, we
extend both coverage and realism by training vision-based position-goal navigation policies in our
real-world grounded UrbanVerse scenes, leading to improved robustness and generalization.

Urban Embodied AI Simulators. Mainstream simulators focus either on indoor environ-
ments (Kolve et al., 2017; Li et al., 2023a) or on driving domains centered on roads and high-
ways (Kothari et al., 2021; Li et al., 2022), with only CARLA (Dosovitskiy et al., 2017) extending
to city neighborhoods but relying on non-scalable, hand-crafted scenes (15 in total). The rise of
micromobility (Abduljabbar et al., 2021) agents, such as e-scooter or delivery robots, has motivated
the development of urban simulators like MetaUrban (Wu et al., 2025a) and UrbanSim (Wu et al.,
2025b), which share our goal of modeling richer city spaces. However, these simulators face three key
limitations: i) layout realism: procedurally generated scenes deviate from real-world distributions; ii)
asset diversity: limited object categories; iii) physics annotation: objects lack physical properties and
remain static props. We provide a functional comparison between UrbanVerse and existing urban
simulators in Tab. 1. Building upon UrbanSim simulation platform, we address these gaps with our
real-world grounded scene creation pipeline and a semantically-rich, physics-annotated asset library.

Simulation Scene Creation. Automating scene creation for E-AI learning has traditionally relied on
either enhancing procedural generation rules (Deitke et al., 2022; Li et al., 2023b; Yang et al., 2024;
Wu et al., 2025a;b) or using high-precision 3D scans to replicate real-world environments (Deitke
et al., 2023a; Huang et al., 2025; Yu et al., 2025). More recently, 3D Gaussian Splatting (3DGS)
methods like OmniRe (Chen et al., 2024) and Vid2Sim (Xie et al., 2025) reconstruct 3DGS digital
twin environments from RGB videos for coarse simulation. However, current 3DGS-based digital
twins are designed for one-to-one reconstruction and produce a single fused radiance field without
complete geometry, object instances, semantics, or physical attributes, making them unsuitable for
editing, interaction, or physics-based simulation. Our work shares conceptual similarities with
digital cousin approaches (Dai et al., 2024; Maddukuri et al., 2025; Melnik et al., 2025), which
generate multiple virtual indoor scenes from a calibrated RGB image while preserving key semantics,
geometry, and layout to improve manipulation policies. In contrast, UrbanVerse constructs large-scale,
street-level urban digital cousin scenes from uncalibrated RGB videos.

3 METHODOLOGY

To convert worldwide city-tour videos into physics-aware simulations, two indispensable elements
are required: i) a large-scale 3D asset database with physical annotations that match the magnitude
of real-world semantic richness and appearance diversity, and ii) an automated open-vocabulary
pipeline that extracts semantic and spatial layouts from any uncalibrated videos to generate simulation
scenes. To this end, in Sec. 3.1, we first describe the data collection and semi-automatic annotation
pipeline in UrbanVerse for building the UrbanVerse-100K database. Next, in Sec. 3.2, we present
UrbanVerse-Gen, our automated pipeline that extracts detailed scene representations from videos
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102,530 Densely Annotated Urban Objects at True Metric Scale 288 Ground Materials 306 Sky Maps

Articulated Objects Navigable Buildings Detailed Street Litter Rich Curbside Infra Diverse Barriers

1.75m

Figure 2: Example instances from our large-scale urban asset database UrbanVerse-100K. Assets range from a
0.03 m crushed can to a 200 m skyscraper, all annotated to metric scale; note the realistic relative scales between
objects, with road and sidewalk materials and sky maps ensuring realistic ground appearance and illumination.

to ground simulated scene generation. Finally, in Sec. 3.3, we show how UrbanVerse leverages
crowd-sourced videos to construct a large-scale scene library for policy learning and testing.

3.1 URBANVERSE-100K ASSET DATABASE

UrbanVerse-100K is a large-scale, high-quality 3D asset database designed for urban simulation
and beyond. To comprehensively model real-world scenes, we require not only a vast collection of
on-ground 3D object assets but also diverse materials to render ground surfaces (e.g., cobblestone
sidewalks or snowy roads) and realistic lighting conditions across different times of day. Each of these
significantly influences robot perception and interactivity. For this, as shown in Fig. 2, UrbanVerse-
100K comprises three collections: (i) Object: 102,530 GLB objects spanning 667 categories, each
annotated with 33 semantic, physical, and affordance attributes in true metric scale; (ii) Ground: 288
photorealistic PBR materials (98 road, 190 sidewalk) for ground plane texturing; and (iii) Sky: 306
HDRI sky maps for realistic global illumination and immersive 360° backgrounds. We next outline
the collection and annotation strategies for UrbanVerse-100K, with additional details in App. C.

5.7 m2.2 m

1.8 m

3000 kg

Friction = 0.9

Canonical 
Front

Reflectivity = 0.18

Affordances: Drivable | Openable | Closable | Toggleable | Pressable
Interactive Parts: Door | Wheel |  Window | Trunk | Charging Port | Mirror

Charge Port Location
Left rear quarter panelSafety Clearance = 1.5 m

Category: Vehicle à Private Vehicle à Electric Car Manufacturer: Tesla Model: Cybertruck
Description: A metal, silver gray electric pickup with large tinted windows and  armored design

Figure 3: Example of annotated object attributes.

Object Collection. The recent development of
large-scale 3D object repositories (Deitke et al.,
2023b), such as Objaverse (Deitke et al., 2023c),
provides valuable resources for constructing sim-
ulation scenes. However, due to their web-
crawled nature, these repositories suffer from sev-
eral critical issues: (i) most assets are unrelated
to urban environments; (ii) many assets are cor-
rupted (e.g., missing textures, incomplete 3DGS
reconstructions, or paper-thin geometry); (iii) as-
sets often have non-metric scales, with examples
such as a cucumber being as large as a car; and (iv) assets lack semantic and physical attribute annota-
tions. Fig. 18 and Fig. 19 in the appendix illustrate these issues. To this end, we curate a high-quality
urban subset from the 800K noisy 3D assets in the Objaverse dataset (Deitke et al., 2023c) through a
three-stage semi-automatic pipeline. First, we build a Three.js–based asset viewer interface (Fig. 15)
and employ human annotators to efficiently filter out corrupted or low-quality assets. After filtering,
we retain 158K high-quality assets. Next, we build a three-level urban ontology derived from the
OpenStreetMap tag structure (Bennett, 2010) and expanded with categories from driving and scene
understanding datasets (Zhou et al., 2017; Cordts et al., 2016; Caesar et al., 2020; Gupta et al., 2019;
Kuznetsova et al., 2020), resulting in 667 leaf-level categories. Next, each asset is classified into a
leaf category using CLIP (Radford et al., 2021) on its thumbnail, followed by manual verification to
remove non-urban items (e.g., game weapons, spaceships) and correct misclassifications, yielding our
final curated set of objects. Lastly, we leverage the world knowledge of GPT-4.1 (OpenAI, 2025) to
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Figure 4: Overview of the UrbanVerse-Gen pipeline. Figure better seen at magnification.

annotate each asset with semantic, affordance, and physical attributes (e.g., size, mass). We prompt
it with the object thumbnail and four rotated snapshots. Fig. 3 shows an example of few annotated
attributes. Using the annotated size and front-view, as displayed in Fig. 2 (left), we standardize all
assets in our database to metric scale and a consistent orientation.

Ground and Sky Collections. To provide the simulated ground plane with realistic and diverse
appearances, we collect 4K-quality PBR road and sidewalk materials from free-licensed reposi-
tories (FreePBR, 2025; AmbientCG, 2025), each with a thumbnail and spanning a wide range of
conditions, as shown in Fig. 2 (middle). For lighting, we gather artist-designed HDRI sky maps
(Fig. 2 (right)) for urban settings from PolyHaven (2025), each accompanied by a rendered thumbnail
and description. These maps enable image-based lighting, providing realistic global illumination
with precise control over color, intensity, and direction, while also supplying immersive background.

3.2 URBANVERSE-GEN SCENE CONSTRUCTION PIPELINE

With our richly annotated asset database, we design UrbanVerse-Gen, an automatic open-vocabulary
pipeline capable of extracting real-world 3D scene layouts from uncalibrated RGB city-tour videos
and generating fully interactive simulations. To structure a scene, we first introduce a unified 3D urban
scene graph V = ⟨O,G,S⟩ that encodes: (i) O - object nodes (e.g., cars, buildings) with category,
location, orientation, and appearance; (ii) G - ground nodes (road/sidewalk) with spatial extent and
appearance; and (iii) S - a sky node capturing illumination and distant background. Distilled from
real-world videos, this graph serves as a compact blueprint for guiding simulation scene generation.

Overview. As shown in Fig. 4, UrbanVerse-Gen operates in three stages: (1) distillation, where
object semantics and 3D layout, ground composition (road/sidewalk) and appearance, lighting, and
distant background are extracted from the input video into a unified scene graph representation;
(2) materialization and diversification, where multiple digital cousin assets from UrbanVerse-100K
are matched and bound to each graph instance; and (3) generation, where object, ground, and sky
instances are assembled with their extracted spatial information into physically plausible scenes. We
detail each stage below. Further technical specifics are in App. E.

Real-World Scene Distillation. To accurately parse semantics and estimate 3D layouts from
uncalibrated open-world videos, we design a distillation module that integrates 2D open-vocabulary
foundation models with SfM through 3D lifting. Given an RGB city-tour video I = {I rgb

t }Tt=1,
we sample every third frame and query GPT-4.1 (OpenAI, 2025) to enumerate visible categories
and form a candidate vocabulary. The video is lifted to metric 3D by estimating depth, intrinsics,
and SE(3) poses using MASt3R (Leroy et al., 2024). With these semantic and geometric estimates,
we assemble an open-vocabulary object parser using YoloWorld (Cheng et al., 2024) and SAM
2 (Ravi et al., 2024)) to obtain per-frame instance masks, which are lifted to metric 3D. Identical
detections are fused across frames by semantic similarity and point-cloud overlap, yielding N
persistent object nodes O = {oi = ⟨li, ci,bi, θi,Mi⟩}Ni=1, where li is the category, ci the centroid,
bi the oriented 3D box, θi the yaw, and Mi = {mi,j}j the 2D object crops. In parallel, we segment
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Figure 5: Diverse dynamic agents in UrbanVerse scenes. Two example scenes populated with pedestrians,
cars, wheelchair users, and scooter riders, shown across multiple observation modalities.

road and sidewalk using a panoptic Mask2Former ground parser (Cheng et al., 2022) trained on
Cityscapes (Cordts et al., 2016), lift and fuse results into metric point clouds p, and define ground
nodes G = {⟨road,prd,Mrd⟩, ⟨sidewalk,psw,Msw⟩}, where M preserves ground masks. Finally,
the sky parser captures global illumination and distant background by cropping the upper half of each
frame, stored in the sky node as S = {Xt}Tt=1.

