
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

LLM4Rerank: LLM-based Auto-Reranking Framework for
Recommendations

Anonymous Author(s)
Submission Id: 805

Abstract
Reranking is significant for recommender systems due to its piv-
otal role in refining recommendation results. Numerous reranking
models have emerged to meet diverse reranking requirements in
practical applications, which not only prioritize accuracy but also
consider additional aspects such as diversity and fairness. How-
ever, most of the existing models struggle to strike a harmonious
balance between these diverse aspects at the model level. Addition-
ally, the scalability and personalization of these models are often
limited by their complexity and a lack of attention to the varying
importance of different aspects in diverse reranking scenarios. To
address these issues, we propose LLM4Rerank, a comprehensive
LLM-based reranking framework designed to bridge the gap be-
tween various reranking aspects while ensuring scalability and
personalized performance. Specifically, we abstract different as-
pects into distinct nodes and construct a fully connected graph for
LLM to automatically consider aspects like accuracy, diversity, fair-
ness, and more, all in a coherent Chain-of-Thought (CoT) process.
To further enhance personalization during reranking, we facili-
tate a customizable input mechanism that allows fine-tuning of
LLM’s focus on different aspects according to specific reranking
needs. Experimental results on three widely used public datasets
demonstrate that LLM4Rerank outperforms existing state-of-the-
art reranking models across multiple aspects. The implementation
code is available for reproducibility 1.

Relevance Statement: This paper presents an LLM-based auto-
reranking framework that integrates various personalized aspects
during the reranking stage of a recommender system. This is highly
pertinent to the Web track topic user modeling, personalization,
and recommendation. Moreover, the proposed method can be
directly used to conduct reranking with personalized requirements,
which is closely related to the applications of the Web.

CCS Concepts
• Information systems→Retrieval models and ranking;Data
mining.

1https://anonymous.4open.science/r/LLM4Rerank-5EA2

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’25, April 28–May 25, 2018, Sydney, Australia
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/XXXXXXX.XXXXXXX

Keywords
Reranking, Recommender System, Large Language Model

ACM Reference Format:
Anonymous Author(s). 2025. LLM4Rerank: LLM-based Auto-Reranking
Framework for Recommendations. In Proceedings of Make sure to enter the
correct conference title from your rights confirmation emai (WWW ’25). ACM,
New York, NY, USA, 11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Reranking is a fundamental technique in the field of recommender
systems [21]. Its importance lies in its ability to refine and enhance
the results generated by ranking models, ultimately providing users
with the most relevant and personalized recommendations. In the
typical recommendation process, interaction features (e.g., user
attributes and item properties) are initially utilized by a ranking
model to generate a candidate list for the user. Subsequently, a
reranking model is applied to further scrutinize the association be-
tween candidate items, delving into the nuances and intricacies of
user preferences, and ultimately producing the final recommenda-
tion list. Currently, existing reranking models predominantly focus
on improving the accuracy aspect of recommendations [1, 19, 24].
Although accuracy is crucial, it is equally important to consider
extensive aspects of the recommended list in practical use, such
as diversity [4, 6, 39] and fairness [36, 41]. Diversity ensures that
users are exposed to a varied range of items, while fairness guar-
antees equal representation and exposure of different categories
or sellers. Though several research [4, 6, 36] try to combine one of
them with the accuracy aspect for modeling, how to better consider
and balance more aspects simultaneously remains a problem.

Specifically, existing reranking models do suffer from several
limitations. Firstly, it is challenging to comprehensively consider
and balance the complex combination of multiple aspects in model-
ing, primarily due to the substantial semantic gap between these
aspects [8, 32]. This is because each aspect scrutinizes the rec-
ommendation list via unique attribute dimensions, highlighting
intricate semantic relationships and distinctions. This complex-
ity underscores the substantial gap that exists between different
aspects. Furthermore, scalability issues present another major hur-
dle, inhibiting the application of a singular model across diverse
recommendation settings that may prioritize different aspects or
functional rules. This challenge is particularly pronounced when
introducing novel aspects or custom reranking rules, such as back-
ward rules or stop conditions, not initially anticipated during the
model’s development. Moreover, the inability to personalize the
amalgamation of various aspects further limits the personalization
of existing models, as noted in prior research [25]. Once deployed,
the output tendency of a specific model on different aspects is fixed
and cannot be intelligently adjusted according to evolving business
or user preferences.

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’25, April 28–May 25, 2018, Sydney, Australia Anon. Submission Id: 805

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Ranking Model
(GMF) Reranking Model

Candidate List

Item

Item

...

Item

Final Result

Item

Item

...

Item

User Info

Item Set

User Info

Ranking Process Reranking Process

Figure 1: Ranking and reranking process in recommendations.

To overcome these barriers, an optimal solution would involve
creating a versatile reranking framework capable of simultaneously
accounting for diverse aspect combinations and semantic nuances.
Such a frameworkwould flexibly accommodate the unique demands
of different contexts and user needs, offering a more dynamic and
tailored reranking solution.

Currently, with the rapid development of Large LanguageModels
(LLMs) [9, 23], extensive research has been undertaken to evalu-
ate the capabilities of LLMs in various contexts [5, 34]. Previous
studies [17, 22, 28] highlight that zero-shot LLMs may not achieve
the same level of proficiency as specialized models in tasks such
as information extraction and recommendation. This limitation is
often attributed to their restricted token count and difficulties in
processing extensive contexts that include thousands of items [20].
Despite these challenges, these studies have shown that LLMs can
perform comparably or even surpass supervised benchmarks in
reranking tasks. This efficacy is credited to their robust seman-
tic understanding capabilities within concise contexts involving
a limited number of items. Thus, the application of LLMs in the
reranking phase of recommendations could serve as a key strategy
to merge different aspects by enhancing semantic understanding.

Nonetheless, several significant challenges arise when modeling
a reranking framework using LLMs. The first challenge involves
ensuring the scalability of the framework in a well-organized and
flexible manner, allowing it to accommodate current aspect require-
ments while also remaining adaptable to potential future aspects.
The second challenge revolves around formulating a mechanism
capable of automatically combining diverse aspect requirements in
accordance with specific recommendation settings or user prefer-
ences, ultimately achieving genuine personalization.

To address these challenges, we propose LLM4Rerank, an inno-
vative reranking framework that harnesses the power of zero-shot
LLMs for more precise reranking. Specifically, LLM4Rerank repre-
sents various aspect requirements in reranking as distinct nodes,
allowing the framework to automatically incorporate these nodes in
a Chain-of-Thought (CoT) manner [3, 35, 40]. The advantage of this
approach is twofold: it ensures scalability, allowing for the seamless
inclusion of new nodes to address emerging aspect requirements.
To demonstrate this, in addition to the accuracy aspect, diversity,
and fairness aspects are also added for LLM4Rerank modeling in
this paper. Additionally, the LLM used in LLM4Rerank can automat-
ically determine the next node to consider, guided by the current
reranking history and an additional sentence input referred to as
the “Goal”, which is provided by the user or deployer, representing
the overall focus and objective of the ongoing reranking process.
This dynamic process enables LLM4Rerank to achieve enhanced
personalization in the reranking process.

In summary, in this paper, our contributions could be summa-
rized as follows:
• To the best of our knowledge, this work is the first endeavor to

automatically integrate multiple aspects and could thus measure
different aspects in a unified semantic space comprehensively
through a multi-hop reranking procedure employing LLMs.

• We propose LLM4Rerank, a novel framework that can handle
the complex combination of various aspect requirements, such
as accuracy, diversity, and fairness, within the reranking pro-
cess. LLM4Rerank offers the potential for superior performance,
scalability, and personalization in reranking.

• Experiments conducted on three widely used industrial datasets
demonstrate that LLM4Rerank outperforms existing baselines in
all aspects considered. This validates its efficacy and superiority
in enhancing performance, scalability and personalization within
the reranking process of recommender systems.

2 Framework
This section outlines the problem formulation for the reranking
task in recommendations, followed by a comprehensive overview
of LLM4Rerank and its principal components.

