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ABSTRACT

Large language models (LLMs) augmented with retrieval exhibit robust perfor-
mance and extensive versatility by incorporating external contexts. However, the
input length grows linearly in the number of retrieved documents, causing a dra-
matic increase in latency. In this paper, we propose a novel paradigm named Sparse
RAG, which seeks to cut computation costs through sparsity. Specifically, Sparse
RAG encodes retrieved documents in parallel, which eliminates latency introduced
by long-range attention of retrieved documents. Then, LLMs selectively decode
the output by only attending to highly relevant caches auto-regressively, which are
chosen via prompting LLMs with special control tokens. It is notable that Sparse
RAG combines the assessment of each individual document and the generation
of the response into a single process. The designed sparse mechanism in a RAG
system can facilitate the reduction of the number of documents loaded during
decoding for accelerating the inference of the RAG system. Additionally, filtering
out undesirable contexts enhances the model’s focus on relevant context, inherently
improving its generation quality. Evaluation results on four datasets show that
Sparse RAG can be used to strike an optimal balance between generation quality
and computational efficiency, demonstrating its generalizability across tasks.

1 INTRODUCTION

Large language models (LLMs) have attracted increasing attention and exhibited impressive abilities
to understand instructions and generate fluent outputs in natural language (Brown et al., 2020;
Ouyang et al., 2022; Touvron et al., 2023; Team et al., 2023). Nevertheless, LLMs inevitably
manifest hallucinations (Ji et al., 2023) due to their struggle with factual errors and inability to
secure the accuracy of generated text solely by the parametric knowledge they encapsulate (Zhang
et al., 2023; Muhlgay et al., 2024). Feeding the source of truth to LLMs in the format of retrieved
context segments (Reid et al., 2024) alleviates this problem. The technique is widely known as
Retrieval-Augmented Generation (RAG) (Lewis et al., 2020b; Li et al., 2022; Guu et al., 2020a).

Although the RAG framework is empirically shown to be effective, it can be expensive to scale up.
This is because it requires prepending relevant documents retrieved from an external knowledge
corpus to the queries (Guu et al., 2020a). As a result, the input length grows linearly in the number of
documents, causing a dramatic increase in latency when using a standard Transformer whose latency
scales quadratically with the input length. Some prior works such as Fusion-in-Decoder (FiD) (Izacard
& Grave, 2021) and Parallel Context Windows (PCW) (Ratner et al., 2023) have proposed to alleviate
this issue. Yet these methods fail to strike an optimal balance between generation quality and
computational efficiency. FiD was originally designed for the encoder-decoder architecture, and thus
is not compatible with currently prevalent decoder-only architectures without significant changes.
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Figure 1: An overview of Sparse RAG at inference. Each of the retrieved documents di is assessed
for relevance by the LLM and irrelevant documents are dropped. Then, the KV caches ci for the
remaining documents are used for generation.

While PCW can be applied to decoder-only LLMs, it only speeds up the model pre-filling and still
incurs high latency since the whole context window cache is still being attended to when decoding
each token. Moreover, the heavy reliance of generation on the retrieved knowledge raises significant
concerns about the model’s behavior and performance in scenarios where retrieval may fail or return
inaccurate results (Shi et al., 2023). A typical approach for mitigating this issue is to rely on an
external classifier to rank or filter the documents before prepending them to the input (Yan et al.,
2024), but this process requires extra model calls which adds new complexity to inference.

In light of the issues above, we propose a novel paradigm called Sparse RAG. It operationalizes
through massive pre-filling, where the key-value cache is generated by a single forward pass of
the input tokens, and selective decoding, where the output is generated by attending to only highly
relevant tokens auto-regressively. Previous works where the length of the retrieved contexts during
pre-filling are equal to that during decoding are called dense-RAG in this paper. Sparse RAG, on the
other hand, causes the decoding context to be significantly shorter than the pre-filled context, where
retrieved documents that are not highly relevant to the input query have been dynamically dropped.
Furthermore, Sparse RAG combines the assessment of each individual context and the generation of
the response into a single process, in which special control tokens are used to prompt the LLM to
assess the relevance of each retrieved context, and then only the key-value caches of the most relevant
contexts are loaded for decoding using another control token.

The design of Sparse RAG has two additional unique advantages. First, by reducing the number of key-
value cache loads during the decoding process, the LLM can achieve lower latency where it is typically
constrained by memory usage. Second, filtering out undesirable contexts enhances the model’s focus
on relevant contexts, inherently improving the quality of the generated output. To demonstrate the
effectiveness and efficiency of the proposed method, we evaluate on four datasets: PopQA (Mallen
et al., 2023), QMSum (Min et al., 2023), TriviaQA (Joshi et al., 2017), and HotpotQA (Yang et al.,
2018). Experimental results show that Sparse RAG can achieve similar or better quality and much
better latency compared with standard dense-RAG or PCW-RAG approaches. Moreover, the choice of
the four datasets, which include short- and long-form generation, question answering, summarization,
and multi-hop reasoning, demonstrates the generalizability of the Sparse RAG approach.