Scene Materialization and Diversification. With the distilled scene graph, our goal is to materialize
each instance using digital-cousin assets from UrbanVerse-100K that are semantically aligned,
geometrically consistent, and visually faithful yet diverse, enabling varied appearances for stronger
policy generalization. To meet these requirements, we retrieve kcousin assets for each object node
oi ∈ O through three corresponding steps: (i) semantic matching selects the best-matched asset
category via CLIP similarity (Radford et al., 2021) with its label li; (ii) geometry filtering ranks
candidates within that category by minimal Bounding Box Distortion (mBBD) between bi and
candidate boxes, retaining the top 1,000; (iii) appearance selection re-ranks these candidates using
DINOv2 similarity (Oquab et al., 2023) between Mi and asset thumbnails, keeping the top-kcousin as
final matches. For ground nodes, we retrieve kcousin PBR materials by comparing pixel-wise MSE
between road/sidewalk crops Mrd/Msw and rendered thumbnails. For the sky node, we select
kcousin HDRIs by matching HSV histograms of sky crops {Xt} to HDRI thumbnails, reproducing
illumination and distant background.

Simulation Scene Creation. Finally, we instantiate the materialized graph into kcousin simulated
scenes in UrbanSim (IsaacSim backend) by: (i) ground fitting and texturing, where road and sidewalk
planes are fitted from prd/psw, sidewalks are elevated by 15 cm, and surfaces are textured with the
selected PBR materials; (ii) lighting and surroundings, where a matched HDRI sky map is used as
both a dome light source and a spherical environment to provide realistic skies and distant context;
(iii) object placement, where each object is positioned at its centroid ci, aligned to the canonical front
and heading θi, and adjusted to avoid penetrations. We then assign annotated physical parameters
(e.g., mass, friction) and enable rigid-body dynamics, producing stable, interactive scenes. With
metrically scaled assets from UrbanVerse-100K aligned to extracted layouts, the resulting scenes are
true-to-scale, grounded in real-world layouts, and ready for E-AI agents to explore.

Interactive Dynamic Agent Population. UrbanVerse also supports dynamic agents such as pedestri-
ans, cars, wheelchair users, and scooter riders. Following UrbanSim (Wu et al., 2025b), we use a
GPU-accelerated ORCA-based planner (Van Den Berg et al., 2011) to populate scenes with agents
that move realistically and interact with the robot. For each scene, we build a 2D occupancy map,
sample start–goal pairs, and compute collision-free paths; agents then continuously adjust their veloc-
ities during simulation for smooth, collision-aware motion. As shown in Fig. 5, this scene-agnostic
mechanism enables diverse dynamic agents across all UrbanVerse environments.

3.3 URBANVERSE SCENE LIBRARY

UrbanVerse Scene Library Construction. Using UrbanVerse, we build a training library of 160
simulation scenes grounded in real-world distribution. We have collected 32 city-tour videos from
YouTube under Creative Commons License, spanning 7 continents, 24 countries, and 27 cities. Each
3-min clip is distilled into a layout-grounded scene using our UrbanVerse-Gen and expanded into
kcousin = 5 digital cousin variants, yielding 5×32 = 160 scenes. See construction details in App. D.2.

UrbanVerse Benchmark. Further, to enable closed-loop evaluation, we construct a benchmark that
comprises: (i) AutoBench, 10 scenes automatically generated from hold-out city-tour videos using
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Sidewalk Navigation Multi-agent Interaction Mobile Manipulation Expert Data Collection

Figure 6: Urban embodied-AI tasks supported by the UrbanVerse simulation platform.

UrbanVerse-Gen; and (ii) CraftBench, 10 artist-designed scenes reserved for test-only evaluation.
As shown in Fig. 22 in appendix, CraftBench spans diverse scenarios, layouts, cultural context, and
safety-critical edge cases. To avoid bias, designers had no access to our assets and scenes.

UrbanVerse Tasks. In this work, we focus on urban navigation as the primary case study in our
experiments because it most clearly demonstrates the benefits of UrbanVerse’s realistic layouts and
asset distributions. However, all assets in UrbanVerse include semantic labels, physical parameters,
and affordance tags, enabling a wide range of urban embodied tasks. As the few examples illustrated
in Fig. 6, UrbanVerse naturally supports multi-agent interaction, mobile manipulation, and expert
data collection for imitation learning, opening broader research opportunities.

4 EXPERIMENTS

We evaluate UrbanVerse on three aspects: (i) scene construction capability, assessing fidelity and
quality of scenes constructed from real-world videos (Sec. 4.1); (ii) scaling capability, examining
whether training on UrbanVerse scenes follows scaling laws that improve policy generalization
(Sec. 4.2); and (iii) sim-to-real transfer capability, testing whether policies trained in UrbanVerse
enable robust and stable transfer to real-world environments (Sec. 4.3).

Policy learning for mapless urban navigation. In our study, following Wu et al. (2025b), we focus
on RL to exploit scene interactivity, and study the task of position-goal urban navigation: the agent
starts from a known ground-plane pose, receives a goal and waypoints sampled every 5 m from GPS
projected to a local metric frame, and must learn a policy to reach the goal within a distance tolerance
while avoiding collisions and staying on traversable surfaces. Using the 160-scene UrbanVerse library,
we train vision-only navigation policies using PPO (Schulman et al., 2017) to show the effectiveness
of our real-world grounded simulation scenes. During training, we load 16 different scenes at a time
and repeat each scene 4–6 times depending on the available GPU memory. The set of scenes is
changed every 100 RL episodes to expose the policy to diverse environments. In both training and
testing, the agent is provided with only RGB observation, its relative position to the goal, without
access to the global map. See model architecture and training details in App. J.3.

4.1 SCENE CONSTRUCTION FIDELITY AND QUALITY

Scene fidelity evaluation. We first evaluate whether UrbanVerse can faithfully recover scene
semantics and layouts from video. Using 45 KITTI-360 (Liao et al., 2022) sequences (average
length 198.7 m) of residential and city streets, we generate digital cousin scenes with UrbanVerse-
Gen. Scene reconstruction fidelity is measured by comparing the nearest digital-cousin scene, built
with top-1 matched assets, against ground-truth annotations: semantic fidelity by the proportion of
correctly preserved categories; layout fidelity by per-object pose errors (L2 distance and orientation
difference); geometric fidelity by bounding-box volume difference; and overall recovery by 3D
detection mAP25 (Kumar et al., 2024). Appearance fidelity cannot be directly measured since
real-world asset replicas are unavailable. Instead, we input walkthrough videos of ten simulated
CraftBench scenes into UrbanVerse-Gen and report the proportion of objects whose 3D models are
exactly retrieved. For comparison, we evaluate two SfM models (VGGT (Wang et al., 2025) and
our default MASt3R) and two open-vocabulary parsers (GroundedSAM2 (Ren et al., 2024) and
our default YoWorldSAM2, combining YoloWorld with SAM2). Lastly, we present side-by-side
comparisons of city-tour videos and their reconstructed scenes in Fig. 7.

Quantitatively, Tab. 2 shows that the MASt3R with our YoWorldSAM2 parser yields the best overall
results, which we adopt as UrbanVerse’s default. With this setup, 93.1% of object categories are
correctly preserved; reconstructed objects deviate by only 1.4 m in position, 19.8◦ in orientation,
and 0.8 m3 in volume. Asset retrieval achieves 75.1% accuracy, indicating effective matching of
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SfM Scene Parser Cat. (%)↑ Dist. (m) ↓ Ori. (◦) ↓ Scale (m3)↓ mAP25↑ Ast. (%)↑

VGGT GroundedSAM2 88.2 2.4 21.5 1.5 7.5 67.5
YoWorldSAM2 91.5 2.1 20.1 1.3 9.4 70.6

MASt3R GroundedSAM2 86.1 2.1 19.9 1.1 24.3 68.5
YoWorldSAM2 93.1 1.4 19.8 0.8 28.2 75.1

Table 2: Scene reconstruction fidelity evaluation of nearest digital-cousin generation. We report average
results on KITTI-360, including: Category recovery (Cat.), the fraction of correctly categorized objects; Distance
(Dist.), Orientation (Ori.), and Scale, the mean differences in centroid position, heading, and volume between
recovered and ground-truth bounding boxes; and 3D detection mAP. Asset recovery (Ast.), the fraction of
correctly retrieved objects evaluated from CraftBench scene videos, is also reported.

Input Video Input VideoUrbanVerse Scene UrbanVerse Scene

Figure 7: Qualitative scene generation results of UrbanVerse. Scenes generated from Cape Town (left) and
Morocco (right) city-tour videos in our library. Highlighted details are shown in the circled areas. See Fig. 20 in
the Appendix for additional qualitative results.

visually similar 3D assets from our database. Qualitatively, Fig. 7 shows that UrbanVerse produces
physically plausible scenes that preserve fine object placement details from the original videos, such
as cranes located in the distance or motorcycles parked along the roadside. Given the long horizon
length of the evaluated street scenes, these results demonstrate that UrbanVerse can faithfully capture
real-world semantics and layout distributions from casual city-tour videos, enabling the generation of
high-fidelity simulated scenes that reflect real-world street distribution.

(c) Overall Realism

(a) Object Diversity (b) Layout Coherence

(d) Scene Quality Rating

1
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4
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UrbanVerse
71.2%
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Figure 8: Human evaluation results.

Human Evaluation of Scene Quality. We evaluate whether
UrbanVerse scenes align with human impressions of everyday
streets through two user studies with 32 undergraduates. In
the first comparative study, 100 UrbanVerse scenes sampled
from our library are paired with 100 UrbanSim ’s procedurally
generated (PG) scenes generated from the same UrbanVerse-
100K assets. Participants view shuffled overview images and
choose which scene is better (or equally good) in terms of object
diversity, layout coherence, and overall realism. In the second
study, participants rate the overall realism of 30 scenes, 10 from
UrbanVerse, 10 from PG, and 10 artist-designed oracles from
CraftBench, by watching 360◦ walkthrough videos and scoring
them on a 1–5 scale. Further details are provided in App. K.

As shown in Fig. 8 (a–c), participants consistently preferred UrbanVerse over PG, with more than 70%
favoring it across Object Diversity, Layout Coherence, and Overall Realism. In the second study, the
human ratings of artist-designed scenes (4.08/5.00) in Fig. 8 (d) suggest that even hand-crafted scenes
are imperfect, underscoring the challenge of creating highly realistic outdoor environments. Given
this difficulty, the 3.58/5.00 score of UrbanVerse scenes is satisfactory for an automated approach.

4.2 SCALING URBANVERSE FOR POLICY GENERALIZATION

We next examine the scaling properties of using the UrbanVerse 160-scene library for policy general-
ization in mapless urban navigation on a wheeled robot. We first study how the number of training
layouts influences generalization, then analyze the effect of expanding each layout with more digital
cousins. Policy performance is measured by success rate (SR), route completion (RC), and collision
times (CT), with all evaluations conducted in unseen environments from AutoBench and CraftBench.
We provide detailed experimental setups and metric definitions in App. J.
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Figure 9: Generalization by scaling training layouts and digital cousins per scene.

Scaling with more unique layouts. We fix the number of cousins per layout and vary the number
of unique layouts. From the 160-scene UrbanVerse library, we select 32 unique layouts (each from
a distinct city-tour video), each expanded with five cousins. Training sets are constructed with
N ∈ {1, 8, 16, 32} layouts, corresponding to 5, 40, 80, and 160 scenes. For comparison, we train
policies on matched PG scenes in UrbanSim with identical layout counts and per-layout variants.
Policies are then evaluated on the 10 CraftBench scenes with five runs per scene. As shown in Fig. 9
(a), increasing the number of UrbanVerse layouts consistently improves generalization, with success
rates rising sharply as coverage expands. The flat slope at small N highlights how limited layout
diversity constrains generalization. In contrast, policies trained on PG layouts show very limited
improvement, indicating that hard-coded templates lack the diversity needed to scale.