2.1 Problem Formulation
The reranking task plays a pivotal role in recommender systems.
As depicted in Figure 1, consider 𝑼 as the set of users and 𝑰 as
the set of items available for recommendation. For clarity, this
paper represents each user and item by a feature vector (𝒖 and
𝒊, respectively). Initially, a ranking model generates a candidate
item list 𝑰 𝑟 = { 𝒊𝑟1, ..., 𝒊𝑟𝑛, ..., 𝒊𝑟𝑁 } with 𝑁 items for each user. To
improve recommendation performance, a reranking process [21, 24]
is applied to analyze the relationships among itemswithin the initial
list 𝑰 𝑟 . This analysis aims to generate a refined list with 𝐾 items,
denoted as 𝑰 𝑟𝑒 = { 𝒊𝑟𝑒1 , ..., 𝒊𝑟𝑒𝑘 , ..., 𝒊𝑟𝑒𝐾 }(𝐾 < 𝑁), from the initial list.
The goal of reranking models is to enhance user-item relevance by
optimizing a defined objective function:

𝑰 𝑟𝑒 = 𝑇𝑜𝑝𝐾
𝒊∈𝑰 𝑟

𝑅(𝒖, 𝒊), (1)

where 𝑅(𝒖, 𝒊) is the scoring function that evaluates the relevance of
an item 𝒊 for a user 𝒖, considering aspects such as accuracy, diver-
sity, and fairness. Through this optimization, the reranking model
selects the optimal recommendation list 𝑰 𝑟𝑒 from the candidate lists
𝑰 𝑟 , tailored to individual user preferences, thereby significantly
enhancing the quality of recommendations.

In this study, to facilitate equitable comparisons across various
reranking baselines, the Generalized Matrix Factorization (GMF)

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

LLM4Rerank: LLM-based Auto-Reranking Framework for Recommendations WWW ’25, April 28–May 25, 2018, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Candidate List

Item

Item

...

Item

Final Result

Item

Item

...

Item

User Info

LLM4Rerank

Accuracy

Stop

Backward

Diversity

Fairness

(c) Historical
Reranking Pool (H)

Accuracy: [21, ..., 9]

Diversity: [5, ..., 21]

...

Aspect
Nodes

Functional
Nodes

(a) The function graph (b) Nodes

Req

T

Reranking Requirements

Prompt Template

LLM

Candidate List (C)Goal (G)

Mainly focus
on accuracy,
followed by

diversity

Input

Output

Figure 2: Overall structure of LLM4Rerank. Inputs are first directed to the “Accuracy” node, which initiates an automatic
reranking process in (a). Nodes (b) with varying colors represent distinct aspects or functional steps, guiding the LLM in its
deliberations with historical information in (c). A complete reranking process is considered finished once LLM reaches the
“Stop” node. For simplicity, items in this figure are represented by their IDs, and the detailed descriptions are hidden.
model [14] is employed as the uniform global ranking model follow-
ing previous study [19]. This approach ensures that all reranking
models operate on identical candidate item lists.

2.2 LLM4Rerank Overview
In this section, we introduce the proposed reranking framework,
LLM4Rerank, illustrated in Figure 2. The framework receives three
types of inputs: user information (user info), which includes features
such as gender and age; the candidate item list 𝑰 𝑟 ; and a sentence
termed “Goal”, which outlines the prioritized aspects for rerank-
ing. LLM4Rerank is structured as a fully connected function graph,
excluding the “Stop” node, comprising various nodes as shown
in Figure 2 (a). Each node represents a potential reranking step
that generates a reranking list by LLM, taking into account specific
aspect-related or functional requirements as depicted in Figure 2 (b).
Each edge within the function graph signifies a potential pathway
for node-to-node transition, ensuring connectivity among all nodes,
with the exception of the “Stop” node. To exemplify LLM4Rerank’s
scalability, we integrate not just an “Accuracy” node but also “Di-
versity” and “Fairness” aspect nodes into the framework, alongside
two functional nodes: “Backward” and “Stop” for practical func-
tionalities. The node architecture is meticulously crafted to permit
the LLM to sequentially evaluate diverse nodes, thereby optimizing
the reranking outcome to fulfill multiple aspect requirements com-
prehensively. Moreover, to prevent memory loss and enhance the
LLM’s assessment of aspect combinations, a historical reranking
pool is utilized (Figure 2 (c)). This pool records the outcomes from
each node in sequence, serving as an auxiliary reference for sub-
sequent reranking at each node. Ultimately, when the “Stop” node
is reached, the reranking process is completed. The output at this

stage is precisely the latest reranking results from the historical
reranking pool, represented as 𝑰 𝑟𝑒 .

2.3 Nodes Construction
To facilitate the Large Language Model (LLM)’s systematic anal-
ysis of complex aspect requirements in reranking, this structure
aims to establish distinct nodes for specific requirements. Such
an arrangement enables the LLM to process these requirements
in a Chain-of-Thought approach [3, 35, 40]. Nevertheless, this ap-
proach presents two primary challenges: First, customizing the node
structure to maintain scalability when incorporating additional re-
quirements; and second, empowering the LLM to automatically
select its subsequent reranking step. To address these challenges,
we introduce a generic node structure. It comprises a reranking
step, paired with an ancillary indicator that signifies the direction of
the forthcoming step identified by the next node’s name. This con-
figuration permits the LLM to automatically navigate through the
LLM4Rerank framework, making decisions based on the presently
available information.

This section presents our strategy to address the challenge of
node structure customization and enhance the scalability of the
LLM4Rerank framework by introducing a customizable, generic
node structure, as depicted in Figure 2 (b). Each node performs a
reranking step under LLM considerations, defined by the equation:

𝐶𝑁,𝐶𝑅 = 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐶𝑁) (𝒖, 𝑰 𝑟 ,𝐺𝑜𝑎𝑙, 𝑃𝑜𝑜𝑙). (2)
Inputs for each node include user information 𝒖, candidate items

𝑰 𝑟 , a personalized𝐺𝑜𝑎𝑙 sentence for illustrating personalized focus
for the entire reranking process, and the historical reranking pool
𝑃𝑜𝑜𝑙 , if available. Outputs consist of reranked result 𝐶𝑅 and the
next node’s name 𝐶𝑁 which indicates further reranking steps. The

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’25, April 28–May 25, 2018, Sydney, Australia Anon. Submission Id: 805

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

LLM4Rerank framework crafts prompt specific to reranking criteria
and interacts with LLM to generate these outputs.

2.3.1 Aspect Nodes. To facilitate the LLM in executing reranking
tasks tailored to distinct aspect requirements, we employ a prompt-
based template approach within the generic node structure:

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐶𝑁) () = 𝐿𝐿𝑀 (𝑇𝑒𝑚𝑝 (𝐶𝑁) ()), (3)
where 𝑇𝑒𝑚𝑝 (𝐶𝑁) () is the prompt template for different nodes.
This method allows for instantiating specific nodes dedicated to
evaluating different aspects within the reranking process. Conse-
quently, each node is designed to systematically address one of
these key aspects, ensuring that the reranking outcomes reflect a
balanced consideration. In this study, to demonstrate the scalability
of LLM4Rerank, we implement three aspect nodes dedicated to
reranking: “Accuracy”, “Diversity”, and “Fairness”. Note that the ex-
ample prompts below are simplified. In practice, detailed prompts
should be tailored to input features, aspect characteristics, and
evaluation metric semantics.
• Accuracy Node: This node is designed to fulfill the performance

criteria of the final recommendation list during the reranking
phase. As such, the prompt templates are crafted to underscore
the correlation between users and items. Figure 3 presents a
straightforward template instance employed within the node.
Furthermore, given the paramount importance of recommenda-
tion accuracy - a fundamental aspect indispensable in recom-
mender systems - the accuracy node has been established as the
initial point within the LLM4Rerank framework. Consequently,
every reranking procedure commences with the accuracy node,
ensuring a foundational focus on precision from the outset.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

KDD ’24, August 25–29, 2024, Barcelona, Spain Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Reranking
Requirements

Reranking
Result

Next Node

Prompt
Template

Prompt

One Node of
LLM4Rerank

Historical Reranking
Pool

Accuracy: [21, ..., 9]

...

...

...

User
Info

Candidate
List

Goal

Historical
Reranking Pool

Figure 3: Generic node structure of LLM4Rerank. [xiangyu:
Enlarge the text in fig]

[gjt: Done]

the edges, why fully-connected] The node architecture is meticu-
lously crafted to permit the LLM to sequentially evaluate diverse
nodes, thereby optimizing the reranking outcome to fulfill multi-
ple aspect requirements comprehensively. Moreover, to prevent
memory loss and enhance the LLM’s assessment of aspect combi-
nations, a historical reranking pool is utilized (Figure 2 (c)). This
pool [xiangyu: documents->records?] [gjt: records] the outcomes
from each node in sequence, serving as an auxiliary reference for
subsequent reranking at each node. [gjt: Ultimately, when the “Stop”
node is reached, the reranking process is completed. The output at
this stage is precisely the latest reranking results from the histori-
cal reranking pool, represented as 𝑰 𝑟𝑒 .] [xiangyu: One sentence to
describe the output of lower left corner, “Stop” node...?]