2 RELATED WORK

Retrieval-Augmented Generation RAG is a family of techniques for generating output while
using retrieved nearest-neighbor context data as a reference. It typically involves two stages: retrieval
and generation. Retrieval finds most similar contexts based on BM25 or learned embeddings, where
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Table 1: Comparisons with existing RAG-related works.

Approach Corrective No extra model Prefill efficiency Decode efficiency

RAG (Lewis et al., 2020b) No Yes No No
Corrective RAG (Yan et al., 2024) Yes No No No
PCW RAG (Ratner et al., 2023) No Yes Yes No
Sparse RAG (Ours) Yes Yes Yes Yes

the context can be represented as token embeddings (Khandelwal et al., 2020; Yogatama et al., 2021),
dense embeddings (de Jong et al., 2022) or raw text (Guu et al., 2020b; Izacard & Grave, 2021; Lewis
et al., 2020b). Once those contexts are retrieved, different architectures are leveraged to incorporate
them into the model. Popular approaches include concatenation (Izacard & Grave, 2021; Lewis et al.,
2020b) and cross-attention (Borgeaud et al., 2022; Lewis et al., 2020a).

In recent years, LLM architectures have evolved towards decoder-only models with significantly
larger sizes. To this end, concatenation of raw text (Lewis et al., 2020b) is becoming popular for its
simplicity and practicality, and many advanced approaches have been developed on top of it. Yoran
et al. (2024) designed an NLI model to identify irrelevant contexts and improve robustness. Jiang
et al. (2023b) actively anticipate future content and decide when and what to retrieve in long-form
generation. Self-RAG (Asai et al., 2024) is proposed to selectively retrieve knowledge on an as-
needed basis, by introducing a separate critic model. The critic model generates ”reflection” tokens to
indicate whether to retrieve information. It runs inference on each document once and uses additional
”reflection” tokens to select excerpts from the documents to use for generating the response. In
contrast, we unify the generation of the special control tokens and regular vocabulary tokens with
one single model, eliminating the additional model and computational overhead. CRAG (Yan et al.,
2024) explores and designs corrective strategies for RAG to improve its robustness of generation.
Specifically, an external T5 model is trained and used to determine the usefulness of the retrieved
context. Generally, these approaches explore retrieval as a useful tool to augment generation and
whether retrieval is necessary.

Efficiency in RAG The efficiency of LLM inference is a widely explored research area, where
different categories of approaches have been studied, often targetting LLM inference in general
rather than RAG specifically. Some works focus on architecture-level acceleration; examples include
efficient attention (Shazeer, 2019), Mixture of Experts (Fedus et al., 2022), Transformer-alternative
architectures (Gu & Dao, 2024), etc. Other works explore algorithm-level acceleration like quantiza-
tion (Lin et al., 2024) or speculative decoding (Leviathan et al., 2023).

Recently, RAG-specific methods have been explored. RAG Cache (Jin et al., 2024), for example,
was proposed as a multilevel dynamic caching system tailored for RAG from the system perspective.
Another approach used in FiD (Izacard & Grave, 2021) and PCW (Ratner et al., 2023) parallelizes
processing of individual documents and eliminates cross-document attention computations. FiD
encodes each retrieved passage independently from other passages and decodes by attending over
the concatenation of the resulting representations of all the retrieved passages. PCW carves a long
context into chunks (“windows”), restricting the attention mechanism to apply only within each
window, and re-uses the positional encodings across the windows.

Comparison with previous works that are the most relevant to our work is illustrated in Table 1. This
work aims to strike an optimal balance between generation quality and computational efficiency. It is
notable that the extra classifier in CRAG requires maintaining an extra model with more complex
serving infrastructure; when there are N contexts retrieved, there are N + 1 model runs in total. Our
work also relies on classification to refine the retrieved documents, but it is handled by an “internal”
classification process that is aligned with the generation process, so the total number of model runs in
our case is 1.

3 SPARSE RAG

Sparse RAG is designed for the decoder-only model architecture, which is the typical architecture of
most popular LLMs. Figure 1 presents an overview of Sparse RAG inference, in which document
relevance assessment is used to improve the robustness of generation. The key hypothesis of our
approach is that the RAG task and per context assessment are similar tasks and the model can handle
both in one shot using simple and effective training and inference techniques.
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3.1 TRAINING PROCESS

Our work assumes that a certain amount of RAG training data–on the order of thousands of exam-
ples–is accessible, which allows us to effectively tailor and adapt existing LLMs to our specific needs.
In the training phase, we integrate an additional Per Context Assessment (PCA) task into the training
mixture. By incorporating the PCA task, we aim enhance the model’s ability to assess the relevance
of retrieved documents and respond accurately in different RAG scenarios.

Data Augmentation with LLMs For typical RAG data, one question-answer pair can be mapped
to multiple retrieved contexts using either BM25 or an existing stand-alone retriever. However, there
are cases where no golden labels indicating the quality of every retrieved context is available.