Scaling with more digital cousins. We fix the number of unique layouts and vary the number of
digital cousins per layout. Using 32 layouts, we select m ∈ {1, 2, 3, 4, 5} top-ranked cousins, yielding
training sets of 32–160 scenes. Policies trained on these sets are evaluated on 10 AutoBench scenes
and 10 CraftBench scenes. As shown in Fig. 9 (b), increasing the number of cousins consistently
further boosts success rate, confirming that intra-layout diversity complements inter-layout diversity
to reinforce generalization. Performance is overall higher on AutoBench, reflecting distributional
familiarity with scenes generated by the same pipeline, while the lower scores on CraftBench highlight
the difficulty of artist-designed environments. Notably, the narrowing gap between the two testbeds
indicates that greater per-layout diversity improves robustness to distribution shift.

Validating scaling power laws. We next validate whether performance gains follow a power-law
scaling relationship (Lin et al., 2025b). Defining test error as E = 1− SR and training scale as N
(number of layouts or cousins), a power law holds if E = βN−α, which becomes linear after log
transform: logE = −α logN + log β. As shown in Fig. 9 (c, d), linear fits in log–log space confirm
clear power-law behavior for both layout and cousin scaling, with strong Pearson correlations.

Method SR ↑ CT ↓ RC ↑
MBRA 35.6 25.6 52.9
CityWalker 29.2 38.2 48.6
S2E 33.1 27.7 55.7

PPO-UrbanSim 9.1 31.5 19.4

PPO-UrbanVerse 41.9 35.5 62.4
Overfitting 26.5 32.2 40.6

Table 3: Results on CraftBench.

Benchmarking overall generalization. We compare our
strongest policy (PPO-UrbanVerse), trained on all 160 Ur-
banVerse scenes, against foundation models MBRA (Hi-
rose et al., 2025), CityWalker (Liu et al., 2025), S2E (He
et al., 2025), and a PPO policy trained on 160 UrbanSim
PG scenes, all evaluated on CraftBench. As an overfit-
ting reference, we also train policies directly on each test
scene. As shown in Tab. 3, PPO-UrbanVerse, despite its
simple architecture, consistently outperforms all baselines,
achieving a +6.3% SR gain over the second-best model
MBRA. Policies trained directly on test scenes perform poorly on altered routes, revealing strong
overfitting and underscoring the need for diverse training scenes to enable true generalization.

4.3 ZERO-SHOT SIM-TO-REAL POLICY TRANSFER

Zero-shot transfer across urban spaces and embodiments. We evaluate our strongest policy,
trained on all UrbanVerse scenes, in 16 unseen real-world urban scenarios averaging 24.6 m per
route (see Fig. 23 for examples). The same policy is deployed on two embodiments: the COCO
wheeled delivery robot (Coco Robotics, 2024) and the Unitree Go2 quadruped (see Fig. 26 for
robot configuration). We benchmark against navigation foundation models NoMad (Sridhar et al.,
2024), S2E, and a PPO policy trained on PG scenes. Each evaluation is repeated three times, with
distance-to-goal (DTG) also reported. As shown in Tab. 4, PPO-UrbanVerse significantly outperforms
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Wheeled SR ↑ CT ↓ RC ↑ DTG ↓
NoMad 33.3 66.7 57.4 9.8
CityWalker 25.0 75.0 42.7 12.0
S2E 47.9 54.2 59.6 8.2
PPO-UrbanSim 18.8 81.3 34.6 11.8
PPO-UrbanVerse 77.1 22.9 83.4 3.6

Quadruped SR ↑ CT ↓ RC ↑ DTG ↓
NoMad 37.5 62.5 54.4 12.5
CityWalker 31.3 66.8 42.6 13.4
S2E 58.6 41.7 71.4 6.3
PPO-UrbanSim 18.8 81.3 29.1 15.4
PPO-UrbanVerse 89.7 10.4 86.4 2.5

Table 4: Real-world results.

Start
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Figure 10: Visualization of real-world results.
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Figure 11: Long-horizon mapless urban navigation. The PPO-UrbanVerse policy pilots the COCO robot
across 337 m of public urban space, reaching the goal with only two human interventions and no collisions.

all baselines, despite its simple architecture, it surpasses the second-best model (S2E) by +29.2% SR
on COCO and +31.1% SR on Go2. Foundation models like CityWalker, trained on large-scale but
non-interactive data, succeed mainly in obstacle-free cases and fail when obstacles appear. In contrast,
PPO-UrbanVerse consistently demonstrates robust obstacle avoidance (e.g., bypassing bollards after
turns or while crossing streets). These results show that interactive capabilities learned via RL in
UrbanVerse transfer effectively and reliably to real-world settings in a zero-shot manner.

Long-horizon mapless urban navigation. To stress-test policy stability, we deploy PPO-UrbanVerse
on the COCO robot for a 337 m mission in real urban spaces. The robot follows GPS waypoints at
10 m intervals. For safety in public streets we implement a human–AI shared autonomy TeleOp system
that allows real-time human intervention when needed. As the route recording shown in Fig. 11, it
successfully completes the task with only two interventions Completing such a challenging task in
public streets demonstrates the robustness of policies trained on UrbanVerse scenes, a stability we
attribute in part to its long training routes (≈200 m) that encourage generalizability for long-horizon
tasks. This highlight UrbanVerse’s potential for training versatile, practical urban agents.

5 CONCLUSION

We introduce UrbanVerse, a data-driven real-to-sim system that brings our daily messy streets into
interactive simulation environments. Leveraging the curated UrbanVerse-100K and the automated
UrbanVerse-Gen pipeline, UrbanVerse can mass-produce simulated scenes that faithfully capture real-
world distribution, enabling effective policy scaling and more generalizable urban AI embodiments.

Limitation. UrbanVerse is currently tailored to street-level urban environments; extending it to
parks, campuses, or indoor–outdoor transitions would require additional terrain modeling and access
structures, which we consider a promising direction for future work. In addition, our UrbanVerse-Gen
real-to-sim pipeline can be affected by rare challenging video conditions—such as low light, fast
motion, or heavy occlusion—that may introduce depth and pose drift or imperfect object placement.
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ETHICS STATEMENT

All city-tour videos used in this work are sourced from YouTube platforms that provide free Creative
Commons licenses. Prior to use, we apply automated and manual filtering to remove any frames
containing human faces, license plates, or other identifiable information, ensuring that no personally
sensitive data is retained. Our focus is solely on urban layouts, object distributions, and physical
attributes. While our system enables scalable simulation for embodied AI, potential misuse (e.g.,
surveillance applications) must be acknowledged. We therefore emphasize responsible use of our
released assets, code, and data strictly for research purposes in urban simulation and embodied AI.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we will release the full UrbanVerse-100K (annotated 3D assets, ground
materials, and skyboxes), the UrbanVerse-Gen implementation code, and the 160-scene UrbanVerse
library constructed from city-tour videos. All experiments are documented with dataset splits, training
details, and hyperparameters. Scripts for preprocessing, scene generation, and policy training will be
included, along with instructions for reproducing results on KITTI-360 and real-world deployment
tests. By open-sourcing our resources, we aim to support and accelerate embodied AI research in
urban environments
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This appendix provides additional demonstrations, visualizations, statistics, experiments, and im-
plementation details that complement the main paper. App. A summarizes the supplementary
demonstration videos and interactive visualizations. App. B presents the complete user-side pipeline
for generating and using UrbanVerse simulation scenes. App. C provides extended statistics and anno-
tation details of the UrbanVerse-100K database, together with a discussion of scale and quality issues
in existing datasets and a quantitative validation of our physical attribute annotations. App. D offers
further construction details for the 160-scene UrbanVerse library and the artist-designed CraftBench
benchmark, along with additional qualitative examples. App. E describes implementation details
of the UrbanVerse-Gen pipeline. App. I outlines the real-world testing scene selection, and App. G
analyzes typical failure cases and reconstruction challenges. App. H provide additional experiments
on scene horizon length. App. J reports the evaluation metrics, training and evaluation setup, policy
learning details, and robot configurations in both simulation and the real world. Finally, App. K
describes the human evaluation protocols and interface, and App. L presents the full computational
and scalability analysis of UrbanVerse.

LLM USAGE DECLARATION

In our system, GPT-4.1 was employed as a tool for category listing from input videos (with all identity
information masked) and for annotating semantic, affordance, and physical attributes of virtual 3D
assets. For writing, GPT-4o was used to check grammar mistakes.

A DEMONSTRATION VIDEO AND INTERACTIVE VISUALIZATION

We highly encourage readers to watch the supplementary videos and interactive visualizations,
which provide detailed demonstrations of our generated scenes, proposed asset database, and real-
world navigation policy performance. The supplementary material is organized into four parts:

(1) Simulation Scene Generation Results: Side-by-side comparisons between real-world city-tour
video and the corresponding digital-cousin simulation scenes generated by UrbanVerse, including
examples from Beijing, Cape Town, and Los Angeles.

(2) Zero-shot Sim-to-real Generalization and Deployment Results: Demonstrations of a single
policy trained on UrbanVerse scenes executing (i) street crossings, (ii) obstacle avoidance across
diverse layouts, and (iii) long-horizon mapless navigation in real urban streets. All real-world
trials—across robots and scenes—use the same policy trained on the 160-scene UrbanVerse library.

(3) UrbanVerse-100K Exploration: We first provide a clickable, web-based tool that can be opened
in a browser to explore and analyze the semantic distribution of our large-scale UrbanVerse-100K.
Next, we present a 360◦ flythrough showcasing 300+ curated 3D assets from UrbanVerse-100K,
rendered together to illustrate object quality, category diversity, and metric-scale fidelity.

(4) CraftBench Flythrough Demonstration: 360◦ flythrough videos of each CraftBench test scene
used for closed-loop evaluation.

For better visual quality, we also encourage readers to visit our anonymous site here for browsing
higher resolution demonstration videos.

B USER-SIDE PIPELINE

In this section, we outline the full user-side pipeline for using the UrbanVerse simulation platform. As
illustrated in Fig. 12, UrbanVerse supports both automatic generation of new simulation scenes from
raw video inputs and direct use of built-in scene repositories, enabling a broad range of embodied AI
applications.

Generating Custom Simulation Scenes. Users can create their own simulation environments directly
from raw inputs. UrbanVerse-Gen accepts diverse sources such as YouTube city-tour videos, mobile-
recorded walk-through clips, or folders of RGB frames. After providing the input, users simply
use the UrbanVerse-Gen API to automatically convert the video into a fully interactive, physics-
ready simulation scene. The pipeline handles all steps internally—from video normalization to
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layout extraction and scene materialization—requiring no manual editing. UrbanVerse-Gen supports
generating multiple “digital cousins” from one video.

Using Built-in Scene Repositories. UrbanVerse also provides two ready-to-use simulation libraries.
UrbanVerse-160 contains 160 automatically generated real-to-sim scenes extracted from city-tour
videos across the world. CraftBench provides 10 high-fidelity artist-designed scenes for benchmark-
ing robustness, generalization, and navigation difficulty. Both repositories can be loaded directly
without running UrbanVerse-Gen.