2.3 Nodes Construction
To facilitate the Large Language Model (LLM)’s systematic anal-
ysis of complex aspect requirements in reranking, this structure
aims to establish distinct nodes for specific requirements. Such
an arrangement enables the LLM to process these requirements
in a Chain-of-Thought approach [3, 40, 47]. Nevertheless, this ap-
proach presents two primary challenges: First, customizing the node
structure to maintain scalability when incorporating additional re-
quirements; and second, empowering the LLM to automatically
select its subsequent reranking step. To address these challenges,
we introduce a generic node structure. It comprises a reranking
step, paired with an ancillary indicator that signifies the direction of
the forthcoming step identified by the next node’s name. This con-
figuration permits the LLM to automatically navigate through the
LLM4Rerank framework, making decisions based on the presently
available information.

2.3.1 Generic Node Structure. This section outlines our strategy for
addressing the challenge of node structure customization with the
aim of augmenting the scalability of the LLM4Rerank framework.
Specifically, we introduce a generic node structure that serves as
the foundation for all nodes. This generic node represents a single
step of reranking under LLM considerations. The inputs to a generic
node encompass semantic representations of user information, can-
didate items, the “Goal” sentence that defines the personalized focus
for the entire reranking process, and the whole historical reranking
pool if available. Outputs from this node are twofold: the immediate

reranking results for the current node, represented by a list of item
IDs, are integrated into the historical reranking pool alongside the
current node’s name, serving as a reference for subsequent steps.
Additionally, an indicator (i.e., the next node’s name in this paper)
specifying the subsequent node for reranking is produced, thereby
achieving an automatic step-by-step procedure. [bo: refer to fig 3;
besides, can we put the fig 3 into the fig 2?] [xiangyu: good sugges-
tion, you can put a simpler version of fig 3 into fig 2][gjt: Done]
Within each node, LLM4Rerank initially crafts a prompt tailored to
the specific reranking criteria and inputs at hand with a predefined
template. Subsequently, LLM4Rerank would interact with LLM to
obtain the two outputs based on the generated prompt.

2.3.2 Aspect Nodes. To facilitate the LLM in executing rerank-
ing tasks tailored to distinct aspect requirements, we employ a
prompt-based template approach within the proposed generic node
structure. This method allows for the instantiation of specific nodes
dedicated to evaluating different aspects within the reranking pro-
cess. Consequently, each node is designed to systematically address
one of these key aspects, ensuring that the reranking outcomes
reflect a balanced consideration. In this study, to demonstrate the
scalability of LLM4Rerank, we implement three aspect nodes dedi-
cated to reranking: “Accuracy”, “Diversity”, and “Fairness”.

An Example of Accuracy Node Template

Considering a user: {User info}
Here’s a list of the candidate movies: {Candidate List}
Your reranking goal: {Goal}
Your historical reranking: {Historical Reranking Pool}
Now, you need to focus on the accuracy aspect (the match
between the user and items) and rerank the candidates
based on the given information, and then give suggestions
about the next step of reranking from the following
reranking nodes considering the goal: {Available Nodes}
For your response format: {Format Description}

An Example of Diversity Node Template

Considering a user: {User info}
Here’s a list of the candidate movies: {Candidate List}
Your reranking goal: {Goal}
Your historical reranking: {Historical Reranking Pool}
Now, you need to focus on the diversity aspect (more
items with different xx features should exist at the top of
the reranking list) and rerank the candidates based on the
given information, and then give suggestions about the
next step of reranking from the following reranking nodes
considering the goal: {Available Nodes}
For your response format: {Format Description}

• Accuracy Node: This node is designed to fulfill the performance
criteria of the final recommendation list during the reranking
phase. As such, the prompt templates are crafted to underscore
the correlation between users and items. Figure 4 presents a
straightforward instance of the template employed within the

4

Figure 3: Example prompt template of the accuracy node.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

KDD ’24, August 25–29, 2024, Barcelona, Spain Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Reranking
Requirements

Reranking
Result

Next Node

Prompt
Template

Prompt

One Node of
LLM4Rerank

Historical Reranking
Pool

Accuracy: [21, ..., 9]

...

...

...

User
Info

Candidate
List

Goal

Historical
Reranking Pool

Figure 3: Generic node structure of LLM4Rerank. [xiangyu:
Enlarge the text in fig]

[gjt: Done]

the edges, why fully-connected] The node architecture is meticu-
lously crafted to permit the LLM to sequentially evaluate diverse
nodes, thereby optimizing the reranking outcome to fulfill multi-
ple aspect requirements comprehensively. Moreover, to prevent
memory loss and enhance the LLM’s assessment of aspect combi-
nations, a historical reranking pool is utilized (Figure 2 (c)). This
pool [xiangyu: documents->records?] [gjt: records] the outcomes
from each node in sequence, serving as an auxiliary reference for
subsequent reranking at each node. [gjt: Ultimately, when the “Stop”
node is reached, the reranking process is completed. The output at
this stage is precisely the latest reranking results from the histori-
cal reranking pool, represented as 𝑰 𝑟𝑒 .] [xiangyu: One sentence to
describe the output of lower left corner, “Stop” node...?]

2.3 Nodes Construction
To facilitate the Large Language Model (LLM)’s systematic anal-
ysis of complex aspect requirements in reranking, this structure
aims to establish distinct nodes for specific requirements. Such
an arrangement enables the LLM to process these requirements
in a Chain-of-Thought approach [3, 40, 47]. Nevertheless, this ap-
proach presents two primary challenges: First, customizing the node
structure to maintain scalability when incorporating additional re-
quirements; and second, empowering the LLM to automatically
select its subsequent reranking step. To address these challenges,
we introduce a generic node structure. It comprises a reranking
step, paired with an ancillary indicator that signifies the direction of
the forthcoming step identified by the next node’s name. This con-
figuration permits the LLM to automatically navigate through the
LLM4Rerank framework, making decisions based on the presently
available information.

2.3.1 Generic Node Structure. This section outlines our strategy for
addressing the challenge of node structure customization with the
aim of augmenting the scalability of the LLM4Rerank framework.
Specifically, we introduce a generic node structure that serves as
the foundation for all nodes. This generic node represents a single
step of reranking under LLM considerations. The inputs to a generic
node encompass semantic representations of user information, can-
didate items, the “Goal” sentence that defines the personalized focus
for the entire reranking process, and the whole historical reranking
pool if available. Outputs from this node are twofold: the immediate

reranking results for the current node, represented by a list of item
IDs, are integrated into the historical reranking pool alongside the
current node’s name, serving as a reference for subsequent steps.
Additionally, an indicator (i.e., the next node’s name in this paper)
specifying the subsequent node for reranking is produced, thereby
achieving an automatic step-by-step procedure. [bo: refer to fig 3;
besides, can we put the fig 3 into the fig 2?] [xiangyu: good sugges-
tion, you can put a simpler version of fig 3 into fig 2][gjt: Done]
Within each node, LLM4Rerank initially crafts a prompt tailored to
the specific reranking criteria and inputs at hand with a predefined
template. Subsequently, LLM4Rerank would interact with LLM to
obtain the two outputs based on the generated prompt.

2.3.2 Aspect Nodes. To facilitate the LLM in executing rerank-
ing tasks tailored to distinct aspect requirements, we employ a
prompt-based template approach within the proposed generic node
structure. This method allows for the instantiation of specific nodes
dedicated to evaluating different aspects within the reranking pro-
cess. Consequently, each node is designed to systematically address
one of these key aspects, ensuring that the reranking outcomes
reflect a balanced consideration. In this study, to demonstrate the
scalability of LLM4Rerank, we implement three aspect nodes dedi-
cated to reranking: “Accuracy”, “Diversity”, and “Fairness”.

An Example of Accuracy Node Template

Considering a user: {User info}
Here’s a list of the candidate movies: {Candidate List}
Your reranking goal: {Goal}
Your historical reranking: {Historical Reranking Pool}
Now, you need to focus on the accuracy aspect (the match
between the user and items) and rerank the candidates
based on the given information, and then give suggestions
about the next step of reranking from the following
reranking nodes considering the goal: {Available Nodes}
For your response format: {Format Description}

An Example of Diversity Node Template

Considering a user: {User info}
Here’s a list of the candidate movies: {Candidate List}
Your reranking goal: {Goal}
Your historical reranking: {Historical Reranking Pool}
Now, you need to focus on the diversity aspect (more
items with different xx features should exist at the top of
the reranking list) and rerank the candidates based on the
given information, and then give suggestions about the
next step of reranking from the following reranking nodes
considering the goal: {Available Nodes}
For your response format: {Format Description}

• Accuracy Node: This node is designed to fulfill the performance
criteria of the final recommendation list during the reranking
phase. As such, the prompt templates are crafted to underscore
the correlation between users and items. Figure 4 presents a
straightforward instance of the template employed within the

4

Figure 4: Example prompt template of the diversity node.

