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ABSTRACT

Classification models are ubiquitously deployed in society and necessitate high
utility, fairness, and robustness performance. Current research efforts mainly focus
on improving model architectures and learning algorithms on fixed datasets to
achieve this goal. In contrast, in this paper, we address an orthogonal yet crucial
problem: given a fixed convex learning model (or a convex surrogate for a non-
convex model) and a function of interest, we assess what data benefits the model by
interpreting the feature space, and then aim to improve performance as measured
by this function. To this end, we propose the use of influence estimation models
for interpreting the classifier’s performance from the perspective of the data feature
space. Additionally, we propose data selection approaches based on influence that
enhance model utility, fairness, and robustness. Through extensive experiments on
synthetic and real-world datasets, we validate and demonstrate the effectiveness of
our approaches not only for conventional classification scenarios, but also under
more challenging scenarios such as distribution shifts, fairness poisoning attacks,
utility evasion attacks, online learning, and active learning.

1 INTRODUCTION

Machine learning models have become essential tools in various societal applications for automating
processes and generating insights (Pouyanfar et al., 2018; Liu et al., 2017). Along with the choice
of model type/architecture, data is a critical component of the learning process, and the quality and
quantity of training data have significant impacts on the model performance (Blum & Langley, 1997).
Despite this, current research mainly focuses on proposing high-performing model architectures
or learning approaches while keeping the training data fixed. However, it is evident that not every
sample in the training set augments model performance. Furthermore, the same data sample could be
beneficial or detrimental to performance depending on the type of model being used (Blum & Langley,
1997). Therefore, in this paper, we aim to answer the research question “what data benefits the
learning model in a certain aspect?” and select suitable training data to improve model performance
with respect to utility,1 fairness, and adversarial robustness.

Our work relates to but contrasts with research on data valuation. Data valuation aims to assign a
monetary value or worth to a particular set or collection of data, whereas our goal in this work is to
analyze what type of data can be utilized to enhance a model. Data valuation can be performed in
a variety of ways, such as using cooperative game theory (Shapley-value or Banzhaf index) (Ghor-
bani & Zou, 2019; Jia et al., 2019; Kwon & Zou, 2022; Ghorbani et al., 2020; Wang & Jia, 2023)
and reinforcement learning (Yoon et al., 2020). It is also important to note that as alternative to
influence functions, Shapley-value based data valuation approaches (Ghorbani & Zou, 2019; Jia
et al., 2019) can also be used in our algorithms. However, Shapley-value based approaches such as
TMC-Shapley (Ghorbani & Zou, 2019) require the model to be retrained and evaluated multiple times,
where even the most efficient known non-distributional model-specific algorithms (Jia et al., 2019)
require O(

√
n log(n)2) model retraining steps, and n is the number of training samples. Other ap-

1We interchangeably use utility and accuracy in this paper.
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proaches such as KNN-Shapley (Jia et al., 2018) that are computationally ef�cient are model-agnostic
and designed to work with utility. Hence, KNN-Shapley is neither tailored to the speci�c model being
used nor a function of interest other than utility (such as fairness and robustness), and cannot guar-
antee performance on the downstream classi�er (Blum & Langley, 1997). Moreover, current work on
Shapley-value based frameworks generally estimate the data value in utility, with either very few or no
work studying fairness (Arnaiz-Rodriguez et al., 2023) and robustness. Reinforcement learning-based
data valuation (Yoon et al., 2020) faces similar issues due to its complex design and poor convergence.

Our work is also closely related to other work ondata in�uence, such as the seminal paper on in�u-
ence functions by Koh and Liang (Koh & Liang, 2017), follow-up work such as TracIn (Pruthi et al.,
2020),representer point(Yeh et al., 2018), and Hydra (Chen et al., 2021). However, these methods
are fundamentally in�uence estimation approaches, and do not directly answer our research question,
which is to identify and interpret the feature space for improving the model's performance. Other
miscellaneous approaches, such asDatamodels(Ilyas et al., 2022) only work with one speci�c target
sample at a time, posing a limitation. Unlike all these methods, our data selection approaches can also
uniquely handle scenarios where data is unlabeled such as in active learning applications. Moreover,
our work considers utility, fairness, and robustness under diverse application scenarios. Note that
our data selection strategy can even boost the performance of methods such as the in�uence-based
data reweighing approach of (Li & Liu, 2022) for improving fairness (Section 5.1) and outperform
existing in�uence-based approaches for active learning (Liu et al., 2021) (Section 5.5). Thus, we
utilize in�uence functions as a tool (allowing for any in�uence approach to be used interchangeably)
and extend its applicability to diverse domains and scenarios not considered previously.