Downstream Tasks Supported by UrbanVerse With either custom-generated scenes or the built-
in repositories, users can seamlessly train and evaluate embodied agents. UrbanVerse supports
reinforcement learning (e.g., PPO) for navigation and interaction, as well as imitation learning through
expert demonstration collection via keyboard, joystick, gamepad, or VR teleoperation. The simulator
also facilitates large-scale multimodal dataset collection (RGB, depth, normals, segmentation, LiDAR,
and poses) for perception training. Finally, trained policies can be evaluated in closed-loop within
UrbanVerse scenes and deployed to real robots for zero-shot sim-to-real transfer.

Overall, UrbanVerse provides a practical, flexible, and complete user-side pipeline that spans real-
to-sim scene generation, large-scale simulation assets, embodied task execution, and real-world
deployment.

Figure 12: User-side pipeline of the UrbanVerse simulation platform.
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Hierarchical Category Distribution of UrbanVerse-100K Database

Figure 13: Hierarchical category distribution of UrbanVerse-100K within our curated three-level urban .

C DETAILS OF URBANVERSE-100K ASSET DATABASE

C.1 URBANVERSE-100K STATISTICS

To provide an overview of the rich semantic coverage of UrbanVerse-100K, we visualize the category
distribution of its curated 102,530 object assets under our introduced three-level urban ontology.

Fig. 13 shows the hierarchical breakdown of categories across all the three levels, spanning broad
groups such as buildings, vehicles, street users, barriers, amenities, and urban objects, with finer-
grained divisions into 667 leaf categories. This hierarchical visualization highlights the high diversity
and balance of assets across different semantic domains, ensuring comprehensive coverage of
everyday urban environments.

Complementing this, Fig. 14 presents a word cloud of all 667 leaf-level categories, where font size
reflects category frequency. The visualization emphasizes both common object types and rarer but
important categories, demonstrating the richness and long-tailed nature of the dataset. Together, these
figures illustrate the semantic diversity and scale of UrbanVerse-100K.

C.2 DETAILS OF URBANVERSE-100K ANNOTATION

Our goal is to curate a high-quality 3D urban asset database with accurate and semantically rich
annotations from the 800K assets of Objaverse (Deitke et al., 2023c), thereby addressing the quality
and scale issues discussed in Sec. C.3. Concretely, as described in Sec. 3.1, we design an efficient
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Figure 14: Word cloud of UrbanVerse-100K category distribution over the 667 leaf-level categories.

Annotation Task: Check and tick bad 3D assets based on the instruction

Figure 15: Efficient Three.js–based annotation interface for asset quality filtering.

semi-automatic annotation pipeline consisting of three steps: (1) Non-simulatable asset filtering:
in-house human annotators manually remove low-quality assets that could corrupt simulation; (2)
Urban ontology and categorization: we construct an ontology of common urban semantics and
categorize assets accordingly; and (3) Attribute annotation: we employ GPT-4.1 (OpenAI, 2025) to
automatically annotate semantic, affordance, and physical attributes of the curated assets. We now
describe each step in detail.

(1) Non-simulatable asset filtering. We first eliminate assets that are likely to fail in simulation
by filtering out eight common corruption types. To support this process, we built a lightweight
Three.js–based GLB gallery interface that allows annotators to quickly inspect assets and perform
binary quality tagging. Ten in-house annotators worked for three weeks, resulting in a curated set
of 158k simulatable 3D objects. As shown in Fig. 15, our interface enables rapid quality inspection
and efficient removal of unusable assets. Prior to annotation, annotators underwent training to ensure
consistent identification of low-quality assets.
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(2) Urban ontology and categorization. We next construct a three-level urban ontology seeded
from the OpenStreetMap (OSM) tag structure (Bennett, 2010). OSM is a collaborative, open-source
project that provides freely accessible maps of the world, created by volunteers using GPS devices,
aerial imagery, street-level photos, and local knowledge. Its tag structure includes common urban
amenities, objects, and landmarks. Building on this structure, we expand the leaf level with categories
drawn from ADE20K (Zhou et al., 2017), Cityscapes (Cordts et al., 2016), nuScenes (Caesar et al.,
2020), LVIS (Gupta et al., 2019), and OpenImagesV7 (Kuznetsova et al., 2020). After deduplication
and refinement, the resulting ontology contains 8 top-level, 61 mid-level, and 667 leaf categories.
Assets are automatically classified into leaf classes using CLIP (Radford et al., 2021) applied to
thumbnails, followed by human verification to prune non-urban objects (e.g., weapons, spaceships)
and correct misclassifications. This process yields 102,530 assets organized under our ontology.

(3) Semantic, affordance, and physical attribute annotation. Finally, guided by the question “How
would a robot interact with this object?”, we annotate each asset with 36 attributes spanning semantic,
affordance, and physical properties in metric units, enabling physically plausible interactions and
richer semantics. For each asset, we provide GPT-4.1 (OpenAI, 2025) with its thumbnail and four yaw
snapshots at 0◦/90◦/180◦/270◦, prompting it to produce attribute values. This step was completed
at a total API cost of $1,334. The exact annotation prompt is shown in Fig. 16, and the full set of
annotated attributes is presented in Fig. 17.

Annotate this 3D asset assuming it can be found in an urban scenario (i.e., a street, a road, a sidewalk, a neighborhood, a garage, an park, etc), with the following values:
{
"annotations": {
"description_long": a very detailed visual description of this [__category_l3__] object that is no more than 6 sentences. Don't use the term "3D asset" or similar here and don't

comment on the object's orientation. Do use proper nouns when appropriate.,
"description": a 1-2 summary of description_long, keep the description rich and visual,
"description_view_<i>": a short description of this [__category_l3__] object from view i (highlight/compare features that are different from other views),
"category": [__category_l3__],
"height": approximate height of this [__category_l3__] object in meters (m). Report the height for the object's orientation as shown in the images. For a standing humanmale this

could be "1.75",
"max_dimension": approximate maximum dimension of this [__category_l3__] object in meters (m). This is the longest dimension of this [__category_l3__] object, regardless of

orientation. This should always be greater or equal to the height,
"materials": a Python list of thematerials that this [__category_l3__] object appears to bemade of, taking into account the visible exterior and also likely interior (roughly in order

of most usedmaterial to least used; include "air" if the object interior doesn't seem completely solid),
"materials_composition": a Python list with the apparent volumemixture of thematerials above (make the list sum to 1),
"mass": approximatemass of this [__category_l3__] object in kilogram (kg) considering typical densities for thematerials. For a human being this could be "72",
"receptacle": a boolean indicating whether or not this [__category_l3__] object is a receptacle (e.g. a bowl, a cup, a vase, a box, a bag, etc). Return true or false with no

explanations,
"frontView": integer index of the view that represents the front of this [__category_l3__] object. This is typically the view from which you would approach the object to interact

with it,
"quality": a number, 0-10, indicating the quality of this [__category_l3__] object. 0 is very low quality (amateurish, confusing, missing textures, a 3D scan with many holes, etc),

10 is very high quality (professional, detailed, etc),
"movable": a boolean indicating whether this [__category_l3__] object is movable or fixed/static in the environment. Return true or false with no explanations,
"required_force": an approximate force in Newtons (N) required to move or push this [__category_l3__] object if it is movable. Base your estimate on the object's size, shape,

and apparent material. Return 0 if the object is clearly immovable (e.g., a building or embedded structure),
"walkable": a boolean indicating whether agents (e.g., humans, robots) can walk or move on this [__category_l3__] object (e.g., flat roofs, wide benches). Return true or false

with no explanations,
"enterable": a boolean indicating whether agents can physically enter this [__category_l3__] object (e.g., vehicles, doorways, booths, houses or buildings). Return true or false

with no explanations,
"affordances": a Python list of high-level functional affordances that this [__category_l3__] object provides (e.g., "sittable", "openable", "closable", "pressable", "toggleable",

"drivable", "rotatable", "pushable", "pullable", "liftable"). Return only the most relevant affordances. Exclude general affordances such as "enterable", "walkable", and "movable",
as they are annotated elsewhere. Return only the list, without explanation or additional text.,
"support_surface": a boolean indicating whether this [__category_l3__] object can physically support other objects placed on it (e.g., tables, platforms, roofs). Return true or

false with no explanations,
"interactive_parts": a Python list of distinct functional parts or components of this [__category_l3__] object that can be interacted with (e.g., "handle", "drawer", "wheel", "door",

"button"). Only include parts visible or implied from geometry. Return only the list, no explanation or other words,
"traversability": a string label describing how an agent might traverse this [__category_l3__] object. Choose one of: "pass_through", "push_through", or "obstacle",
"traversable_by": a Python list of agent types that can traverse or pass through this [__category_l3__] object (e.g., "person", "wheeled_robot", "drone"). Only include agents for

which traversal is physically feasible. If the object is not traversable by any agent, return an empty list (i.e., []).,
"colors": a Python list of the visible colors of this [__category_l3__] object (e.g., ["white", "gray", "blue"]). Focus on dominant and distinct colors visible from the exterior,
"colors_composition": a Python list of floats representing the approximate volume composition of the colors listed above. Ensure the list sums to 1.0 and corresponds to the

order of "colors",
"surface_hardness": a string describing the tactile hardness of the surface of this [__category_l3__] object. Choose one of: "soft", "semi-soft", or "hard",
"surface_roughness": a float in the range [0, 1] indicating the micro-texture roughness of the surface of this [__category_l3__] object. 0 means perfectly smooth (e.g., polished

glass), 1 means extremely rough (e.g., coarse stone),
"surface_finish": a string describing this [__category_l3__] object's surface tactile/visual quality. Choose one of: "rough", "matte", "smooth", "glossy", "sleek", or "grippy",
"reflectivity": a float in the range [0, 1] that controls howmuch light is reflected by the surface of this [__category_l3__] object. 0 means no visible reflection, 1 means mirror-like

reflection,
"index_of_refraction": a float representing the surface's optical index of refraction (IOR) of this [__category_l3__] object. Typical values range from 1.0 (air) to ~2.5 (diamond).

Use realistic values based onmaterial type. Higher values increase reflection and refraction at oblique angles,
"youngs_modulus": approximate material stiffness of this [__category_l3__] object in Megapascals (MPa). Use realistic values inferred frommaterial types (e.g., 1e7 for rubber,

2e11 for steel),
"friction_coefficient": a positive float representing the estimated friction coefficient, based on this this [__category_l3__] object's material and surface finish (e.g., polished ice

≈ 0.01, plastic ≈ 0.3, wood ≈ 0.5, rubber ≈ 0.9, dry concrete ≈ 1.2),
"bounciness": a float in the range [0, 1] representing the expected elasticity of the [__category_l3__] object upon impact. Higher values indicate more bounce (e.g., rubber ball ≈

0.9), while lower values indicateminimal or no bounce (e.g., stone ≈ 0.0),
"recommended_clearance": approximate safe buffer distance (in meters) that should surround this [__category_l3__] object when placed in a scene. This helps avoid collision

or interference with agents,
"asset_composition_type": a string describing the structural nature of this 3D asset. Choose one of: "single" (a standalone atomic object), "group" (a small collection of related

objects), or "scene" (a full composite scene with layout),
}

Object Attributes Annotation Prompt

Figure 16: Prompt for object attribute annotation.
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Thumbnail 0° 90° 180° 270°

Category Vehicle (L1) - Private Vehicle (L2) - Electric Car (L3)

Asset Quality 9 ∈ [0, 10]

Wordnet pickup.n.01

Description A metal, silver gray, angular electric pickup with large tinted windows and  armored design

Mass 3000 kg L x W x H 6.1 x 2.4 x 1.9 m

Support Surface False Enterable True

Front View 180°

Movable True

Required Force 23.5 kN

Receptacle False

Reflectivity 0.18 Index of Refraction 1.52Young’s Modulus 210 GPa

Friction Coefficient 0.9

Materials Steel (70%) | Glass  (15%) | Rubber  (12%) | Plastic  (3%)

Traversability Obstacle

Surface Hardness HardSurface Roughness 0.18 ∈ [0, 1]Finish Metal

Affordances Drivable   |   Openable   |   Closable   |   Toggleable   |   Pressable

Interactive Parts Door | Wheel |  Window | Trunk | Charging Port | Mirror

Colors Silver Gray (85%)    |    Black (10%)    |    Red (3%)    |    Yellow (2%)

Bounciness 0.05  ∈ [0, 1]

Safety Clearance 1.5 m

Asset Composition Single

Manufacturer Tesla Model Cybertruck Charge Port Location Left rear quarter panelEmblem None

License Plate Design None

Ground Mounted False

Figure 17: Example of full annotated attributes for each object asset in UrbanVerse-100K

C.3 DISCUSSION ON ASSET SCALE AND QUALITY ISSUES OF EXISTING DATABASES

Asset Quality Issues. High-quality 3D assets are essential for constructing realistic and physically
accurate simulation environments. The recent proliferation of large-scale 3D repositories has made
it possible to efficiently assemble datasets for diverse scene construction. Objaverse (Deitke et al.,
2023c), for instance, provides over 800K 3D objects sourced from the Internet, and its extension
Objaverse-XL (Deitke et al., 2023b) scales this collection to 10.2M unique objects from sources such
as GitHub. However, because these assets are primarily scraped from the web, their quality is highly
inconsistent and largely uncontrolled.