• Diversity Node: This node is specifically designed to address
the diversity criteria for the final recommendation list during
the reranking phase. In this study, we assess the diversity of
the reranking outcomes by evaluating the extent to which a
particular attribute of the items is varied within the final list. We
employ the 𝛼-NDCG metric [7] for this purpose. Consequently,
an illustrative example of the template used in the diversity node
is depicted in Figure 4.

• Fairness Node: This node is designated to meet the fairness
objectives within the final recommendation list at the reranking
phase. In our study, fairness of the recommendation outcomes is
operationalized as the average score disparity across two sample
groups, segregated by a distinct characteristic, and evaluated
using the Mean Absolute Deviation (MAD) metric [44]. Given
that the LLM inherently generates reranking lists rather than
numerical scores, we allocate scores ranging linearly from 1 to
0 to the items in the final recommendation list. These scores
are subsequently utilized to compute the MAD for fairness as-
sessment. For an in-depth methodological exposition, readers
are directed to Section 3.1.3. Figure 5 provides a straightforward
template illustration for the fairness node.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

LLM4Rerank: LLM-based Auto-Reranking Framework for Recommendations KDD ’24, August 25–29, 2024, Barcelona, Spain

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

KDD ’24, August 25–29, 2024, Barcelona, Spain Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Reranking
Requirements

User Info
Candidate Set

Goal LLM

Reranking
Result

Next Node

Prompt
Template

Prompt

One Node of
LLM4Rerank

Historical Reranking

Historical Reranking
Pool

Accuracy: [21, ..., 9]

...

Figure 3: Generic node structure of LLM4Rerank. [xiangyu:
Enlarge the text in fig]

[gjt: Done]

pool [xiangyu: documents->records?] [gjt: records] the outcomes
from each node in sequence, serving as an auxiliary reference for
subsequent reranking at each node. [gjt: Ultimately, when the “Stop”
node is reached, the reranking process is completed. The output at
this stage is precisely the latest reranking results from the histori-
cal reranking pool, represented as 𝑰 𝑟𝑒 .] [xiangyu: One sentence to
describe the output of lower left corner, “Stop” node...?]

2.3 Nodes Construction
To facilitate the Large Language Model (LLM)’s systematic anal-
ysis of complex aspect requirements in reranking, this structure
aims to establish distinct nodes for specific requirements. Such
an arrangement enables the LLM to process these requirements
in a Chain-of-Thought approach [3, 40, 47]. Nevertheless, this ap-
proach presents two primary challenges: First, customizing the node
structure to maintain scalability when incorporating additional re-
quirements; and second, empowering the LLM to automatically
select its subsequent reranking step. To address these challenges,
we introduce a generic node structure. It comprises a reranking
step, paired with an ancillary indicator that signifies the direction of
the forthcoming step identified by the next node’s name. This con-
figuration permits the LLM to automatically navigate through the
LLM4Rerank framework, making decisions based on the presently
available information.

2.3.1 Generic Node Structure. This section outlines our strategy for
addressing the challenge of node structure customization with the
aim of augmenting the scalability of the LLM4Rerank framework.
Specifically, we introduce a generic node structure that serves as
the foundation for all nodes. This generic node represents a single
step of reranking under LLM considerations. The inputs to a generic
node encompass semantic representations of user information, can-
didate items, the “Goal” sentence that defines the personalized focus
for the entire reranking process, and the whole historical reranking
pool if available. Outputs from this node are twofold: the immediate
reranking results for the current node, represented by a list of item
IDs, are integrated into the historical reranking pool alongside the
current node’s name, serving as a reference for subsequent steps.
Additionally, an indicator (i.e., the next node’s name in this paper)
specifying the subsequent node for reranking is produced, thereby

achieving an automatic step-by-step procedure. [bo: refer to fig 3;
besides, can we put the fig 3 into the fig 2?] [xiangyu: good sugges-
tion, you can put a simpler version of fig 3 into fig 2][gjt: Done]
Within each node, LLM4Rerank initially crafts a prompt tailored to
the specific reranking criteria and inputs at hand with a predefined
template. Subsequently, LLM4Rerank would interact with LLM to
obtain the two outputs based on the generated prompt.

2.3.2 Aspect Nodes. To facilitate the LLM in executing rerank-
ing tasks tailored to distinct aspect requirements, we employ a
prompt-based template approach within the proposed generic node
structure. This method allows for the instantiation of specific nodes
dedicated to evaluating different aspects within the reranking pro-
cess. Consequently, each node is designed to systematically address
one of these key aspects, ensuring that the reranking outcomes
reflect a balanced consideration. In this study, to demonstrate the
scalability of LLM4Rerank, we implement three aspect nodes dedi-
cated to reranking: “Accuracy”, “Diversity”, and “Fairness”.

An Example of Accuracy Node Template

Considering a user: {User info}
Here’s a list of the candidate movies: {Candidate Set}
Your reranking goal: {Goal}
Your historical reranking: {Historical Reranking Pool}
Now, you need to focus on the accuracy aspect (the match
between the user and items) and rerank the candidates
based on the given information, and then give suggestions
about the next step of reranking from the following
reranking nodes considering the goal: {Available Nodes}
For your response format: {Format Description}

An Example of Diversity Node Template

Considering a user: {User info}
Here’s a list of the candidate movies: {Candidate Set}
Your reranking goal: {Goal}
Your historical reranking: {Historical Reranking Pool}
Now, you need to focus on the diversity aspect (more
items with different xx features should exist at the top of
the reranking list) and rerank the candidates based on the
given information, and then give suggestions about the
next step of reranking from the following reranking nodes
considering the goal: {Available Nodes}
For your response format: {Format Description}

• Accuracy Node: This node is designed to fulfill the performance
criteria of the final recommendation list during the reranking
phase. As such, the prompt templates are crafted to underscore
the correlation between users and items. Figure ?? presents a
straightforward instance of the template employed within the
accuracy node. Furthermore, given the paramount importance of
recommendation accuracy - a fundamental aspect indispensable
in recommender systems - the accuracy node has been estab-
lished as the initial point within the LLM4Rerank framework.
Consequently, every reranking procedure commences with the

4

Figure 5: Example prompt template of the diversity node.

particular attribute of the items is varied within the final list. We
employ the 𝛼-NDCG metric [8] for this purpose. Consequently,
an illustrative example of the template used in the diversity node
is depicted in Figure 5.

An Example of Fairness Node Template

Considering a user: {User info}
Here’s a list of the candidate movies: {Candidate List}
Your reranking goal: {Goal}
Your historical reranking: {Historical Reranking Pool}
Now, you need to focus on the fairness aspect (For
itemswith xxx feature value and itemswith xxx feature
value, You should keep the average ranking of the two
categories in the candidates similar) and rerank the
candidates based on the given information, and then
give suggestions about the next step of reranking from
the following reranking nodes considering the goal:
{Available Nodes}
For your response format: {Format Description}

An Example of Backward Node Template

Considering a user: {User info}
Here’s a list of the candidate movies: {Candidate List}
Your reranking goal: {Goal}
Your historical reranking: {Historical Reranking Pool}
Now, you need to give suggestions about the next
step of reranking from the following reranking nodes
considering the goal: {Available Nodes}
For your response format: {Format Description}

• Fairness Node: This node is designated to meet the fairness
objectives within the final recommendation list at the reranking
phase. In our study, fairness of the recommendation outcomes is
operationalized as the average score disparity across two sample
groups, segregated by a distinct characteristic, and evaluated
using the Mean Absolute Deviation (MAD) metric [51]. Given
that the LLM inherently generates reranking lists rather than

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

LLM4Rerank: LLM-based Auto-Reranking Framework for Recommendations KDD ’24, August 25–29, 2024, Barcelona, Spain

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

accuracy node, ensuring a foundational focus on precision from
the outset.

• Diversity Node: This node is specifically designed to address
the diversity criteria for the final recommendation list during
the reranking phase. In this study, we assess the diversity of
the reranking outcomes by evaluating the extent to which a
particular attribute of the items is varied within the final list. We
employ the 𝛼-NDCG metric [8] for this purpose. Consequently,
an illustrative example of the template used in the diversity node
is depicted in Figure ??.