Finally, our work also conceptually relates to several other data-related areas.Data ef�ciencyap-
proaches (Paul et al., 2021; Coleman et al., 2020; Mirzasoleiman et al., 2020; Shen & Sanghavi, 2019;
Killamsetty et al., 2021; Jain et al., 2022) aim to accelerate deep model training by pruning or select-
ing a subset of data, which is beyond the scope of our work.Feature selectionapproaches (Cai et al.,
2018; Hall, 1999) aim to select important features for training, but are limited in scope as they only
work for utility. Active learning(Cohn et al., 1996; Wei et al., 2015) partially aligns with our research
question, as it involves selecting unlabeled data points to be annotated and added to the training set
for improving model performance. However, its applicability is limited to this speci�c scenario, while
our work considers a broader range of applications, including this one.Antidote datamethods (Raste-
garpanah et al., 2019; Chhabra et al., 2022; Li et al., 2023) aim to add generated data to the training
set for mitigating unfairness but cannot be used to interpret the usefulness of existing samples.

Contributions. We summarize our major contributions as follows:
• We utilize in�uence functions to assess what data improves a given convex classi�er (or a

surrogate for a non-convex model) with respect to utility, fairness, and robustness by interpreting
the feature space. Our key idea is to use tree-based in�uence estimation models to understand and
interpret which sample features contribute positively or negatively to the model's performance
with respect to desired evaluation functions on a validation set. Additionally, we design a data
selection strategy to achieve performance improvements.

• We verify the correctness of our proposed approaches to improve the classi�cation model's utility,
fairness, and robustness on synthetic data and demonstrate the usefulness of our approaches on
real-world diverse datasets with regard to ef�cacy, simplicity, and interpretability.

• We move beyond the above classical classi�cation setting and apply our approaches to diverse
and practical application scenarios, including correcting for fairness distribution shift, combating
fairness poisoning attacks, defending against adaptive evasion attacks, online learning with
streaming batch data, and analyzing unlabeled sample effectiveness in active learning.

2 PRELIMINARIES AND BACKGROUND

We �rst introduce in�uence functions on convex models (logistic regression) and how to measure sam-
ple in�uence on utility, fairness, and robustness. We then discuss extensions to non-convex models.

In�uence Functions. Given a training setZ = f (x i ; yi )gn
i =1 and a classi�er trained using

empirical risk minimization by a loss functioǹ, we have the optimal parameters of the clas-
si�er �̂ = arg min � 2 �

1
n

P n
i =1 `(x i ; yi ; � ). In�uence functions (Koh & Liang, 2017) measure

the effect of changing an in�nitesimal weight of samples on a validation set, based on an im-
pact functionf evaluating the quantity of interest, such as utility, fairness, and robustness.
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Downweighting a training samplex j by a very small fraction� leads the model parameter to
�̂ (x j ; � � ) = arg min � 2 �

1
n

P n
i =1 `(x i ; yi ; � ) � �` (x j ; yj ; � ). The actual impact of such a change

can be written asI � (x j ; � � ) = f (�̂ (x j ; � � )) � f (�̂ ), wheref (�̂ (x j ; � � )) can be obtained by
retraining the model withoutx j . Assumingl is strictly convex and twice differentiable, and
f is also differentiable, the actual impact can be estimated without the expensive model re-
training by I (x j ; � � ) = lim � ! 0 f (�̂ (x j ; � � )) � f (�̂ ) = r �̂ f (�̂ )> H � 1

�̂
r �̂ `(x j ; yj ; �̂ ), where

H �̂ =
P n

i =1 r 2
�̂
`(x j ; yj ; �̂ ) is the Hessian matrix of̀ and is invertible sincè is assumed to be

convex. If we set� = 1
n andn is large (n ! 1 ), we can writeI (x j ; � 1

n ) = I (� x j ). Thus, we can
measure the in�uence of removing samplex j from the training set.