In the early stage of our project, we systematically examined Objaverse’s 800K assets and identified
nine recurring forms of corruption, which affect more than half of the collection. As illustrated in
Fig. 18, these issues include:

1. Bad mesh: incompletely reconstructed assets (often from 3D Gaussian Splatting (Kerbl
et al., 2023)), resulting in noisy, broken geometry;

2. No texture: pure meshes without surface textures, lacking visual realism;
3. Paper-like: thin, hand-authored background props with negligible mesh depth, unsuitable

for physical simulation;
4. With base: assets embedded in oversized base meshes, producing inaccurate occupancy

and collisions;
5. Terrain maps: large terrain-like assets that cannot be meaningfully used in urban embodied

AI simulation;
6. Inconsistent names: category names directly inherited from web tags, often written in

multiple languages, idiosyncratic codes, or designer-specific terms;
7. CAD-like: CAD models lacking textures and physical realism, unsuitable for direct use in

interactive simulation;
8. Non-single objects: assets that are entire scenes or contain multiple unrelated objects rather

than a single entity;
9. Non-uniform scales: assets not in metric scale, which makes them unusable for physically

grounded simulation.

The non-uniform scale issue is particularly problematic: as shown in Fig. 19, direct import of such
assets can lead to absurd scenarios (e.g., a fire hydrant larger than a building). Similar issues have also
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been noted in Objaverse++ (Lin et al., 2025a). To address these problems at their root, we curated a
new repository, UrbanVerse-100K, by employing human annotators to carefully filter low-quality
assets. This manual quality control ensures that only simulation-ready objects are included. Our
curated database will be open-sourced to facilitate reliable and reproducible embodied AI research.

Asset Scale Issues. Due to these quality issues, existing simulators—such as MetaUrban (Wu et al.,
2025a), UrbanSim (Wu et al., 2025b), indoor simulators (Deitke et al., 2022; Gan et al., 2020; Deitke
et al., 2020; Szot et al., 2021; Kolve et al., 2017; Li et al., 2023a), and driving simulators (Dosovitskiy
et al., 2017; Martinez et al., 2017; Kothari et al., 2021; Caesar et al., 2021)—typically rely on
relatively small, manually curated asset repositories. Human annotators must painstakingly adjust
object scales and orientations one by one, which is not scalable. As summarized in Tab. 5, current
urban simulators rarely exceed 15K curated assets, limiting the diversity and richness achievable in
simulation environments.

In contrast, our work introduces a hybrid annotation pipeline that combines efficient human filtering
with large language model (LLM)-based automatic annotation. Human annotators perform rapid
binary tagging to eliminate poor-quality assets, while LLMs contribute common-sense knowledge
to automatically annotate metric scales, canonical front views, semantic categories, and physical
attributes. This hybrid process enables us to construct a significantly larger, physically grounded
urban asset database at scale, bridging the gap between raw Internet collections and high-quality
simulation-ready repositories. In the next section, we detail our hybrid annotation pipeline.

Figure 18: Typical quality issues in existing 3D asset databases.

Scenario Simulator Scene
Creation

Physics
Engine

Parallel
Training

# of
Scenes

# of
Categories

# of
Assets

Asset
Physics

# of
Skyboxes

# of
Ground Materials

Indoor

AI2-THOR Manual Unity ✗ 120 – 3,578 ✓ ✗ ✗

ProcTHOR PG Unity ✗ +∞ 108 1,633 ✓ ✗ ✗

Habitat 3.0 Manual Bullet ✗ 211 – 18,656 ✗ ✗ ✗

Holodeck Manual Unity ✗ +∞ 108 1,633 ✗ ✗ ✗

Behavior Manual PhysX ✓ 50 1,900 9,000 ✓ ✗ ✗

Driving
GAT-V Manual Unity ✗ – – ✗ ✗ ✗ ✗

CARLA Manual Unreal5 ✗ 15 106 935 ✗ 1 10
MetaDrive PG Panda3D ✗ +∞ 5 5 ✗ 1 3

Urban
MetaUrban PG Panda3D ✗ +∞ 39 10,000 ✗ 1 5
Urban-Sim PG IsaacSim ✓ +∞ 39 15,000 ✗ 1 8
UrbanVerse Real2sim IsaacSim ✓ +∞ 667 102,530 ✓ 306 288

Table 5: A systematic comparison of urban Embodied AI simulators.
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Figure 19: Non-metric scale problems in existing 3D asset databases.

Category # Objects MAPE H (%) MAPE L (%) MAPE W (%) MAPE M (%)
Average – 5.88 ± 3.85 6.14 ± 3.86 7.00 ± 4.11 19.58 ± 12.11
Lamborghini Huracan STO 12 0.49 ± 0.30 0.66 ± 0.40 0.51 ± 0.30 2.02 ± 1.30
McLaren 600LT Spider 4 0.59 ± 0.40 0.78 ± 0.50 0.62 ± 0.40 2.47 ± 1.50
Tesla Cybertruck 7 1.97 ± 1.40 2.50 ± 1.70 2.02 ± 1.40 9.05 ± 6.50
Land Rover Defender 2 2.99 ± 2.00 3.72 ± 2.80 1.99 ± 1.40 12.56 ± 7.50
Electric Scooter 68 5.97 ± 4.00 9.38 ± 7.00 12.32 ± 6.00 29.96 ± 19.00
Bicycle 118 7.03 ± 5.00 5.05 ± 3.00 7.75 ± 5.00 17.78 ± 13.00
Vending Machine 153 7.94 ± 5.00 9.00 ± 5.00 7.18 ± 5.00 19.60 ± 10.00
Street Cabinet 43 20.00 ± 13.00 23.00 ± 13.00 22.00 ± 12.00 14.86 ± 10.00
Parking Meter 16 7.94 ± 5.00 10.71 ± 7.00 6.56 ± 5.00 22.94 ± 14.00
Fire Hydrant 160 1.47 ± 1.00 1.53 ± 1.00 1.53 ± 1.00 7.14 ± 4.00
Traffic Cone 126 12.57 ± 9.00 20.40 ± 13.00 20.40 ± 13.00 51.07 ± 25.00
Jersey Barrier 95 5.06 ± 3.00 7.07 ± 5.00 25.83 ± 13.00 75.00 ± 50.00
Egg 188 1.09 ± 0.70 1.03 ± 0.70 1.03 ± 0.70 12.45 ± 8.00
Cigarette 28 1.00 ± 0.60 1.00 ± 0.60 1.00 ± 0.60 15.10 ± 9.00
Laptop 171 20.46 ± 13.00 5.06 ± 3.00 4.84 ± 3.00 25.02 ± 17.00
Football 99 1.50 ± 1.00 1.50 ± 1.00 1.50 ± 1.00 6.83 ± 4.00
Basketball 45 1.92 ± 1.00 1.92 ± 1.00 1.92 ± 1.00 8.97 ± 6.00

Table 6: Evaluation of annotated physical attributes. We report the MAPE and standard deviation against
ground-truth attribute values across 17 object categories for Height (H), Length (L), Width (W), and Mass (M).

C.4 VALIDATION OF PHYSICAL ATTRIBUTE ANNOTATIONS

Validating the physical attributes annotation in UrbanVerse-100K is essential, yet direct human
annotation of true object dimensions or mass is generally infeasible without expert knowledge. Prior
simulators (e.g., MetaUrban, UrbanSim) typically rely on anchor-based visual calibration, where
objects are manually resized based on appearance and relative proportions. Following this practice,
our main paper presents large-scale qualitative validation by placing hundreds of assets side-by-side
to demonstrate consistent, physically plausible relative scales in Fig. 2.

To complement these qualitative checks, in this section, we conduct a quantitative evaluation on 17
categories comprising 1,335 objects for which reliable specifications or commonly agreed real-world
dimensions are publicly available (e.g., Tesla Cybertruck, vending machines, traffic cones, laptops).
For each category, we compute the Mean Absolute Percentage Error (MAPE),

MAPE =
100%

N

N∑
i=1

∣∣∣∣Annotationi − GTi

GTi

∣∣∣∣ ,
over height, length, width, and mass.
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As summarized in Tab. 6, geometric attributes are highly accurate—typically within 1–8% MAPE
and often 1–3% for rigid objects such as cars, hydrants, and balls. Mass values exhibit larger variation
due to material uncertainty but remain within a reasonable error range (mean 19.58%). Overall, these
results demonstrate that our automatic annotation pipeline yields reliable physical attributes at scale,
enabling high-fidelity, physics-aware simulation without manual labeling.

D DETAILS OF URBANVERSE SCENES

D.1 ADDITIONAL QUALITATIVE EXAMPLES OF URBANVERSE SCENES

Fig. 20 presents additional qualitative examples from our library of 160 automatically generated
UrbanVerse scenes. These scenes are produced by applying the full UrbanVerse-Gen pipeline to
diverse city-tour videos, capturing a wide range of real-world urban layouts, object configurations,
and appearance variations useful for embodied AI training.

D.2 DETAILS OF URBANVERSE SCENE LIBRARY CONSTRUCTION

City-tour video collection. To construct a scene library that captures diverse and realistic layouts
reflective of real-world urban settings, we collect 32 city-tour videos from YouTube released under
Creative Commons licenses. These videos span 7 continents, 24 countries, and 27 cities, providing
geographically and culturally comprehensive coverage for our city-tour video inputs. The distribution
is as follows:

• Continents: Africa, Asia, Europe, Middle East, North America, Oceania, South America

• Countries: Egypt, Kenya, Morocco, Nigeria, South Africa, China, India, Japan, Kazakhstan,
Singapore, South Korea, Vietnam, France, Iceland, Italy, Netherlands, Spain, Sweden, Saudi
Arabia, United Arab Emirates, Canada, Mexico, United States, Australia, New Zealand,
Argentina, Brazil, Colombia

• Cities: Cairo, Nairobi, Tangier, Rabat, Lagos, Cape Town, Beijing, Shijiazhuang, New
Delhi, Tokyo, Kyoto, Almaty, Singapore, Seoul, Ho Chi Minh City, Paris, Reykjavik, Naples,
Amsterdam, Barcelona, Stockholm, Riyadh, Dubai, Toronto, Puerto Vallarta, Los Angeles,
Sydney, Auckland, Buenos Aires, São Paulo, Rio de Janeiro, Bogotá

UrbanVerse scene diversity. Using our proposed automatic real-to-sim UrbanVerse-Gen pipeline,
we can not only mass-produce diverse scenes from collected city-tour videos but also further diversify
them through matched digital cousin object assets, ground materials, and sky maps.