An Example of Fairness Node Template

Considering a user: {User info}
Here’s a list of the candidate movies: {Candidate Set}
Your reranking goal: {Goal}
Your historical reranking: {Historical Reranking Pool}
Now, you need to focus on the fairness aspect (For
itemswith xxx feature value and itemswith xxx feature
value, You should keep the average ranking of the two
categories in the candidates similar) and rerank the
candidates based on the given information, and then
give suggestions about the next step of reranking from
the following reranking nodes considering the goal:
{Available Nodes}
For your response format: {Format Description}

An Example of Backward Node Template

Considering a user: {User info}
Here’s a list of the candidate movies: {Candidate Set}
Your reranking goal: {Goal}
Your historical reranking: {Historical Reranking Pool}
Now, you need to give suggestions about the next
step of reranking from the following reranking nodes
considering the goal: {Available Nodes}
For your response format: {Format Description}

• Fairness Node: This node is designated to meet the fairness
objectives within the final recommendation list at the reranking
phase. In our study, fairness of the recommendation outcomes is
operationalized as the average score disparity across two sample
groups, segregated by a distinct characteristic, and evaluated
using the Mean Absolute Deviation (MAD) metric [51]. Given
that the LLM inherently generates reranking lists rather than
numerical scores, we allocate scores ranging linearly from 1 to 0
to the items in the final recommendation list. These scores are
subsequently utilized to compute the MAD for fairness assess-
ment. For an in-depth methodological exposition, readers are
directed to Section 3.1.3. Figure ?? provides a straightforward
template illustration for the fairness node.

2.3.3 Functional Nodes. Recent research has demonstrated the ef-
ficacy of reflection in optimizing the output of LLMs [16, 31]. To
augment the logical capabilities of LLM4Rerank in the reranking

Algorithm 1 The whole automatic reranking process of
LLM4Rerank
Input: User information 𝒖, Candidate item set 𝑰 𝑟 , the reranking
focus 𝐺𝑜𝑎𝑙 , Maximum node count𝑀𝐶
Output: Final reranking result 𝑰 𝑟𝑒
Note: 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑎) (𝑏) represents the execution of functions in
node 𝑎 with input 𝑏.
1: Initialize current node name 𝐶𝑁 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦; Current

reranking result 𝐶𝑅 = 𝑁𝑜𝑛𝑒; Node count 𝑁𝐶 = 0; Historical
reranking pool 𝑃𝑜𝑜𝑙 = [].

2: while 𝐶𝑁 ≠ 𝑆𝑡𝑜𝑝 do
3: 𝐶𝑁,𝐶𝑅 = 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐶𝑁) (𝒖, 𝑰 𝑟 , 𝐺𝑜𝑎𝑙 , 𝑃𝑜𝑜𝑙)
4: 𝑃𝑜𝑜𝑙 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝐶𝑅)
5: 𝑁𝐶+ = 1
6: if 𝑁𝐶 ≥ 𝑀𝐶 then
7: 𝐶𝑁 = 𝑆𝑡𝑜𝑝
8: end if
9: end while
10: return 𝑃𝑜𝑜𝑙 [−1]

process and introduce specialized functionalities, we have devel-
oped two functional nodes specifically aimed at facilitating reflec-
tion and termination within the reranking sequence.
• Backward Node: This node empowers the LLM to selectively

ignore a reranking outcome deemed suboptimal during the eval-
uation of previous reranking efforts. Within this framework,
LLM4Rerank deletes the latest reranking result from the his-
torical reranking pool and advances to the subsequent node as
dictated by the LLM’s output directives. An illustrative template
example of this node’s operation is provided in Figure ??.

• StopNode: This node governs the termination of the LLM4Rerank
output sequence. When the LLM4Rerank designates this node
as the incoming step, it signifies the conclusion of the complete
reranking process. Subsequently, this node extracts the most
recent reranking outcome from the historical reranking pool,
presenting it as the definitive reranking result.

2.4 Automatic Reranking Process
To leverage the LLM for reranking based on a diverse set of aspect
requirements, we have designed distinct nodes, each addressing
specific aspect criteria. Nonetheless, delineating a predefined path
from one node to another for every reranking task is both inefficient
and challenging to achieve. Thus, to accommodate unique user
preferences and significantly improve personalization, an automatic
reranking process has been developed, which mainly consists of
the following three sub-processes:
• Setting “Goal”: To accommodate personalized requirements

and facilitate LLM4Rerank’s scalability across varied contexts, a
manually entered sentence, referred to as the “Goal,” is incorpo-
rated as one of the preliminary inputs for each reranking process.
As illustrated in Figure 2, the “Goal” indicates the main focus
of a specific reranking process. By interpreting the semantic
connections between the “Goal” and the respective nodes, LLM
is enabled to automatically select the most appropriate nodes for
any given reranking task.

5

Figure 6: Example prompt template of the fairness node.

numerical scores, we allocate scores ranging linearly from 1 to
0 to the items in the final recommendation list. These scores
are subsequently utilized to compute the MAD for fairness as-
sessment. For an in-depth methodological exposition, readers
are directed to Section 3.1.3. Figure 6 provides a straightforward
template illustration for the fairness node.

2.3.3 Functional Nodes. Recent research has demonstrated the ef-
ficacy of reflection in optimizing the output of LLMs [16, 31]. To
augment the logical capabilities of LLM4Rerank in the reranking
process and introduce specialized functionalities, we have devel-
oped two functional nodes specifically aimed at facilitating reflec-
tion and termination within the reranking sequence.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

LLM4Rerank: LLM-based Auto-Reranking Framework for Recommendations KDD ’24, August 25–29, 2024, Barcelona, Spain

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

accuracy node, ensuring a foundational focus on precision from
the outset.

• Diversity Node: This node is specifically designed to address
the diversity criteria for the final recommendation list during
the reranking phase. In this study, we assess the diversity of
the reranking outcomes by evaluating the extent to which a
particular attribute of the items is varied within the final list. We
employ the 𝛼-NDCG metric [8] for this purpose. Consequently,
an illustrative example of the template used in the diversity node
is depicted in Figure ??.

An Example of Fairness Node Template

Considering a user: {User info}
Here’s a list of the candidate movies: {Candidate Set}
Your reranking goal: {Goal}
Your historical reranking: {Historical Reranking Pool}
Now, you need to focus on the fairness aspect (For
itemswith xxx feature value and itemswith xxx feature
value, You should keep the average ranking of the two
categories in the candidates similar) and rerank the
candidates based on the given information, and then
give suggestions about the next step of reranking from
the following reranking nodes considering the goal:
{Available Nodes}
For your response format: {Format Description}

An Example of Backward Node Template

Considering a user: {User info}
Here’s a list of the candidate movies: {Candidate Set}
Your reranking goal: {Goal}
Your historical reranking: {Historical Reranking Pool}
Now, you need to give suggestions about the next
step of reranking from the following reranking nodes
considering the goal: {Available Nodes}
For your response format: {Format Description}

• Fairness Node: This node is designated to meet the fairness
objectives within the final recommendation list at the reranking
phase. In our study, fairness of the recommendation outcomes is
operationalized as the average score disparity across two sample
groups, segregated by a distinct characteristic, and evaluated
using the Mean Absolute Deviation (MAD) metric [51]. Given
that the LLM inherently generates reranking lists rather than
numerical scores, we allocate scores ranging linearly from 1 to 0
to the items in the final recommendation list. These scores are
subsequently utilized to compute the MAD for fairness assess-
ment. For an in-depth methodological exposition, readers are
directed to Section 3.1.3. Figure ?? provides a straightforward
template illustration for the fairness node.

2.3.3 Functional Nodes. Recent research has demonstrated the ef-
ficacy of reflection in optimizing the output of LLMs [16, 31]. To
augment the logical capabilities of LLM4Rerank in the reranking

Algorithm 1 The whole automatic reranking process of
LLM4Rerank
Input: User information 𝒖, Candidate item set 𝑰 𝑟 , the reranking
focus 𝐺𝑜𝑎𝑙 , Maximum node count𝑀𝐶
Output: Final reranking result 𝑰 𝑟𝑒
Note: 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑎) (𝑏) represents the execution of functions in
node 𝑎 with input 𝑏.
1: Initialize current node name 𝐶𝑁 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦; Current

reranking result 𝐶𝑅 = 𝑁𝑜𝑛𝑒; Node count 𝑁𝐶 = 0; Historical
reranking pool 𝑃𝑜𝑜𝑙 = [].

2: while 𝐶𝑁 ≠ 𝑆𝑡𝑜𝑝 do
3: 𝐶𝑁,𝐶𝑅 = 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐶𝑁) (𝒖, 𝑰 𝑟 , 𝐺𝑜𝑎𝑙 , 𝑃𝑜𝑜𝑙)
4: 𝑃𝑜𝑜𝑙 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝐶𝑅)
5: 𝑁𝐶+ = 1
6: if 𝑁𝐶 ≥ 𝑀𝐶 then
7: 𝐶𝑁 = 𝑆𝑡𝑜𝑝
8: end if
9: end while
10: return 𝑃𝑜𝑜𝑙 [−1]

process and introduce specialized functionalities, we have devel-
oped two functional nodes specifically aimed at facilitating reflec-
tion and termination within the reranking sequence.
• Backward Node: This node empowers the LLM to selectively

ignore a reranking outcome deemed suboptimal during the eval-
uation of previous reranking efforts. Within this framework,
LLM4Rerank deletes the latest reranking result from the his-
torical reranking pool and advances to the subsequent node as
dictated by the LLM’s output directives. An illustrative template
example of this node’s operation is provided in Figure ??.