To collect these missing labels, we leveraged two off-the-shelf LLMs (Anil et al., 2023; Team et al.,
2023)–PALM2 and Gemini–to assess each context. We observe empirically that a second round of
prompting for critique, especially using a different model from the initial round, ensures the best
quality labels. We provide our prompts in Table 11 in the Appendix. We compare different model
combinations for labeling to human ground truth labels in Section 4.

Multitasking Data Format The LLM is trained on a mixture of two types of tasks: Per Context
Assessment (relevance rating) and answer generation. Specifically, we format the inputs and outputs
of the two task types as

• Per Context Assessment: {Question}{Context}{Control Assessment}{Rating}
• Generation: {Question}{Context1}...{ContextN}{ControlGeneration}{Answer}

where {Rating} (”yes” for relevant or ”no” for irrelevant) and {Answer} are the targets
for the generative tasks and all tokens before them are inputs. {Control Assessment} and
{Control Generation} are special control tokens to ensure the LLM can differentiate the two
tasks.

Parallel Contexts Since each context is rated independently in the PCA task, in which each
example contains only one context, we introduce independence in the primary RAG generation
training task as well so that the two tasks can reuse the KV cache at inference. Thus for the
generation task, we enforce no cross-attention between different retrieved contexts as in Parallel
Context Windows (Ratner et al., 2023).

Specifically, we modify two things in the standard LM training process. First, we change the
attention masks to be block-wise, and restrict Contexti and Contextj from attending to one another.
{Question}, {Contexti} and {Control Generation} use the default causal attention mechanism,
in which the latter tokens attend to all previous ones. Second, we use “parallel incremental” positional
encodings to mimic the situation in which all retrieved contexts directly follow the query while
maintaining the typical position ID of the {Control Generation} and {Answer} tokens as shown
below.

0, 1, 2,︸ ︷︷ ︸
Question

3, 4, 5,︸ ︷︷ ︸
Context1

3, 4, 5, 6,︸ ︷︷ ︸
Context2

10,︸︷︷︸
Control Generation

11, 12, 13︸ ︷︷ ︸
Answer

3.2 INFERENCE PROCESS

Given the question and retrieved contexts, Sparse RAG handles the assessment task and generation
task in one single pass.

Per Context Assessment Similar to the training process, when pre-filling the KV cache, each
retrieved context is treated independently by masking cross-document attention. The KV cache is
used to score each context by concatenating the {Control Assessment} token. The relevance score
is the probability of ”yes” (indicating relevance) being the next token. The position encoding allows
this to happen in parallel.

Generation The generation uses a filtered KV cache, where only K out of N cached values are
loaded. We use a simple threshold-based filtering approach: we drop the context when its score is less
than sigma. Once the cached KV vectors are loaded, the {Control Generation} token prompts
the model to generate the answer.

4



Published as a conference paper at ICLR 2025

Table 2: Auto-rater comparison to ground truth.

Auto-labeling method Average F1 F1 Label 0 F1 Label 1
Rater model Critic model

PALM2 XL n/a 0.729 0.765 0.694
PALM2 XL PALM2 XL 0.781 0.820 0.741

Gemini Ultra n/a 0.761 0.807 0.716
Gemini Ultra Gemini Ultra 0.704 0.747 0.660
PALM2 XL Gemini Ultra 0.728 0.776 0.680

Gemini Ultra PALM2 XL 0.821 0.861 0.781

4 EVALUATION OF PER CONTEXT ASSESSMENT

4.1 NEW ANNOTATIONS: NATURAL QUESTIONS PER CONTEXT ASSESSMENT

We isolated a subset of 50 questions, each with 10 retrieved contexts, from the Natural Questions
dataset. We assigned 3 raters to each question-context pair from a pool of 7 raters and provided the
instructions in Section A.2.

We aggregated responses for all 3 raters for each context, selecting the majority decision 0 or 1 for
each context. We found that raters unanimously agreed on 351 out of 500 context, with 30% of
the documents considered relevant. For questions where raters were not unanimously decided, a
specialist rater was assigned to investigate more carefully and set the best label to correct mistakes
of the other raters. This resulted in 6 additional documents considered relevant out of the entire
dataset, boosting the portion of relevant documents to 31% and slightly increasing alignment with
the auto-rater approaches (average F-score increase of 1.4% across auto-rater methods using these
corrections as the ground truth).

4.2 LLM RATER COMPARISONS

We tested several different LLM-based automatic labeling methods–different combinations of models
and prompts–for creating training data for the classifier in Sparse RAG. We compared several of
these auto-rater approaches by creating a ground-truth relevance dataset using human labeling. The
auto-rater comparison using the revised human labels as the ground-truth is shown in Table 2. We find
that combining two different models in two rounds–initial prompting and critique–provides the labels
that are most closely aligned with the human labels. We hypothesize that the different representations
learned by two different models are able to capture the most nuance in the input sequences, leading
to better relevance judgements. We also observe that Gemini Ultra appears slightly less effective at
critiquing model outputs than PALM2 XL.