As illustrated in Fig. 21, each input video is reconstructed into an interactive simulation scene and
then enriched with digital cousins that introduce variation in ground conditions (e.g., snow) and
illumination settings, thereby composing diverse seasonal appearances.

D.3 DETAILS OF CRAFTBENCH SCENE CREATION

To complement automatically generated scenes, we commission professional 3D artists to design a
suite of high-fidelity environments that serve as the CraftBench benchmark for closed-loop evaluation.
These scenes are carefully crafted to balance realism and diversity, capturing not only the everyday
orderliness of urban streets but also the messy, safety-critical edge cases that real-world agents
frequently encounter. As shown in Fig. 21, the benchmark includes diverse urban layouts such
as residential streets with garbage bags on sidewalks, narrow alleys lined with food courts, bar
streets with fallen scooters obstructing walkways, commercial districts with bike lanes, and CBD
intersections under active construction. The scenes also depict edge cases such as asymmetric
sidewalks, sidewalks blocked by illegally parked cars, and public parks populated with both dogs and
basketball courts. By combining realistic details with safety-critical anomalies, these artist-created
scenes provide challenging yet authentic environments for evaluating embodied urban navigation.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 20: A thumbnail montage showcasing a subset of the generated UrbanVerse simulation scenes.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Variants：Spring Variants：Summer

Variants：Autumn Variants：Winter

Input RGB Video Top-1 UrbanVerse Scene

Figure 21: Examples of UrbanVerse scene diversity.

E IMPLEMENTATION DETAILS OF URBANVERSE-GEN PIPELINE

In this section, we provide implementation details of the proposed UrbanVerse-Gen pipeline. For
structure-from-motion, we adopt MASt3R (Leroy et al., 2024) with a ViT-Large backbone to estimate
camera intrinsics, metric depth, and camera poses. For 2D object semantic parsing, we use the state-
of-the-art open-vocabulary detector YOLO-Worldv2 XL (Cheng et al., 2024) to obtain on-ground
object bounding boxes. Subsequently, SAM 2.1 Large (Ravi et al., 2024) refines these detections
by generating pixel-level semantic instance masks conditioned on the YOLO-Worldv2 predictions.
To match objects with database assets, we employ CLIP ViT-L/14 (Radford et al., 2021) for textual
semantic similarity, and DINOv2 ViT-B/32 (Oquab et al., 2023) to measure visual similarity between
input object masks and the thumbnails of 3D assets in our database.

F REAL-WORLD TESTING SCENE SELECTION

To rigorously evaluate zero-shot sim-to-real transfer, we carefully select 16 real-world testing scenes
that expose diverse challenges for two tested robot embodiments: the COCO wheeled delivery
robot and the Unitree Go2 quadruped, as shown in Fig. 23. These scenarios assess each robot’s
ability to follow trajectories on open ground and sidewalks, negotiate turns both with and without
obstacles, and cope with safety-critical events such as obstacles appearing after sharp turns, sidewalks
blocked by parked cars, and walkways cluttered with objects. Structural challenges such as narrow
gates, access ramps, lampposts, and urban street crossings are also included to test mobility and
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Scene 01 - Residential Street: Dual Sidewalks with Garbage Bags Scene 02 - Narrow Alley: Food-Court Area

Scene 03 - Residential Street: Single Sidewalk Scene 04 - Bar Street: Fallen Scooter in Sidewalk

Scene 05 - Commercial Street: Dual Sidewalks with Bike Lane Scene 06 - CBD T-Intersection with Construction Sites

Scene 07 - Commercial Street: Asymmetric Dual Sidewalks Scene 08 - CBD Cross Intersection with Diverse Obstacles

Scene 09 - Tourist Street: Sidewalk Blocked by Cars Scene 10 - Urban Park: Dogs and Basketball Courts

Figure 22: Examples of all CraftBench test scenes.

accessibility. Concretely, the set spans straight paths (Scenes 01, 04), turns (Scenes 02, 03, 05, 06),
walkways and sidewalks with obstacles (Scenes 07, 08), obstacles appearing after turns (Scenes 09,
10), sidewalk blockage by cars (Scene 11), lampposts and plazas (Scene 12), narrow gates and ramps
(Scenes 13, 14), and street crossings (Scenes 15, 16). By covering both trajectory-following and
obstacle-navigation tasks across two distinct embodiments, these scenes provide a comprehensive
benchmark for evaluating policy robustness and generalization in realistic urban environments.

G FAILURE CASE ANALYSIS

Challenging Input Conditions. UrbanVerse-Gen is generally robust across diverse city-tour videos,
but certain input conditions can still degrade reconstruction quality. As the examples shown in Fig. 24,
extremely low light, distant shot, heavy clutter, or complex terrain may affect depth estimation and
geometric consistency. To prevent clearly unrecoverable clips from entering the pipeline, we screen
every 10th frame with GPT–4.1 during large-scale generation and automatically filter out problematic
segments.

Depth and Pose Drift. Fast camera motion or unstable handheld recordings may introduce depth
or pose drift, occasionally causing misplaced objects (e.g., a sidewalk billboard shifted toward the
roadway). Multi-view aggregation substantially reduces such errors, though they remain the most
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Scene 11
Sidewalk blocked by cars

Scene 12
Plaza w. lampposts

Scene 09
Obstacle after turn

Scene 10
Obstacle after turn

Scene 03
Turn right

Scene 04
Go straight

Scene 01
Go straight

Scene 02
Turn left

Scene 07
Walkway w. obstacles

Scene 08
Sidewalk w. obstacles

Scene 05
Turn left

Scene 06
Turn right

Scene 15
Street crossing

Scene 16
Street crossing

Scene 13
Narrow gate

Scene 14
Narrow access ramp

Figure 23: Real-world testing scenarios. We evaluate zero-shot sim-to-real policy transfer across 16 diverse
urban scenes and two embodiments (COCO wheeled delivery robot and Unitree Go2 quadruped), spanning
challenges such as straight paths (Scenes 01, 04) and turns (Scenes 02, 03, 05, 06) on open ground or sidewalks,
walkway and sidewalk obstacles (Scenes 07, 08), obstacles appearing after turns (Scenes 09, 10), sidewalk
blockage by cars (Scene 11), structural elements including lampposts and narrow access points (Scenes 12–14),
and street crossings (Scenes 15, 16). Key challenges for each scene are highlighted in Red at the upper-right
corner.

common failure mode. As illustrated in Fig. 25, a sidewalk billboard shifted toward the road due to
inaccurate depth and pose drift. on the sideIncorporating spatial constraints between objects and their
plausible placement areas is a promising direction for further improving stability.

Imperfect Asset Retrieval. Visually complex or rare objects may not always retrieve a perfect
appearance match from UrbanVerse-100K. Our three-stage matching strategy—semantic matching,
geometry filtering, and appearance selection—ensures that the retrieved asset maintains correct
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Extremely low light Distant shot Heavy clutter Complex Terrain

Figure 24: Typical challenging input video conditions.

Input City-tour  Video Generated Digital Cousin Scene

Figure 25: Example failure cases from UrbanVerse-Gen. The sidewalk billboard that is originally placed on
the sidewalk in the input video is shifted toward the road due to inaccurate depth and pose drift

category, affordance, and collision geometry. As a result, appearance mismatches do not harm
physical interaction and often serve as benign domain randomization.

Mis-segmentation Under Heavy Occlusion. Severe occlusion by pedestrians or vehicles can lead
to incomplete masks from open-vocabulary detectors. However, because our layout extraction
fuses multi-view evidence rather than relying on single-frame segmentation, the reconstructed scene
geometry typically remains stable.

Impact on Downstream Learning. Despite these failure modes, we observe minimal negative
impact on downstream policy learning. Multi-view fusion and strict geometry filtering provide stable
scene layouts even when some frames are noisy, and both simulator evaluations and real-world
sim-to-real results confirm that policies trained in UrbanVerse generalize reliably. This indicates that
UrbanVerse provides sufficient scene fidelity for large-scale robot training.

H ADDITIONAL EXPERIMENTS ON TRAINING SCENE HORIZON LENGTH

In this section, we further study how the spatial horizon of training scenes affects policy learning.
Specifically, we compare Half-Length UrbanVerse scenes, where each scene is truncated to roughly
half of its original spatial extent (∼100 m), with Full-Length UrbanVerse scenes that retain the
complete layout (∼200 m). Both settings use the full set of 160 UrbanVerse training scenes (320
truncated scenes in the half-length case). Policies are trained on a wheeled robot and evaluated on the
ten CraftBench test scenes.

As shown in Tab. 7, full-length scenes lead to clear improvements across all metrics, raising Success
Rate by +9.6, reducing Collision Time by –5.0, and increasing Route Completion by +11.6. We
attribute this to two factors. First, longer scenes expose the agent to richer spatial structures, denser
object configurations, and longer-range dependencies that better match the complexity of real-world
navigation and the artist-designed CraftBench layouts. Second, longer episodes provide PPO with
more diverse transitions and more challenging decision points per rollout, improving both collision
avoidance and global route planning.
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Training Scene Length SR ↑ CT ↓ RC ↑
Half Length (∼100m) 32.3 40.5 50.8
Full Length (∼200m) 41.9 35.5 62.4

Table 7: Effect of training scene horizon length. Policies are trained on all 160 UrbanVerse scenes; the
half-length setting truncates each scene to ∼100 m, while the full-length setting uses the complete ∼200 m
layouts. Evaluation is conducted on the ten CraftBench test scenes using a wheeled robot.

These results highlight that increasing scene horizon—and thereby spatial complexity—is an effective
way to improve generalization in UrbanVerse-trained policies.

I ADDITIONAL ZERO-SHOT SIM-TO-REAL TRANSFER RESULTS

We provide per-scene real-world experimental results for both robot embodiments. Specifically,
Tab. 8 reports results for the COCO wheeled delivery robot, while Tab. 9 presents results for the
Unitree Go2 quadruped. All experiments are conducted three times for each method.