• StopNode: This node governs the termination of the LLM4Rerank
output sequence. When the LLM4Rerank designates this node
as the incoming step, it signifies the conclusion of the complete
reranking process. Subsequently, this node extracts the most
recent reranking outcome from the historical reranking pool,
presenting it as the definitive reranking result.

2.4 Automatic Reranking Process
To leverage the LLM for reranking based on a diverse set of aspect
requirements, we have designed distinct nodes, each addressing
specific aspect criteria. Nonetheless, delineating a predefined path
from one node to another for every reranking task is both inefficient
and challenging to achieve. Thus, to accommodate unique user
preferences and significantly improve personalization, an automatic
reranking process has been developed, which mainly consists of
the following three sub-processes:
• Setting “Goal”: To accommodate personalized requirements

and facilitate LLM4Rerank’s scalability across varied contexts, a
manually entered sentence, referred to as the “Goal,” is incorpo-
rated as one of the preliminary inputs for each reranking process.
As illustrated in Figure 2, the “Goal” indicates the main focus
of a specific reranking process. By interpreting the semantic
connections between the “Goal” and the respective nodes, LLM
is enabled to automatically select the most appropriate nodes for
any given reranking task.

5

Figure 7: Example prompt template of the backward node.

• Backward Node: This node empowers the LLM to selectively
ignore a reranking outcome deemed suboptimal during the eval-
uation of previous reranking efforts. Within this framework,
LLM4Rerank deletes the latest reranking result from the his-
torical reranking pool and advances to the subsequent node as
dictated by the LLM’s output directives. An illustrative template
example of this node’s operation is provided in Figure 7.

5

Figure 5: Example prompt template of the fairness node.

2.3.2 Functional Nodes. Recent research has demonstrated the ef-
ficacy of reflection in optimizing the output of LLMs [15, 27]. To
augment the logical capabilities of LLM4Rerank in the reranking
process and introduce specialized functionalities, we have devel-
oped two functional nodes specifically aimed at facilitating reflec-
tion and termination within the reranking sequence.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

LLM4Rerank: LLM-based Auto-Reranking Framework for Recommendations KDD ’24, August 25–29, 2024, Barcelona, Spain

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

KDD ’24, August 25–29, 2024, Barcelona, Spain Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Reranking
Requirements

User Info
Candidate Set

Goal LLM

Reranking
Result

Next Node

Prompt
Template

Prompt

One Node of
LLM4Rerank

Historical Reranking

Historical Reranking
Pool

Accuracy: [21, ..., 9]

...

Figure 3: Generic node structure of LLM4Rerank. [xiangyu:
Enlarge the text in fig]

[gjt: Done]

pool [xiangyu: documents->records?] [gjt: records] the outcomes
from each node in sequence, serving as an auxiliary reference for
subsequent reranking at each node. [gjt: Ultimately, when the “Stop”
node is reached, the reranking process is completed. The output at
this stage is precisely the latest reranking results from the histori-
cal reranking pool, represented as 𝑰 𝑟𝑒 .] [xiangyu: One sentence to
describe the output of lower left corner, “Stop” node...?]

2.3 Nodes Construction
To facilitate the Large Language Model (LLM)’s systematic anal-
ysis of complex aspect requirements in reranking, this structure
aims to establish distinct nodes for specific requirements. Such
an arrangement enables the LLM to process these requirements
in a Chain-of-Thought approach [3, 40, 47]. Nevertheless, this ap-
proach presents two primary challenges: First, customizing the node
structure to maintain scalability when incorporating additional re-
quirements; and second, empowering the LLM to automatically
select its subsequent reranking step. To address these challenges,
we introduce a generic node structure. It comprises a reranking
step, paired with an ancillary indicator that signifies the direction of
the forthcoming step identified by the next node’s name. This con-
figuration permits the LLM to automatically navigate through the
LLM4Rerank framework, making decisions based on the presently
available information.

2.3.1 Generic Node Structure. This section outlines our strategy for
addressing the challenge of node structure customization with the
aim of augmenting the scalability of the LLM4Rerank framework.
Specifically, we introduce a generic node structure that serves as
the foundation for all nodes. This generic node represents a single
step of reranking under LLM considerations. The inputs to a generic
node encompass semantic representations of user information, can-
didate items, the “Goal” sentence that defines the personalized focus
for the entire reranking process, and the whole historical reranking
pool if available. Outputs from this node are twofold: the immediate
reranking results for the current node, represented by a list of item
IDs, are integrated into the historical reranking pool alongside the
current node’s name, serving as a reference for subsequent steps.
Additionally, an indicator (i.e., the next node’s name in this paper)
specifying the subsequent node for reranking is produced, thereby

achieving an automatic step-by-step procedure. [bo: refer to fig 3;
besides, can we put the fig 3 into the fig 2?] [xiangyu: good sugges-
tion, you can put a simpler version of fig 3 into fig 2][gjt: Done]
Within each node, LLM4Rerank initially crafts a prompt tailored to
the specific reranking criteria and inputs at hand with a predefined
template. Subsequently, LLM4Rerank would interact with LLM to
obtain the two outputs based on the generated prompt.

2.3.2 Aspect Nodes. To facilitate the LLM in executing rerank-
ing tasks tailored to distinct aspect requirements, we employ a
prompt-based template approach within the proposed generic node
structure. This method allows for the instantiation of specific nodes
dedicated to evaluating different aspects within the reranking pro-
cess. Consequently, each node is designed to systematically address
one of these key aspects, ensuring that the reranking outcomes
reflect a balanced consideration. In this study, to demonstrate the
scalability of LLM4Rerank, we implement three aspect nodes dedi-
cated to reranking: “Accuracy”, “Diversity”, and “Fairness”.

An Example of Accuracy Node Template

Considering a user: {User info}
Here’s a list of the candidate movies: {Candidate Set}
Your reranking goal: {Goal}
Your historical reranking: {Historical Reranking Pool}
Now, you need to focus on the accuracy aspect (the match
between the user and items) and rerank the candidates
based on the given information, and then give suggestions
about the next step of reranking from the following
reranking nodes considering the goal: {Available Nodes}
For your response format: {Format Description}

An Example of Diversity Node Template

Considering a user: {User info}
Here’s a list of the candidate movies: {Candidate Set}
Your reranking goal: {Goal}
Your historical reranking: {Historical Reranking Pool}
Now, you need to focus on the diversity aspect (more
items with different xx features should exist at the top of
the reranking list) and rerank the candidates based on the
given information, and then give suggestions about the
next step of reranking from the following reranking nodes
considering the goal: {Available Nodes}
For your response format: {Format Description}

• Accuracy Node: This node is designed to fulfill the performance
criteria of the final recommendation list during the reranking
phase. As such, the prompt templates are crafted to underscore
the correlation between users and items. Figure ?? presents a
straightforward instance of the template employed within the
accuracy node. Furthermore, given the paramount importance of
recommendation accuracy - a fundamental aspect indispensable
in recommender systems - the accuracy node has been estab-
lished as the initial point within the LLM4Rerank framework.
Consequently, every reranking procedure commences with the

4

Figure 5: Example prompt template of the diversity node.

particular attribute of the items is varied within the final list. We
employ the 𝛼-NDCG metric [8] for this purpose. Consequently,
an illustrative example of the template used in the diversity node
is depicted in Figure 5.

An Example of Fairness Node Template

Considering a user: {User info}
Here’s a list of the candidate movies: {Candidate List}
Your reranking goal: {Goal}
Your historical reranking: {Historical Reranking Pool}
Now, you need to focus on the fairness aspect (For
itemswith xxx feature value and itemswith xxx feature
value, You should keep the average ranking of the two
categories in the candidates similar) and rerank the
candidates based on the given information, and then
give suggestions about the next step of reranking from
the following reranking nodes considering the goal:
{Available Nodes}
For your response format: {Format Description}

An Example of Backward Node Template

Considering a user: {User info}
Here’s a list of the candidate movies: {Candidate List}
Your reranking goal: {Goal}
Your historical reranking: {Historical Reranking Pool}
Now, you need to give suggestions about the next
step of reranking from the following reranking nodes
considering the goal: {Available Nodes}
For your response format: {Format Description}

• Fairness Node: This node is designated to meet the fairness
objectives within the final recommendation list at the reranking
phase. In our study, fairness of the recommendation outcomes is
operationalized as the average score disparity across two sample
groups, segregated by a distinct characteristic, and evaluated
using the Mean Absolute Deviation (MAD) metric [51]. Given
that the LLM inherently generates reranking lists rather than

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

LLM4Rerank: LLM-based Auto-Reranking Framework for Recommendations KDD ’24, August 25–29, 2024, Barcelona, Spain

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

accuracy node, ensuring a foundational focus on precision from
the outset.