5 EVALUATION OF SPARSE RAG

5.1 BENCHMARKS AND METRICS

PopQA is a large-scale open-domain question answering (QA) dataset, consisting of 14k entity-
centric QA pairs. Each question is created by converting a knowledge tuple retrieved from Wikidata
using a template. We follow the setup from (Yan et al., 2024) and use Contriever (Izacard et al., 2022)
to retrieve the related contexts. Since PopQA does not include per-context assessment relevance
labels, we adopted the “Gemini + PALM2” combination to create training labels. We split the dataset
into training, validation and test sets with 8:1:1 ratio. Since the answer is usually short, we report
Exact Match (EM) and F1 scores.

QMSum (Zhong et al., 2021) is a human-annotated benchmark for a query-based multi-domain
meeting summarization task, which consists of 1,808 query-summary pairs over 232 meetings in
multiple domains. To adapt it to the RAG domain, we divide each conversation into different contexts
where each turn in the conversation is a context and the average context contains 300 words. Note
that this dataset has human labeled per-context assessments that we leverage during training. We use
250 training examples (one per meeting), 70 validation examples and 77 test examples. The targets
for this dataset are longer and we report RougeLSum and F1 scores.
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TriviaQA (Joshi et al., 2017) is a realistic text-based question answering dataset that includes
950K question-answer pairs from 662K documents collected from Wikipedia and the web. Similar
to PopQA, we used the “Gemini + PALM2” combination to create relevance training labels. We
randomly selected 8k training examples and 500 validation and test examples each. We report Exact
Match (EM) and F1 scores.

HotpotQA (Yang et al., 2018) is a question answering dataset containing about 113K crowd-
sourced questions that are constructed to require the introduction paragraphs of at least two Wikipedia
articles to answer, thus requiring multi-hop reasoning. We sample 6k training examples and 600
validation and 600 test examples. We report Exact Match (EM) and F1 scores.

These datasets were selected to demonstrate generalizability across the question answering tasks
requiring single- or multi-hop reasoning, diverse context and output lengths, and summarization
capabilities.

5.2 BASELINES

RAG We evaluated the performance of standard concatenation-based RAG where an LLM generates
output given the query prepended with all the top-ranked documents using the same retriever as
Sparse RAG system. RAG is finetuned with the training data.

Off-the-shelf We report a variant of concatenation-based RAG where the model is not finetuned
with training data.

LLMLingua In this approach an external LLM was called to compress the prompt (Jiang et al.,
2023a). In our comparison, we chose the compression ratio to be the same as Sparse RAG for fairness.

PCW-RAG We applied Parallel Context Windows (Ratner et al., 2023) to the RAG process, where
no cross-attention is applied between documents. The model is finetuned with the training data.

Corrective RAG We evaluate CRAG using an external T5-XXL classifier trained using heuristic
labels (Yan et al., 2024). This classifier is used to process all the documents and decide the rank.
Note to facilitate a fair comparison, we did not adopt the ”web search” feature of this paper.

5.3 EXPERIMENTAL CONFIGURATION

The base LLMs used in the paper were Gemini (Team et al., 2023). Although our approach could be
applied at different training stages of the model, we apply LoRA tuning (Hu et al., 2022) to enforce
alignment on top of the foundation LLMs due to its low resource requirements and wide usage. Note
that the same LoRA tuning on the training data is applied to Sparse RAG and all baselines. In all our
experiments, we apply LoRA in self-attention and use the default rank as 4. By default, we use the
XXS size of Gemini which can run on-device.

During training, we use 64 Tensor Processing Units (TPU) V3 chips for PopQA while use 128 Units
for the other datasets. The batch size is 64. We use the Adafactor optimizer (Shazeer & Stern, 2018)
with a learning rate of 0.003. The training dropout rate is 0.05. We leverage the metrics of the
validation set to pick the best checkpoint. During inference, the temperature is set to 0.5. Unless
specifically noted, we use sampling decoding with sample number 1 for our experiments.

5.4 INFERENCE SETUP AND METRICS

Evaluation of Sparse RAG was conducted on a Samsung S21 Ultra, utilizing the device’s CPU to
assess real-world performance on a relatively mid-tier smartphone compared to the latest flagship
models. Inference configuration consisted of fixed token lengths for queries, contexts and generated
responses. This setup allows for evaluating the system’s efficiency and effectiveness under resource
constraints typical of mobile devices, providing insights into its practical applicability for on-device
question-answering tasks. Specifically, the overall inference process considers two stages.

Prefill stage For the baseline RAG model, we measure the total time taken to process all input
tokens (question and all contexts). For PCW RAG and Sparse RAG models, we take advantage of
these models’ ability to cache the question KV vectors. We first measure the time to process the
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Table 3: Quality & efficiency tradeoff for both short-form and long-form generation tasks; Sparse
RAG achieves both higher quality and efficiency compared to “dense” RAG approaches.