Scene 01 Scene 02 Scene 03 Scene 04

Route Length 22.1 m 25.8 m 22.9 m 23.1 m

Method SR ↑ CT ↓ RC ↑ DTG ↓ SR ↑ CT ↓ RC ↑ DTG ↓ SR ↑ CT ↓ RC ↑ DTG ↓ SR ↑ CT ↓ RC ↑ DTG ↓

NoMad 100.0 0.0 93.3 1.4 100.0 0.0 99.6 0.3 100.0 0.0 100.0 1.1 100.0 0.0 95.1 1.3
CityWalker 100.0 0.0 93.3 1.5 100.0 0.0 97.5 3.8 100.0 0.0 96.3 0.8 66.7 33.3 74.3 5.5
S2E 100.0 0.0 90.2 2.0 100.0 0.0 95.9 2.1 66.7 66.7 89.4 2.9 100.0 0.0 90.5 2.0
PPO-UrbanSim 100.0 0.0 90.9 2.0 100.0 0.0 65.0 6.0 100.0 0.0 87.1 4.3 0.0 100.0 67.3 6.0
PPO-UrbanVerse 100.0 0.0 90.9 2.0 100.0 0.0 95.1 2.1 100.0 0.0 93.1 2.0 100.0 0.0 90.7 2.0

Scene 05 Scene 06 Scene 07 Scene 08

Route Length 13.9 m 13.7 m 24.8 m 26.2 m

Method SR ↑ CT ↓ RC ↑ DTG ↓ SR ↑ CT ↓ RC ↑ DTG ↓ SR ↑ CT ↓ RC ↑ DTG ↓ SR ↑ CT ↓ RC ↑ DTG ↓

NoMad 0.0 100.0 53.2 5.4 0.0 100.0 69.3 4.9 0.0 100.0 30.0 15.0 33.3 66.7 63.6 10.0
CityWalker 0.0 100.0 38.3 6.5 0.0 100.0 31.1 6.8 0.0 100.0 36.5 14.8 0.0 100.0 14.8 22.1
S2E 0.0 100.0 9.5 9.0 100.0 0.0 82.7 2.0 66.7 33.3 69.8 7.0 66.7 33.3 66.5 8.0
PPO-UrbanSim 0.0 100.0 32.5 6.8 0.0 100.0 17.3 7.9 0.0 100.0 23.5 16.3 0.0 100.0 12.5 22.8
PPO-UrbanVerse 100.0 0.0 85.6 2.1 100.0 0.0 80.4 2.1 100.0 0.0 94.2 2.0 100.0 0.0 88.1 3.1

Scene 09 Scene 10 Scene 11 Scene 12

Route Length 36.0 m 18.9 m 22.6 m 35.7 m

Method SR ↑ CT ↓ RC ↑ DTG ↓ SR ↑ CT ↓ RC ↑ DTG ↓ SR ↑ CT ↓ RC ↑ DTG ↓ SR ↑ CT ↓ RC ↑ DTG ↓

NoMad 0.0 100.0 6.9 28.4 0.0 100.0 56.3 7.9 0.0 100.0 52.5 10.1 100.0 0.0 94.3 2.0
CityWalker 0.0 100.0 0.0 30.7 0.0 100.0 19.1 9.3 33.3 66.7 66.6 9.1 0.0 100.0 15.1 17.2
S2E 0.0 100.0 12.8 26.9 0.0 100.0 62.2 5.5 100.0 0.0 90.4 2.0 0.0 100.0 25.7 12.8
PPO-UrbanSim 0.0 100.0 20.9 11.8 0.0 100.0 8.4 10.6 0.0 100.0 82.9 3.5 0.0 100.0 10.0 15.0
PPO-UrbanVerse 33.3 66.7 70.2 9.1 33.3 66.7 79.4 4.0 33.3 66.7 52.4 9.7 0.0 100.0 72.9 5.3

Scene 13 Scene 14 Scene 15 Scene 16

Route Length 28.0 m 21.8 m 25.9 m 31.7 m

Method SR ↑ CT ↓ RC ↑ DTG ↓ SR ↑ CT ↓ RC ↑ DTG ↓ SR ↑ CT ↓ RC ↑ DTG ↓ SR ↑ CT ↓ RC ↑ DTG ↓

NoMad 0.0 100.0 9.2 18.1 0.0 100.0 10.0 17.9 0.0 100.0 68.1 7.7 0.0 100.0 17.4 24.9
CityWalker 0.0 100.0 10.0 20.5 0.0 100.0 6.9 17.9 0.0 100.0 74.4 4.4 0.0 100.0 8.3 24.9
S2E 0.0 100.0 11.2 18.2 33.3 66.7 35.1 12.4 0.0 100.0 72.6 5.4 33.3 66.7 49.0 13.5
PPO-UrbanSim 0.0 100.0 10.7 17.6 0.0 100.0 9.2 17.4 0.0 100.0 5.0 14.9 0.0 100.0 10.5 25.2
PPO-UrbanVerse 100.0 0.0 92.7 2.1 66.7 33.3 79.6 3.9 100.0 0.0 85.8 2.1 66.7 33.3 83.9 4.6

Table 8: Expanded real-world results of COCO wheeled robot on each scene. Best performance is colored
in Blue .
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Scene 01 Scene 02 Scene 03 Scene 04

Route Length 22.1 m 25.8 m 22.9 m 23.1 m

Method SR ↑ CT ↓ RC ↑ DTG ↓ SR ↑ CT ↓ RC ↑ DTG ↓ SR ↑ CT ↓ RC ↑ DTG ↓ SR ↑ CT ↓ RC ↑ DTG ↓

NoMad 100.0 0.0 94.5 5.0 100.0 0.0 97.5 0.8 100.0 0.0 97.1 0.9 100.0 0.0 80.1 4.7
CityWalker 100.0 0.0 94.5 5.0 100.0 0.0 96.1 1.0 100.0 0.0 98.0 0.8 100.0 0.0 90.0 5.3
S2E 100.0 0.0 88.9 2.0 100.0 0.0 93.8 2.1 100.0 0.0 92.1 2.0 100.0 0.0 67.1 6.1
PPO-UrbanSim 100.0 0.0 92.3 2.0 100.0 0.0 45.6 11.4 100.0 0.0 68.3 6.0 0.0 100.0 1.5 20.1
PPO-UrbanVerse 100.0 0.0 88.7 2.1 100.0 0.0 93.9 2.0 100.0 0.0 95.2 2.1 100.0 0.0 90.3 2.0

Scene 05 Scene 06 Scene 07 Scene 08

Route Length 13.9 m 13.7 m 24.8 m 26.2 m

Method SR ↑ CT ↓ RC ↑ DTG ↓ SR ↑ CT ↓ RC ↑ DTG ↓ SR ↑ CT ↓ RC ↑ DTG ↓ SR ↑ CT ↓ RC ↑ DTG ↓

NoMad 100.0 0.0 90.7 6.8 100.0 0.0 83.1 2.8 0.0 100.0 22.4 18.0 0.0 100.0 44.2 13.1
CityWalker 100.0 0.0 93.0 2.4 0.0 100.0 30.8 6.0 0.0 100.0 9.1 20.7 0.0 100.0 2.7 22.8
S2E 0.0 100.0 78.5 3.3 100.0 0.0 79.0 2.1 66.7 33.3 94.6 2.1 100.0 0.0 87.0 3.1
PPO-UrbanSim 0.0 100.0 15.9 8.8 0.0 100.0 65.8 3.3 0.0 100.0 30.8 15.1 0.0 100.0 14.4 20.2
PPO-UrbanVerse 100.0 0.0 88.0 2.0 100.0 0.0 78.0 2.1 100.0 0.0 92.3 2.1 100.0 0.0 91.4 2.0

Scene 09 Scene 10 Scene 11 Scene 12

Route Length 36.0 m 18.9 m 22.6 m 35.7 m

Method SR ↑ CT ↓ RC ↑ DTG ↓ SR ↑ CT ↓ RC ↑ DTG ↓ SR ↑ CT ↓ RC ↑ DTG ↓ SR ↑ CT ↓ RC ↑ DTG ↓

NoMad 0.0 100.0 74.4 10.1 0.0 100.0 83.8 13.4 0.0 100.0 36.8 13.2 0.0 100.0 18.4 18.2
CityWalker 0.0 100.0 37.1 19.1 0.0 100.0 5.2 20.3 0.0 100.0 23.1 14.9 0.0 100.0 25.8 16.6
S2E 33.3 66.7 57.4 13.6 100.0 0.0 96.2 2.1 66.7 33.3 63.3 2.7 0.0 100.0 53.0 10.5
PPO-UrbanSim 0.0 100.0 11.7 26.7 0.0 100.0 0.0 21.6 0.0 100.0 58.0 4.6 0.0 100.0 12.8 22.1
PPO-UrbanVerse 100.0 0.0 93.5 2.1 100.0 0.0 96.4 2.0 66.7 33.3 65.1 2.3 100.0 0.0 89.8 2.3

Scene 13 Scene 14 Scene 15 Scene 16

Route Length 28.0 m 21.8 m 25.9 m 31.7 m

Method SR ↑ CT ↓ RC ↑ DTG ↓ SR ↑ CT ↓ RC ↑ DTG ↓ SR ↑ CT ↓ RC ↑ DTG ↓ SR ↑ CT ↓ RC ↑ DTG ↓

NoMad 0.0 100.0 1.5 20.8 0.0 100.0 33.6 13.9 0.0 100.0 0.0 26.4 0.0 100.0 12.2 32.4
CityWalker 0.0 100.0 1.5 20.8 0.0 100.0 20.4 16.6 0.0 100.0 48.5 10.4 0.0 100.0 5.8 32.3
S2E 0.0 100.0 69.3 7.9 33.3 66.7 33.9 13.8 0.0 100.0 53.6 9.9 33.3 66.7 34.3 17.6
PPO-UrbanSim 0.0 100.0 23.4 15.7 0.0 100.0 10.0 21.2 0.0 100.0 8.0 14.5 0.0 100.0 7.4 32.7
PPO-UrbanVerse 100.0 0.0 94.9 2.0 66.7 33.3 85.0 3.1 33.3 66.7 81.4 3.2 66.7 33.3 58.8 6.0

Table 9: Expanded real-world results of GO2 quadruped robot on each scene. Best performance is colored
in Blue .

J EXPERIMENT SETUP DETAILS

J.1 DEFINITION OF URBAN NAVIGATION EVALUATION METRICS

In this section, we formally define the evaluation metrics used in our urban navigation experiments.

Success Rate (SR; %). The percentage of episodes in which the robot successfully reaches the
goal without collision, averaged across scenes and runs. Higher values indicate better navigation
performance.

Collision Time (CT; %). The fraction of total episode time during which the robot is in contact with
any obstacle. Lower values indicate safer navigation.

Route Completion (RC; %). The percentage of the planned evaluation route completed before
termination (goal reached, fatal collision, off-road deviation, or timeout). Higher values reflect more
reliable progress.

Distance to Goal (DTG; m). The final Euclidean distance from the robot to the goal at episode
termination. Lower values indicate more precise goal reaching.
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J.2 DETAILS OF TRAINING AND EVALUATION SETUP

For training and evaluation, agents are initialized within the annotated traversable regions in Ur-
banVerse scenes. The goal point is randomly sampled at a distance between 10 m and 30 m from
the starting pose. Each episode runs for a fixed horizon (60s@5Hz), during which the policy must
navigate toward the goal while avoiding collisions and staying within the traversable area. Rollouts
are collected with a specified horizon length (i.e., 32 steps) for training updates. For both training and
evaluation, an episode is terminated either when the robot collides with any object in the scene or
when the maximum time horizon is reached.

J.3 DETAILS OF POLICY LEARNING

Model architecture. For RL training, we adopt an actor–critic architecture with continuous action
space, trained using PPO (Schulman et al., 2017). Each observation is the relative position of the goal
point and an RGB frame of size 135× 240 with three channels. The convolutional encoder consists
of three layers with depths [16, 32, 64], each followed by ReLU activation. The goal point is encoded
using a MLP. No special regularization is applied. The encoder output is passed through a MLP with
three hidden layers of size 128 and ELU activations. Actor and critic share the same backbone. The
output distribution uses Gaussian parameters with unconstrained µ and σ, initialized respectively
with the default initializer and a constant (0.0).