Measuring In�uence on Utility. If we instantiate the impact functionf to calculate the loss value
on a validation setV , we can measure a training sample in�uence on utility as follows:

I util(� x i ) =
X

( x;y ) 2 V

r �̂ `(x; y ; �̂ )> H � 1
�̂

r �̂ `(x i ; yi ; �̂ ): (1)

Measuring In�uence on Fairness. Similarly, we can instantiate the impact functionf by group
fairness (Dwork et al., 2012), such as demographic parity (DP) or equal opportunity (EOP) to measure
in�uence on fairness. Consider a binary sensitive attribute de�ned asg 2 f 0; 1g and letŷ denote the
predicted class probabilities. The fairness metric DP is de�ned as:f DP-fair(�̂; V ) =

�
�EV [ŷjg = 1] �

EV [ŷjg = 0]
�
�. Based on that, we can calculate the training sample in�uence on fairness as follows:2

I DP-fair(� x i ) = r �̂ f DP-fair(�̂; V )> H � 1
�̂

r �̂ `(x i ; yi ; �̂ ): (2)

Measuring In�uence on Adversarial Robustness.We can also measure which points contribute
to adversarial robustness (or vulnerability) using in�uence functions. To do so, we �rst de�ne an
adversary– any attack approaches to craft adversarial samples that can be used including black-box,
white-box, among others. We consider a white-box adversary (Megyeri et al., 2019) speci�c to linear
models, which can be easily extended to other models and settings, such as FGSM (Goodfellow
et al., 2014), PGD (Madry et al., 2017), etc. To craft an adversarial sample, we take each sample
x of the validation setV and perturb it asx0 = x � 
 �̂ > x + b

�̂ > �̂
�̂ , where�̂ 2 Rd are the linear model

coef�cients,b 2 R is the intercept, and
 > 1 controls the amount of perturbation added. Since the
decision boundary is a hyperplane, we simply move each sample orthogonal to it by adding minimal
perturbation. In this manner, we can obtain an adversarial validation setV 0 which consists ofx0

for each samplex of V . The class labelsy remain unchanged. Now, we can compute adversarial
robustness in�uence for each training sample as follows:

I robust(� x i ) =
X

( x 0;y ) 2 V 0

r �̂ `(x0; y; �̂ )> H � 1
�̂

r �̂ `(x i ; yi ; �̂ ): (3)

Extension to Non-Convex Models. A current limitation of in�uence functions is that they require
the model to satisfy strict convexity conditions, implying its Hessian is positive de�nite and invertible,
and that it is trained to convergence (Koh & Liang, 2017). To extend in�uence functions to non-
convex models, several possible solutions exist: (1) a linear model can be used as a surrogate on the
embeddings obtained via the non-convex model (Li & Liu, 2022); (2) a damping term can be added to
the non-convex model such that its Hessian becomes positive de�nite and invertible (Han et al., 2020);
and (3) for certain tasks speci�c or second-order in�uence functions can be derived (Basu et al., 2020b;
Alaa & Van Der Schaar, 2020). In this paper, we adopt the above �rst strategy for non-convex models.

Note that there is work that shows that in�uence functions for deep learning models arefragile (Basu
et al., 2020a). However, follow-up work (Bae et al., 2022; Epifano et al., 2023) has contrasted
with some of these �ndings, resulting in the applicability of in�uence functions in deep learning
being a contentious research topic. Despite this, multiple work has demonstrated their bene�ts in
deep networks, such as on BERT (Han et al., 2020), ResNets (Liu et al., 2021; Yang et al., 2022),
CNNs (Koh & Liang, 2017; Schioppa et al., 2022). We also provide preliminary results using our data
selection approach on BERT to show this (Appendix H). However, our paper is primarily focused on
convex models and resolving the undecided research question of deep learning in�uence fragility
is not our goal. Thus, we resort to using a surrogate convex model on the embedding space of the
non-convex model. This strategy subsequently obtains positive experimental performance as well.

2We provide the sample in�uence de�nitions for EOP in Appendix A.
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3 PROPOSEDAPPROACHES

We now present Algorithm 1 for in�uence estimation via trees to interpret how data samples and
feature ranges impact model performance with respect to utility, fairness, and robustness. Additionally,
we propose Algorithm 2 for trimming training samples to improve model performance given a budget.