Dataset Metrics Off-the-shelf LLMLingua RAG PCW-RAG CRAG Sparse RAG

- ES 56.28 - 56.28 147.58 - 147.58

PopQA

EM 0.33 1.96 65.43 65.04 66.52 67.71
F1 12.76 12.15 69.99 69.54 70.99 71.16
K 20.00 7.84 20.00 20.00 8.9 7.84
DS 6.65 - 6.65 6.65 - 12.28

QMSum

F1 20.37 22.28 21.43 20.18 - 23.96
RougeSum 12.67 18.37 18.20 16.95 - 20.10
K 20.00 4.45 20.00 20.00 - 4.45
DS 6.65 - 6.65 6.65 - 16.05

TriviaQA

EM 0.00 2.6 46.20 46.00 - 47.50
F1 12.21 16.30 53.03 53.20 - 55.10
K 20.00 9.90 20.00 20.00 - 9.90
DS 6.65 - 6.65 6.65 - 10.18

HotpotQA

EM 0.00 1.33 43 38.83 - 43.50
F1 12.21 14.67 55.85 50.03 - 55.36
K 10.00 6.50 10.00 10.00 - 6.50
DS 10.31 - 10.31 10.31 - 13.00

question alone. Then, we measure the time to process different contexts with the pre-processed KV-
cached question. We use Encoding Speed (ES) (tokens per second (t/s)) to measure the efficiency of
the prefill stage.

Decoding stage To assess the decoding speed comprehensively, we generate output sequences
using the same question but varying the amount of relevant context data considered, ranging from
the top 1 most relevant document to the top K. For each context size, we produce output sequences
of different lengths. This systematic approach allows us to evaluate the impact of both context size
and response length on decoding speed. We use Decoding Speed (DS) (tokens per second (t/s)) to
measure the efficiency of the decoding stage.

5.5 MAIN RESULTS

We report both quality and latency metrics in Table 3. “K” is the number of chosen contexts. Note that
the CRAG approach relies on its classifier, which is exclusively trained on the PopQA dataset. Thus
we only compare its performance on PopQA. Additionally, both LLMLingua and CRAG leveraged
external classifiers, for which we cannot effectively measure ES and DS. We discuss the end-to-end
latency of the external classifiers in Table 6.

Notably, our proposed approach achieves the best quality while being the most efficient during
inference compared to other approaches. It can be seen that Sparse RAG shares the same pre-filling
efficiency with PCW-RAG, due to the parallel context encoding, but it achieves significantly better
quality than PCW-RAG amd better decoding efficiency than standard RAG and PCW-RAG. To
illustrate, out of 20 retrieved contexts, Sparse RAG has an average of 7.84 contexts for PopQA
and 4.45 contexts for QMSum. This leads to almost double or even triple the decoding speed.
Meanwhile, Sparse RAG achieves higher quality metrics than the dense counterparts, demonstrating
that Sparse RAG effectively filters noisy and irrelevant contexts.

HotpotQA is the only dataset where Sparse RAG does not beat RAG’s F1 score. PCW-RAG has a
particularly large quality gap on HotpotQA, suggesting that masking cross-document attention may
hinder multi-hop reasoning capabilities. However, Sparse RAG recovers quality to a level similar to
RAG while maintaining lower latency, demonstrating the power of our context selection process.

We also observe that Sparse RAG outperforms CRAG on quality, suggesting that our “in-place”
classifier may be outperforming CRAG’s external T5 XXL classifier trained on the same dataset.

5.6 ANALYSIS

Impact of Confidence Threshold Table 4 illustrates how our metrics vary with different quality
thresholds for Sparse RAG. As the threshold gradually increases, the system filters out more contexts,
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reducing the number of contexts K and consequently the latency during inference. The response
quality metrics increase with increasing threshold up to a certain point, showing the effectiveness
of filtering out irrelevant contexts. Then, the performance is stable and eventually drops slightly,
possibly because some relevant contexts are accidentally filtered out.

Table 4: Sampling various confidence threshold values. A higher threshold means fewer contexts.

PopQA QMSum
Threshold EM F1 K DS F1 RougeLSum K DS

0.05 66.95 70.97 9.75 10.61 22.85 19.49 7.92 11.92
0.1 66.84 70.66 8.72 11.70 23.78 19.98 6.68 12.89

0.15 67.17 71.16 7.84 12.28 23.43 19.66 5.77 13.01
0.2 66.77 70.54 7.13 12.88 23.2 19.79 5.05 14.54

0.25 65.75 69.64 6.56 13.00 23.96 20.1 4.45 16.05
0.3 63.86 68.2 5.98 13.08 23.84 19.99 3.93 16.38

Number of Prefilled Documents To assess whether Sparse RAG’s quality improvements are the
result of “massive” prefilling which is not practical in real scenarios, we compare different numbers
of prefilled documents (10 and 20) for PopQA. Results are shown in Table 5. Even with fewer
documents prefilled, the quality of Sparse RAG remains better than RAG.