Reward functions. The reward is designed to encourage goal-reaching while penalizing unsafe
behaviors. Specifically:

R = RA +RC +RP +RV (1)

• Arrived reward RA: A large positive reward (+2000) is given when the agent successfully
reaches the goal.

• Collision penalty RC : A penalty (-200) is applied if the agent collides with any obstacle.
• Position tracking RP : A shaping reward based on the error between the commanded and

actual position, with two scales: coarse (std = 5.0, weight = 10) RP,c and fine (std = 1.0,
weight = 50) RP,f .

• Velocity reward RV : A reward (weight = 10) encourages matching the target velocity
command, defined as the cosine similarity between the current velocity and target velocity
between the robot position and target position.

This combination balances sparse terminal signals (arrival, collision) with dense shaping terms
(tracking error, velocity), stabilizing training and guiding exploration.

Optimization and training hyperparameters. We provide the detailed hyperparameters in Tab. 10.

J.4 ROBOT PLATFORM CONFIGURATIONS IN SIMULATION

Our simulated platforms are implemented in NVIDIA IsaacSim (Xu et al., 2022; Dorbala et al.,
2023), a GPU-accelerated environment that provides physics-accurate interactions and photorealistic
rendering. Each robot model is instantiated from its official URDF specification and equipped with
RGB sensing for visual input.

Locomotion is governed by a layered control architecture composed of a low-level joint controller
and a high-level policy optimized through reinforcement learning. Policies are trained with Proximal
Policy Optimization (PPO) (Schulman et al., 2017) under curriculum learning and terrain random-
ization. The reward design promotes balance, velocity tracking, and energy-efficient movement,
while penalizing collisions and falls. To enhance sim-to-real transfer, domain randomization is
applied across textures, friction parameters, and mass properties. This unified framework is applied
consistently across all robot embodiments, supporting scalable and embodiment-aware training.

Wheeled robot. The wheeled platform is modeled as a differential-drive robot controlled via a
kinematic formulation (Polack et al., 2017). Linear and angular velocities (v, ω) are generated from
waypoints using an ideal PD controller (Sridhar et al., 2024). These commands are propagated in
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Parameter Value

Learning rate 1× 10−4 (adaptive schedule)
Discount factor γ 0.99
GAE parameter τ 0.95
PPO clipping ϵ 0.2
KL threshold 0.01
Entropy coefficient 0.002
Critic loss coefficient 1.0
Gradient norm clipping 1.0

Horizon length 32
Minibatch size 512
Mini-epochs 5
Bounds loss coefficient 0.01

Training epochs 1500
Device Single GPU (L40S), mixed precision

Table 10: Optimization and training hyperparameters.

(a) COCO Wheeled Delivery Robot (b)  Unitree Go2 Quadruped

Wi-Fi Router

Right Fisheye Camera

Power bank

Voltage Boost
Module

Router
Charger

Front Fisheye Camera
(model input)

Right Fisheye Camera

Rear Fisheye Camera

4G Router

Left Fisheye Camera

Delivery Box

Actuated
Wheels

GPS

Figure 26: Robot platform configurations used in real-world experiments: (a) COCO wheeled delivery
robot and (b) Unitree Go2 quadruped.

IsaacSim’s rigid-body physics engine, where wheel-ground frictional contact governs the realized
motion.

Unitree Go2 quadruped. The quadruped embodiment (Unitree Go2) is designed for agile locomotion
in unstructured environments. Control actions are expressed as (vx, vy, ω), again produced from
waypoints through an ideal PD controller (Sridhar et al., 2024). The locomotion module itself is a
compact MLP trained on IsaacSim’s standard quadruped training setups (Xu et al., 2022; Dorbala
et al., 2023), enabling stable gait generation across diverse terrains.

J.5 ROBOT PLATFORM CONFIGURATIONS IN REAL-WORLD

For real-world experiments, we deploy two distinct robot platforms: the COCO wheeled delivery
robot and the Unitree Go2 quadruped, as shown in Fig. 23. These platforms represent complementary
embodiments for urban navigation—a compact, wheeled sidewalk delivery robot and a legged
quadruped capable of traversing uneven terrain.

COCO wheeled robot. As shown in Fig. 26 (a), the real COCO robot is equipped with four actuated
wheels, differential-drive odometry, a GPS unit, and multiple fisheye cameras (front, rear, left, and
right) that provide panoramic perception. Its sensing and communication stack includes a 4G router
for remote teleoperation connectivity and a delivery box as payload. The front fisheye camera serves
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as the primary input to our policy models. The robot is controlled via the same kinematic model used
in simulation, where linear and angular velocities (v, ω) are computed from waypoints using an ideal
PD controller. Odometry is used for real-time position estimation and to continuously update the
target position during navigation.

Unitree Go2 quadruped. As shown in Fig. 26 (b), the Unitree Go2 offers a contrasting embodiment
with articulated legs and onboard compute support. It is equipped with a fisheye perception camera, a
Wi-Fi router for connectivity, and an extended power system consisting of a power bank, voltage boost
module, and router charger to support sustained experiments. Low-level locomotion is handled by
the controller provided by Unitree. Instead of executing joint-level commands from a trained policy,
we interface with the Go2 through its built-in velocity control API, sending high-level commands
(vx, vy, ω) that leverage its native gait generation and stability modules. LiDAR-based odometry is
used for real-time position estimation and to continuously update the target position during navigation.

Together, these two platforms enable us to examine sim-to-real transfer across distinct locomo-
tion modalities and hardware configurations, thereby providing a broader evaluation of embodied
navigation in diverse urban settings.

K HUMAN EVALUATION DETAILS

A B

(a) User Preference Study (b) Scene Quality Rating Study

Figure 27: User study interface example.

To better understand how human judgments align with the realism of generated scenes, we designed
two complementary user studies using a custom-built online interface, as illustrated in Fig. 27.

Comparative User Preference Study. For the first study, participants were presented with pairs
of static overview images randomly sampled from our dataset. Each pair consisted of one scene
generated by UrbanVerse and one procedurally generated (PG) scene using UrbanSim (Wu et al.,
2025b) built from the same UrbanVerse-100K assets. As shown in Fig. 27(a), participants compared
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the two scenes side-by-side and were asked to select which scene performed better (or “Equal”) across
three criteria: (1) Object Diversity — the richness and representativeness of included urban objects;
(2) Layout Coherence — the realism and logical arrangement of objects based on real-world urban
design principles; and (3) Overall Realism — the degree to which the scene resembled a plausible
real-world street environment. Responses were collected through a simple three-choice interface (A
better, B better, Equal) for each criterion.

Scene Quality Rating Study. In the second study, participants evaluated scene quality through
immersive video walkthroughs. Each trial displayed a 360◦ simulated flythrough of a given scene, as
illustrated in Fig. 27(b). Participants were then asked to assign a quality score (1–5) reflecting overall
realism, asset contextual appropriateness, layout realism, and object diversity. The Likert-style rating
scale ranged from 1 = Very Poor to 5 = Excellent. This setup allowed participants to assess not only
static composition but also temporal and spatial coherence as the camera moved through the scene.

Study Deployment. Both studies were conducted with 32 undergraduate participants. To ensure
fairness, all scenes and videos were shuffled randomly across participants, and instructions clarified
the evaluation criteria prior to the study. This interface design ensured consistent, criterion-driven
human judgments across both comparative and rating-based evaluations.

L SYSTEM COMPUTATIONAL ANALYSIS

We provide a detailed analysis of the computational cost and scalability of UrbanVerse, covering: (i)
real-to-sim scene generation with UrbanVerse-Gen, (ii) large-scale object annotation in UrbanVerse-
100K, and (iii) a comparison with the procedural workflow of UrbanSim. Results are summarized in
TablesTab. 11, Tab. 12, Tab. 13, and Tab. 14.

Video Duration (sec) Video Length (# frames) LLM Calls Scene Generation Wall Time (sec)
10 10 4 12.38
40 40 14 114.46
80 80 27 289.80

180 180 60 1135.20

Table 11: UrbanVerse-Gen real-to-sim scene generation time with varying input video lengths on an
NVIDIA H100 GPU.

Setting # City-tour
Videos

# Cousin
Scenes / Layout

# Unique
Layouts

# Total
Scenes

Wall
Time

Single layout with
5 digital cousins 1 5 1 5 18.92 min

160 Scenes
(1 × NVIDIA H100) 32 5 32 160 10.08 hrs

160 Scenes
(4 × NVIDIA H100, default) 32 5 32 160 1.26 hrs

Table 12: Overall computational time of UrbanVerse scene generation.

UrbanVerse-Gen Scene Generation. As shown in Tab. 11, the computational cost of UrbanVerse-
Gen scales almost linearly with input video length. The dominant runtime component is MASt3R-
based 3D reconstruction, while GPT–4.1 queries are kept lightweight by sampling every third frame
for object categorization. Short clips (10–40 s) require 4–14 multimodal LLM calls and 12–114 s of
processing, and longer clips (80–180 s) require 27–60 calls and 289–1135 s on a single NVIDIA H100
GPU. Using 4 H100 GPUs, the system generates 160 fully interactive scenes from 180 s city-walk
videos in 1.26 hours (Tab. 12), demonstrating strong practical scalability.

UrbanVerse-100K Asset Annotation. The UrbanVerse-100K annotation pipeline also scales ef-
ficiently. As summarized in Tab. 13, each 3D asset is annotated with exactly one GPT–4.1 call,
averaging 2.3 s and $0.013 per object. Annotating the full dataset of 102,530 assets requires 65.5 hours
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# Objects GPT-4.1 Call Counts API Wall Clock Time API Cost
1 1 0.0003 hrs $0.018
2 2 0.0005 hrs $0.029
... ... ... ...

102,530 102,530 65.5 hrs $1,334
Average 1 / object 2.3 sec / object $0.013 / object

Table 13: Annotation cost and runtime statistics of the UrbanVerse-100K annotation pipeline.

of API wall time and $1,334 in total cost, providing an economical path to large-scale semantic and
physical labeling without manual intervention.

Aspect UrbanSim UrbanVerse
How to Add
a New 3D Asset

Manual annotation
(metric resizing, mass setup)

Fully automated
annotation pipeline

Time to Add
a New 3D Asset ∼600 sec ∼2.3 sec

How to Add
a New Scene

Manual creation
of scene templates

Automatic scene generation
via UrbanVerse-Gen

Time to Create
a New Scene (∼200m) ∼240 min ∼18.9 min

(NVIDIA H100)
Rendering Efficiency
(RGB, Single Env, L40S) ∼94 FPS ∼94 FPS

Table 14: Comparison of UrbanSim and UrbanVerse for asset creation, scene generation, and rendering
efficiency.

Comparison with UrbanSim. UrbanSim relies on procedural templates that are hand-designed
by developers and require manual asset annotation. While procedural sampling itself incurs little
computational cost, this workflow limits realism and diversity. As shown in Tab. 14, UrbanVerse
automates both scene creation and asset annotation, reducing scene generation time from ∼240 min
(UrbanSim) to 18.9 min, and reducing per-object annotation time from ∼600 s to 2.3 s. Both systems
achieve similar rendering throughput in Isaac Sim (94 FPS), but UrbanVerse provides orders-of-
magnitude higher scalability and produces scenes grounded in real-world distributions.
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