• Diversity Node: This node is specifically designed to address
the diversity criteria for the final recommendation list during
the reranking phase. In this study, we assess the diversity of
the reranking outcomes by evaluating the extent to which a
particular attribute of the items is varied within the final list. We
employ the 𝛼-NDCG metric [8] for this purpose. Consequently,
an illustrative example of the template used in the diversity node
is depicted in Figure ??.

An Example of Fairness Node Template

Considering a user: {User info}
Here’s a list of the candidate movies: {Candidate Set}
Your reranking goal: {Goal}
Your historical reranking: {Historical Reranking Pool}
Now, you need to focus on the fairness aspect (For
itemswith xxx feature value and itemswith xxx feature
value, You should keep the average ranking of the two
categories in the candidates similar) and rerank the
candidates based on the given information, and then
give suggestions about the next step of reranking from
the following reranking nodes considering the goal:
{Available Nodes}
For your response format: {Format Description}

An Example of Backward Node Template

Considering a user: {User info}
Here’s a list of the candidate movies: {Candidate Set}
Your reranking goal: {Goal}
Your historical reranking: {Historical Reranking Pool}
Now, you need to give suggestions about the next
step of reranking from the following reranking nodes
considering the goal: {Available Nodes}
For your response format: {Format Description}

• Fairness Node: This node is designated to meet the fairness
objectives within the final recommendation list at the reranking
phase. In our study, fairness of the recommendation outcomes is
operationalized as the average score disparity across two sample
groups, segregated by a distinct characteristic, and evaluated
using the Mean Absolute Deviation (MAD) metric [51]. Given
that the LLM inherently generates reranking lists rather than
numerical scores, we allocate scores ranging linearly from 1 to 0
to the items in the final recommendation list. These scores are
subsequently utilized to compute the MAD for fairness assess-
ment. For an in-depth methodological exposition, readers are
directed to Section 3.1.3. Figure ?? provides a straightforward
template illustration for the fairness node.

2.3.3 Functional Nodes. Recent research has demonstrated the ef-
ficacy of reflection in optimizing the output of LLMs [16, 31]. To
augment the logical capabilities of LLM4Rerank in the reranking

Algorithm 1 The whole automatic reranking process of
LLM4Rerank
Input: User information 𝒖, Candidate item set 𝑰 𝑟 , the reranking
focus 𝐺𝑜𝑎𝑙 , Maximum node count𝑀𝐶
Output: Final reranking result 𝑰 𝑟𝑒
Note: 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑎) (𝑏) represents the execution of functions in
node 𝑎 with input 𝑏.
1: Initialize current node name 𝐶𝑁 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦; Current

reranking result 𝐶𝑅 = 𝑁𝑜𝑛𝑒; Node count 𝑁𝐶 = 0; Historical
reranking pool 𝑃𝑜𝑜𝑙 = [].

2: while 𝐶𝑁 ≠ 𝑆𝑡𝑜𝑝 do
3: 𝐶𝑁,𝐶𝑅 = 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐶𝑁) (𝒖, 𝑰 𝑟 , 𝐺𝑜𝑎𝑙 , 𝑃𝑜𝑜𝑙)
4: 𝑃𝑜𝑜𝑙 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝐶𝑅)
5: 𝑁𝐶+ = 1
6: if 𝑁𝐶 ≥ 𝑀𝐶 then
7: 𝐶𝑁 = 𝑆𝑡𝑜𝑝
8: end if
9: end while
10: return 𝑃𝑜𝑜𝑙 [−1]

process and introduce specialized functionalities, we have devel-
oped two functional nodes specifically aimed at facilitating reflec-
tion and termination within the reranking sequence.
• Backward Node: This node empowers the LLM to selectively

ignore a reranking outcome deemed suboptimal during the eval-
uation of previous reranking efforts. Within this framework,
LLM4Rerank deletes the latest reranking result from the his-
torical reranking pool and advances to the subsequent node as
dictated by the LLM’s output directives. An illustrative template
example of this node’s operation is provided in Figure ??.

• StopNode: This node governs the termination of the LLM4Rerank
output sequence. When the LLM4Rerank designates this node
as the incoming step, it signifies the conclusion of the complete
reranking process. Subsequently, this node extracts the most
recent reranking outcome from the historical reranking pool,
presenting it as the definitive reranking result.

2.4 Automatic Reranking Process
To leverage the LLM for reranking based on a diverse set of aspect
requirements, we have designed distinct nodes, each addressing
specific aspect criteria. Nonetheless, delineating a predefined path
from one node to another for every reranking task is both inefficient
and challenging to achieve. Thus, to accommodate unique user
preferences and significantly improve personalization, an automatic
reranking process has been developed, which mainly consists of
the following three sub-processes:
• Setting “Goal”: To accommodate personalized requirements

and facilitate LLM4Rerank’s scalability across varied contexts, a
manually entered sentence, referred to as the “Goal,” is incorpo-
rated as one of the preliminary inputs for each reranking process.
As illustrated in Figure 2, the “Goal” indicates the main focus
of a specific reranking process. By interpreting the semantic
connections between the “Goal” and the respective nodes, LLM
is enabled to automatically select the most appropriate nodes for
any given reranking task.

5

Figure 6: Example prompt template of the fairness node.

numerical scores, we allocate scores ranging linearly from 1 to
0 to the items in the final recommendation list. These scores
are subsequently utilized to compute the MAD for fairness as-
sessment. For an in-depth methodological exposition, readers
are directed to Section 3.1.3. Figure 6 provides a straightforward
template illustration for the fairness node.

2.3.3 Functional Nodes. Recent research has demonstrated the ef-
ficacy of reflection in optimizing the output of LLMs [16, 31]. To
augment the logical capabilities of LLM4Rerank in the reranking
process and introduce specialized functionalities, we have devel-
oped two functional nodes specifically aimed at facilitating reflec-
tion and termination within the reranking sequence.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

LLM4Rerank: LLM-based Auto-Reranking Framework for Recommendations KDD ’24, August 25–29, 2024, Barcelona, Spain

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

accuracy node, ensuring a foundational focus on precision from
the outset.

• Diversity Node: This node is specifically designed to address
the diversity criteria for the final recommendation list during
the reranking phase. In this study, we assess the diversity of
the reranking outcomes by evaluating the extent to which a
particular attribute of the items is varied within the final list. We
employ the 𝛼-NDCG metric [8] for this purpose. Consequently,
an illustrative example of the template used in the diversity node
is depicted in Figure ??.

An Example of Fairness Node Template

Considering a user: {User info}
Here’s a list of the candidate movies: {Candidate Set}
Your reranking goal: {Goal}
Your historical reranking: {Historical Reranking Pool}
Now, you need to focus on the fairness aspect (For
itemswith xxx feature value and itemswith xxx feature
value, You should keep the average ranking of the two
categories in the candidates similar) and rerank the
candidates based on the given information, and then
give suggestions about the next step of reranking from
the following reranking nodes considering the goal:
{Available Nodes}
For your response format: {Format Description}

An Example of Backward Node Template

Considering a user: {User info}
Here’s a list of the candidate movies: {Candidate Set}
Your reranking goal: {Goal}
Your historical reranking: {Historical Reranking Pool}
Now, you need to give suggestions about the next
step of reranking from the following reranking nodes
considering the goal: {Available Nodes}
For your response format: {Format Description}

• Fairness Node: This node is designated to meet the fairness
objectives within the final recommendation list at the reranking
phase. In our study, fairness of the recommendation outcomes is
operationalized as the average score disparity across two sample
groups, segregated by a distinct characteristic, and evaluated
using the Mean Absolute Deviation (MAD) metric [51]. Given
that the LLM inherently generates reranking lists rather than
numerical scores, we allocate scores ranging linearly from 1 to 0
to the items in the final recommendation list. These scores are
subsequently utilized to compute the MAD for fairness assess-
ment. For an in-depth methodological exposition, readers are
directed to Section 3.1.3. Figure ?? provides a straightforward
template illustration for the fairness node.