The gap between RAG and Sparse RAG is relatively small at 10 prefilled documents compared to
20 because there are fewer documents to be filtered. Moreover, for a smaller number of documents,
the cross-document masking is less “sparse” compared to a larger number of prefilled documents.
Meanwhile, only using the top 5, 3, or 1 documents introduces significantly lower EM and F1 scores
because it is difficult to guarantee high-quality retrieval in the first step. This further motivates our
design to increase the range of retrieved documents and then perform context selection.

Table 5: Ablation on different number of prefill documents for PopQA.

Approach Prefill Documents EM F1 K ES DS

RAG 1 146.10 46.01 50.12 1.00 22.74
RAG 3 120.36 55.28 59.32 3.00 18.96
RAG 5 102.51 58.66 63.49 5.00 15.98
RAG 10 64.66 68.67 10 80.74 10.31
PCW RAG 10 63.9 68.58 10 147.48 10.31
Sparse RAG 10 65.86 70.2 7.79 147.48 12.33
RAG 20 65.43 69.99 20 56.28 6.65
PCW RAG 20 65.04 69.95 20 147.58 6.65
Sparse RAG 20 67.17 71.16 7.84 147.58 12.28

Inference Efficiency Ablations We present Table 6 demonstrates the computational advantages
of Sparse RAG for each stage of the retrieval and generation process compared to other methods.
Sparse RAG, like PCW-RAG, reduces encoding latency to nearly 1/3 that of RAG. While CRAG’s
encoding latency appears lower than Sparse RAG, it has an additional classification step, which is

Table 6: Latency Decomposition.

End-To-End K
External
Classifier
(ms)

Init
Time
(ms)

Encoding
(ms)

Copy
(ms)

Decoding
(ms)

Total
(ms)

Init +
Copy
Percentage

RAG 20.00 0 120 90962 0 4811 95893 0.13%

PCW-RAG 20.00 0 17 34716 151 4811 39697 0.43%

CRAG 8.9 40200 56 27362 0 2878 70497 0.08%

Sparse RAG 7.84 0 17 34716 56 2605 37396 0.20%
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slow in our experiments because we used an older T5 model with more attention layers and fewer
modern optimizations like kernel fusion and flash attention. This drives CRAG’s total latency above
that of Sparse RAG. It is possible that a different classifier could reduce this cost, but it would still
duplicate the operations of encoding the context during the prefill stage. Sparse RAG also reduces the
decoding latency to nearly half that of RAG and PCW-RAG via context filtering. CRAG has similar
decoding latency to that of Sparse RAG because it also uses context filtering, but overall Sparse RAG
is still much faster.

We also explore trends in decoding latency by varying the number of retrieved contexts (i.e., top-K
documents) and the length of the generated responses. As illustrated in Fig 2b, we observe that
RAG requires over 50% more time to generate outputs of varying lengths compared to the Sparse
RAG approach. As shown in Fig 2a, this heightened demand for computational resources results in a
notable slowdown in decoding speed. This underscores the efficiency advantages offered by Sparse
RAG, especially in scenarios requiring a larger number of contexts during decoding.

(a) E2E latency for decoding different number of tokens. (b) Decoding speed with different number of contexts.

Figure 2: Inference Efficiency Comparison.

Ablation on Foundation Model Size We applied Sparse RAG to different sizes of LLMs by testing
it on Gemini XS and Gemini XXS. The results of these experiments are presented in Table 7. The
findings demonstrate that Sparse RAG is compatible with various foundation models, effectively
adapting to different model sizes. Notably, with a reduced amount of decoding caches, Sparse RAG
is capable of achieving the highest quality results. This indicates that Sparse RAG maintains its
efficiency and effectiveness across different foundation models, making it a versatile approach for
various LLM configurations.

Table 7: Ablation on different model sizes.

Approach Model Size EM F1 K

RAG XS 66.52 70.87 20
PCW RAG XS 65.75 70.37 20
Sparse RAG XS 68.26 72.26 6.27
RAG XXS 65.43 69.99 20
PCW RAG XXS 65.04 69.95 20
Sparse RAG XXS 67.17 71.16 7.84

Sparse RAG with Full Attention During Generation To demonstrate the isolated effects of our
document assessment and filtering method and to evaluate the potential quality regressions caused by
omitting cross-document attention scores during generation, we perform the Sparse RAG Per Context
Assessment step followed by the generation step with full attention. As you can see in Table 8, using
full attention during generation provides a slight quality improvement, but Sparse RAG quality is
very close and much more efficient.
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Table 8: Comparing Sparse RAG with full attention to Sparse RAG and RAG on PopQA.