3.1 ESTIMATING THE INFLUENCE OFSAMPLES

In�uence functions can ef�ciently estimate the data impact in various aspects. To further provide
their interpretations, we employ decision trees to uncover which sample features contribute positively
or negatively to the model's performance with respect to desired evaluation functions. To address
the issue of the tree depth on interpretability, we utilize hierarchical shrinkage (Agarwal et al., 2022)
to regularize the tree. We present our approach for in�uence estimation in Algorithm 1, which takes
as input a regularization parameter� , training setZ , validation setV , and an in�uence function
de�nition I F for samples inZ onV . Speci�cally, we iterate over each training set tuple(x i ; yi ) 2 Z
and create a new regression datasetM where the regressor is[x i ; yi ] (block matrix notation implies
appendingyi to the end ofx i ) and the response variable is computed viaI M (� x i ). Note that we
append the label to our dataset since in�uence estimation is dependent on class labels.

Algorithm 1 : In�uence Estimation Via Trees
Input : Training setZ , Validation setV , In�uence func-
tion I F , Hyperparameter�
Output : In�uence Estimator Treêh

1: initialize M  ; .
2: for (x i ; yi ) 2 Z do
3: qi  [x i ; yi ] //appending label to x i

4: M  M [ f (qi ; I F (� x i )) g
5: end for
6: train h using CART (Breiman et al., 2017) onM .
7: return ĥ by using hierarchical shrinkage (Agarwal

et al., 2022) onh with � .

Then, we train a regression treeh using CART
(Breiman et al., 2017). To ensure that the tree
is interpretable while preserving performance,
we utilize hierarchical shrinkage post-training.
For our treeh and for a given sampleqi in
the datasetM , let its leaf-to-root node path
in the tree denote astw � tw� 1 � ::: � t0.
Here tw represents the leaf node andt0 is
the root node. Then we de�ne two mapping
functions for ease of readability:� and � .
The function� takes as input a tree node and
returns the number of samples it contains.
The function� takes as input the query sampleq and the tree nodet and outputs the average
predictive response forq at nodet. The overall regression tree prediction model forqi can then
be written as:h(qi ) = � (qi ; t0) +

P w
j =1 � (qi ; t j ) � � (qi ; t j � 1): Hierarchical shrinkage regularizes

the treeh by shrinking the prediction over each tree node by the sample means of its parent nodes,
ĥ(qi ) = � (qi ; t0) +

P w
j =1

� (qi ;t j ) � � (qi ;t j � 1 )
1+ �=� ( t j � 1 ) .

3.2 DATA TRIMMING FOR SUPERVISEDMODELS

Algorithm 2 : Data Trimming
Input : Training setZ , Validation setV , In�uence func-
tion I F , Budgetb
Output : Trimmed DatasetZ 0

1: initialize J  ; , K  ; , Z 0  ; .
2: for (x i ; yi ) 2 Z do
3: J  J [ fI F (� x i )g //on set V
4: K  K [ f i g
5: end for
6: sort J in ascending order.
7: sort K usingJ .
8: b0  

P
1 j< 0;j 2 J .

9: Z 0  Z 0 [ f x i g; 8i =2 K :min f b;b0g ; x i 2 Z .
10: return Z 0.

We present Algorithm 2 for trimming training
datasets which takes input as beforeZ; V , I F

for samples inZ on V , and a budgetb for the
number of samples to remove and outputs the
trimmed datasetZ 0. The goal is to remove sam-
ples from the dataset that have negative in�u-
ence. First, we initialize the setsJ , K , andZ 0.
Then we populateJ with the in�uence values of
samples inJ , andK with the indices of these
samples (lines 2-3). We then sortJ in order of
increasing positive in�uence, andK according
to the sorted order obtained viaJ . In K we only
care about the �rstminf b; b0g indices (line 9)
whereb0 is the total number of negative in�uence samples (line 8). Finally, we select only those
samples to be part ofZ 0 that do not have indices in this subset ofK and returnZ 0.

4 EXPERIMENTAL RESULTS

In this section, we present results for our algorithms presented in the previous section. We �rst verify
the correctness of our algorithms on synthetically generated toy data. We analyze how our in�uence
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