Approach EM F1

RAG 65.43 69.99
Sparse RAG 67.71 71.16
Sparse RAG w/ full attention 67.94 71.24

Silver Labels vs LLM Labels In Corrective RAG, the T5 model was trained with silver labels that
come from title matching (Yan et al., 2024). We use the same silver labels to replace the LLM labels
and train the Sparse RAG model with this new dataset. We also train the CRAG model on our LLM
labels for comparison. From the results shown in Table 9, we observe that the quality of the labels
generated by the LLMs is slightly higher than that of the silver labels from Yan et al. (2024) leading
to higher accuracy and lower K values. We also observe that when trained with exactly the same
labels, Sparse RAG still outperforms CRAG on quality. We hypothesize that the superior quality
of the LLM-generated labels comes from our two-round process of soliciting responses from two
different LLMs. By engaging two distinct models, we likely enhanced the robustness and accuracy of
the labels through a form of cross-validation, thereby mitigating potential biases or errors that might
arise from relying on a single LLM.

Table 9: Comparing CRAG silver labels to our LLM labels on PopQA.

Approach EM F1 K DS

Sparse RAG w/ silver labels 66.97 71.05 8.26 11.99
Sparse RAG w/ LLM labels 67.71 71.16 7.84 12.28
CRAG w/ silver labels 66.52 70.99 8.9 -
CRAG w/ LLM labels 67.03 71.02 - -

Using Golden Context Labels During Inference Since QMSum provides golden per-context
labels, we leverage these labels during inference to evaluate the upper bound performance of the
Sparse RAG approach under the condition of perfect per-context assessment. The results of this
experiment are presented in Table 10, demonstrating the full potential of the Sparse RAG method
pending additional context assessment quality improvements.

Table 10: Trying golden labels on QMSum.

Approach F1 RougeLSum K DS

Sparse RAG 23.96 20.1 4.45 16.05
+ golden label 26.76 21.93 1.13 21.16

6 CONCLUSION

This paper presents Sparse RAG to address the challenges of increased input length and latency.
Through a novel approach of massive pre-filling and selective decoding, Sparse RAG efficiently
manages the key-value cache of retrieved documents, allowing the LLMs to focus on highly relevant
tokens. This selective attention mechanism not only reduces the computational burden during
inference but also enhances the generation quality by filtering out irrelevant contexts. Evaluation
on four diverse datasets validates Sparse RAG’s ability to achieve a balanced trade-off between
high-quality generation and computational efficiency, proving its versatility and effectiveness for both
short- and long-form content generation tasks. This innovative paradigm showcases the potential
for improving LLM performance in various applications by optimizing context management and
inference processes.

Future research will explore Sparse RAG in multimodal contexts, investigating how Sparse RAG
can handle and integrate information from multiple types of data to improve its performance and
applicability across diverse scenarios.
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A PROMPTS AND INSTRUCTIONS

A.1 PROMPTS USED FOR LLMS

We share the prompt used for calling LLMs to get per context assessment in Table 11.

Table 11: The zero-shot prompts for LLM labeling and critique.

Round 1 prompt

You are now doing a reading comprehension task. It is important that you be as thorough,
detail-oriented, and accurate as possible in your response.
You are given a question, a set of accepted answers, a document and its title. The document does
not necessarily contain the right answer to the question.
You should read the title and the document and then check if they provide one of the correct
answers to the question.
If the title and document together contain the correct answer to the question, output a score of
1.0, otherwise output a score of 0.0.
question: ¡question¿
accepted answers: ¡answers¿
title: ¡title¿
document: ¡document¿
output:

Round 2 prompt

Your job is to correct another model’s performance on a reading comprehension task.
The model was given a question, a set of accepted answers, a document and its title. The
document and title do not necessarily contain the right answer. The model was instructed to
output a score of 1.0 if the document contains the answer, and a score of 0.0 otherwise.
You will be given the same information as the other model along with its output. You should
read the title and document and then check if they provide one of the correct answers to the
question.
Then check if you agree with the previous model’s output.
If you agree, output the same score unchanged.
If you disagree, output the corrected score.
Your output should be as accurate as possible.
question: ¡question¿
accepted answers: ¡answers¿
title: ¡title¿
document: ¡document¿
previous model’s score: ¡score¿
output:

A.2 RATER GUIDELINES

We share the instructions provided to the human labelers in Table 12.

Table 12: Instructions for raters creating ground-truth relevance dataset.

Human Rater Instructions

Please read the question, the answer and the context. Please answer if the context can help
answer the question. If it can, select 1. Otherwise select 0.

1: good
0: bad

Please use the answers as a hint. However, do not use ”is the answer in the context?” as a
heuristic for making the decision.

B DATASET ANALYSIS

During the human labeling process, several raters flagged documents and questions that were difficult
to label. In total, 23 out of 500 documents were flagged and 15 out of 50 questions were flagged.
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We explored several ways of filtering our human-labeled subsample of Natural Questions to determine
how they impacted context assessment F-scores overall and for each auto-rater. We provide two
additional filtered versions of the human-labeled RAG relevance dataset as alternatives. See Table 13
for the auto-rater F-scores for each filtering method. Both statistical filtering approaches (e.g.
removing contexts with non-unanimous labels) and targeted filtering approaches (e.g. removing
questions or contexts flagged by human raters) lead to some improvement in F-scores for relevance
labels, but in all cases, using Gemini Ultra as the rater and PALM2 XL as the critic model provides
the highest Average F1 score.

Table 13: Evaluation of Labeling Methods w/ Filtering

Dataset Filters # Docs % Relevant Rater Model Critic Model Average F1

Specialized rater
corrections 500 31

PALM2 XL n/a 0.729
PALM2 XL PALM2 XL 0.781

Gemini Ultra n/a 0.761
Gemini Ultra Gemini Ultra 0.704
PALM2 XL Gemini Ultra 0.728

Gemini Ultra PALM2 XL 340B 0.821

Filter
non-unanimous
docs

351 23

PALM2 XL n/a 0.741
PALM2 XL PALM2 XL 0.811

Gemini Ultra n/a 0.792
Gemini Ultra Gemini Ultra 0.739
PALM2 XL Gemini Ultra 0.763

Gemini Ultra PALM2 XL 0.856

Filter flagged
docs and
questions

330 29

PALM2 XL n/a 0.750
PALM2 XL PALM2 XL 0.797

Gemini Ultra n/a 0.782
Gemini Ultra Gemini Ultra 0.741
PALM2 XL Gemini Ultra 0.753

Gemini Ultra PALM2 XL 0.833

We observed trends in questions and contexts shared in Table 14 that raised concerns about whether
and how a human would be able to assess the relevance of the context. These concerns extend to
expectations of how well LLMs would do at the task.

Most of these concerns involve the absence of sufficient context to correctly answer the question in
widely used public datasets. For consistency with the literature, we did not modify the queries or the
retrieved contexts in this paper, but we do expect that the ambiguity is impacting our results. In many
cases, retrieved contexts would be assessed differently for relevance depending on the true intended
meaning of the question, and different answers would be expected.

It would be an interesting future exploration to augment the datasets to resolve such ambiguity, as
it would likely improve the accuracy of our relevance labels and improve performance overall. For
examples with missing time or location context, you could augment the datasets by simply adding
new contexts with the missing information or appending the context to the query. For example, to
handle the question ”Who is the current president of the United States?”, you could add a context
”Today is November 18, 2024.” or you could modify the query to ”Who is the current president of
the United States on November 18, 2024”?. In the paper, we showed that Sparse RAG performs
comparably to RAG on the HotpotQA multi-hop reasoning dataset, so we expect that Sparse RAG
could effectively leverage information from new contexts in the generation step. However, we expect
that appending such temporally specific context to the query itself would likely yield the best quality,
as all contexts attend to the query.

In real world cases where the question is ambiguous and sufficient context cannot be retrieved to
confidently answer the question, we believe that the most desirable behavior would be to request
clarification before further action. Future work should explore simulating such a scenario in order to
assess RAG question-answering approaches.
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Table 14: Overview of trends, datasets, and examples with associated comments.

Trend Dataset Example question Comments

Questions
with time-
dependent
answers

NQ who is the president
of usa right now Depends on when the question is asked.

NQ who is the current di-
rector of the us mint Depends on when the question is asked.

NQ
when is the next dead-
pool movie being re-
leased

Depends on when the question is asked.

NQ total number of death
row inmates in the us Fluctuates over time.

PopQA What is Prague the
capital of?

The borders in this region and the name of
the country have changed several times in
the 20th century.

PopQA What is Dennis Rod-
man’s occupation?

The accepted answers are ”actor, actress,
actors, actresses”. He was an actor later in
his career, but he rose to prominence as a
professional basketball player.

Missing
synonyms,
abbreviations,
and aliases,
combined
with unclear
granularity

NQ

in which regions
are most of Africa
petroleum and natural
gas found

”Region” can refer to different levels of
granularity (e.g. Sub-Saharan Africa vs.
Ethiopia), but the only accepted answer is
”Nigeria”.

NQ what type of car is a
jeep

The accepted answers are only ”off-road ve-
hicles”, ”light utility vehicles”, ”sport util-
ity vehicles”, but ”SUV” is clearly a correct
answer as well.

Non-
exhaustive list
of answers

NQ cast of law & order
special victim unit

The accepted answers include 16 cast mem-
bers, but the show went on for 25 seasons
with many cast changes and guest stars not
included in the list.

Oddly phrased
question NQ

right to property ac-
cording to the consti-
tution of India is a

The only correct answer is ”constitutional
right”, but that is included in the question.
It’s not clear what type of answer would be
appropriate here.

Overly spe-
cific answers
expected

NQ
where does the story
the great gatsby take
place

The only accepted answer here is ”Long
Island of 1922”, but the place is Long Island
and the question does not ask about when
the story is set.

Question
refers to an
entity with a
common
name without
disambiguation

PopQA What genre is
Frances?

There is a musician and a film called
”Frances”, and both of those could arguably
have a genre associated with them.

PopQA Who was the pro-
ducer of Hurt?

The question is referring to a song per-
formed by Christina Aguilera but there are
many other songs, movies, and other en-
tities that share the name and also have a
producer.

PopQA What is the capital of
Cherokee County?

There are many different Cherokee Coun-
ties in different states in the USA.
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