2.3.3 Functional Nodes. Recent research has demonstrated the ef-
ficacy of reflection in optimizing the output of LLMs [16, 31]. To
augment the logical capabilities of LLM4Rerank in the reranking

Algorithm 1 The whole automatic reranking process of
LLM4Rerank
Input: User information 𝒖, Candidate item set 𝑰 𝑟 , the reranking
focus 𝐺𝑜𝑎𝑙 , Maximum node count𝑀𝐶
Output: Final reranking result 𝑰 𝑟𝑒
Note: 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑎) (𝑏) represents the execution of functions in
node 𝑎 with input 𝑏.
1: Initialize current node name 𝐶𝑁 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦; Current

reranking result 𝐶𝑅 = 𝑁𝑜𝑛𝑒; Node count 𝑁𝐶 = 0; Historical
reranking pool 𝑃𝑜𝑜𝑙 = [].

2: while 𝐶𝑁 ≠ 𝑆𝑡𝑜𝑝 do
3: 𝐶𝑁,𝐶𝑅 = 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐶𝑁) (𝒖, 𝑰 𝑟 , 𝐺𝑜𝑎𝑙 , 𝑃𝑜𝑜𝑙)
4: 𝑃𝑜𝑜𝑙 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝐶𝑅)
5: 𝑁𝐶+ = 1
6: if 𝑁𝐶 ≥ 𝑀𝐶 then
7: 𝐶𝑁 = 𝑆𝑡𝑜𝑝
8: end if
9: end while
10: return 𝑃𝑜𝑜𝑙 [−1]

process and introduce specialized functionalities, we have devel-
oped two functional nodes specifically aimed at facilitating reflec-
tion and termination within the reranking sequence.
• Backward Node: This node empowers the LLM to selectively

ignore a reranking outcome deemed suboptimal during the eval-
uation of previous reranking efforts. Within this framework,
LLM4Rerank deletes the latest reranking result from the his-
torical reranking pool and advances to the subsequent node as
dictated by the LLM’s output directives. An illustrative template
example of this node’s operation is provided in Figure ??.

• StopNode: This node governs the termination of the LLM4Rerank
output sequence. When the LLM4Rerank designates this node
as the incoming step, it signifies the conclusion of the complete
reranking process. Subsequently, this node extracts the most
recent reranking outcome from the historical reranking pool,
presenting it as the definitive reranking result.

2.4 Automatic Reranking Process
To leverage the LLM for reranking based on a diverse set of aspect
requirements, we have designed distinct nodes, each addressing
specific aspect criteria. Nonetheless, delineating a predefined path
from one node to another for every reranking task is both inefficient
and challenging to achieve. Thus, to accommodate unique user
preferences and significantly improve personalization, an automatic
reranking process has been developed, which mainly consists of
the following three sub-processes:
• Setting “Goal”: To accommodate personalized requirements

and facilitate LLM4Rerank’s scalability across varied contexts, a
manually entered sentence, referred to as the “Goal,” is incorpo-
rated as one of the preliminary inputs for each reranking process.
As illustrated in Figure 2, the “Goal” indicates the main focus
of a specific reranking process. By interpreting the semantic
connections between the “Goal” and the respective nodes, LLM
is enabled to automatically select the most appropriate nodes for
any given reranking task.

5

Figure 7: Example prompt template of the backward node.

• Backward Node: This node empowers the LLM to selectively
ignore a reranking outcome deemed suboptimal during the eval-
uation of previous reranking efforts. Within this framework,
LLM4Rerank deletes the latest reranking result from the his-
torical reranking pool and advances to the subsequent node as
dictated by the LLM’s output directives. An illustrative template
example of this node’s operation is provided in Figure 7.

5

Figure 6: Example prompt template of the backward node.

• Backward Node: This node empowers the LLM to selectively
ignore a reranking outcome deemed suboptimal during the eval-
uation of previous reranking efforts. Within this framework,

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

LLM4Rerank: LLM-based Auto-Reranking Framework for Recommendations WWW ’25, April 28–May 25, 2018, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

LLM4Rerank deletes the latest reranking result from the his-
torical reranking pool and advances to the subsequent node as
dictated by the LLM’s output directives. An illustrative template
example of this node’s operation is provided in Figure 6.

• StopNode: This node governs the termination of the LLM4Rerank
output sequence. When the LLM4Rerank designates this node
as the incoming step, it signifies the conclusion of the complete
reranking process. Subsequently, this node extracts the most
recent reranking outcome from the historical reranking pool,
presenting it as the definitive reranking result. Note that since
this node only functionally signals the end of reranking and does
not require access to LLM, the prompt template is not required
for this node.

2.4 Automatic Reranking Process
To leverage the LLM for reranking based on a diverse set of aspect
requirements, we have designed distinct nodes, each addressing
specific aspect criteria. Nonetheless, delineating a predefined path
from one node to another for every reranking task is both inefficient
and challenging to achieve. Thus, to accommodate unique user
preferences and significantly improve personalization, an automatic
reranking process has been developed, which mainly consists of
the following three sub-processes:
• Setting “Goal”: To accommodate personalized requirements

and facilitate LLM4Rerank’s scalability across varied contexts, a
manually entered sentence, referred to as the “Goal,” is incorpo-
rated as one of the preliminary inputs for each reranking process.
As illustrated in Figure 2, the “Goal” indicates the main focus
of a specific reranking process. By interpreting the semantic
connections between the “Goal” and the respective nodes, LLM
is enabled to automatically select the most appropriate nodes for
any given reranking task.

• Automatic Transition Across Nodes: For each node, upon re-
ceiving replies from LLM, LLM4Rerank would obtain the current
reranking results, along with an indicator (i.e., the next node
name) for the subsequent node, thereby ensuring a fluid and
automatic transition across nodes as illustrated in Equation (2).

• Conditions to Stop Reranking: To mitigate the risk of pro-
longed inactivity and to address errors stemming from possible
unrecognized semantic inaccuracies in the LLM’s responses, two
termination criteria have been established within the framework.
The first criterion is triggered when the LLM autonomously iden-
tifies the “Stop” node as the subsequent step. The second criterion
activates upon the LLM’s navigation through a predetermined
number of nodes, set by a hyper-parameter, excluding the “Back-
ward” node from this count. Fulfillment of either condition marks
the completion of the reranking process. Subsequently, this node
retrieves and presents the most recent reranking outcome from
the historical reranking pool as the definitive result.
By applying these sub-processes, the whole automatic reranking

process of LLM4Rerank is established. The overall Algorithm is
also provided in Appendix A.

3 Experiments
In this section, we conduct experiments on three widely recognized
industrial datasets to explore the following research questions:

Table 1: Statistics of the used datasets

Dataset Interactions Users Items
ML-1M 1,000,209 6,040 3,883
KuaiRand 102,433 10,494 7,583

Douban-Movie 759,652 2,606 34,893

• RQ1: How does LLM4Rerank compare to established reranking
baselines across accuracy, diversity, and fairness aspects?

• RQ2: Can LLM4Rerank automatically identify and prioritize a
specific blend of aspect requirements for reranking tailored to
individual preferences?

• RQ3: Does LLM4Rerank’s automatic reranking framework offer
clear benefits over a predetermined reranking pathway?

3.1 Experimental Setup
3.1.1 Dataset. We conduct our experiments using three widely
recognized public datasets: ML-1M 2 [13], KuaiRand (KuaiRand-
Pure) 3 [11], and Douban-Movie 4 [42, 43]. For each dataset, we
employ the leave-one-out method [2, 10, 14], a widely adopted
approach in the literature, for dividing the data into training, val-
idation, and testing sets. According to previous studies [19], we
select the Generalized Matrix Factorization (GMF) model as the
global ranking model to generate candidate lists for each user, with
each set comprising 20 items. To ensure equitable comparisons
across deep learning and LLM-based models, we omit features lack-
ing explicit semantic information and exclude users with fewer
than five interactions. For deep learning-based models, we utilize
a standard embedding technique [12, 31] to transform various fea-
tures into vector inputs. Conversely, for LLM-based models, the
semantic information of the feature (e.g., the feature’s name) is
utilized as the input. Table 1 presents the statistics of both datasets
subsequent to preprocessing.

3.1.2 Baseline. In this section, we assess LLM4Rerank’s capability
to address diverse aspect requirements by comparing it with the
following baseline methodologies:
• GMF [14] extends matrix factorization into a non-linear frame-

work, serving as the primary global ranking method in this study.
The GMF results represent recommendations prior to the appli-
cation of any reranking process.

• DLCM [1] enhances reranking efficacy by employing a recur-
rent neural network alongside an attention-based loss function
to comprehend local ranking dynamics, aiming primarily at im-
proving accuracy within recommendation outcomes.

• PRM [24] leverages a transformer architecturewith self-attention
mechanisms to refine the entire recommendation list by acknowl-
edging the inter-item influences, thereby concentrating on aug-
menting accuracy.

• MMR [4] aims to balance query relevance with the reduction
of redundancy in reranked documents, employing a maximal
marginal relevance score to bolster the diversity aspect in rec-
ommendation outcomes.

• FastDPP [6] expedites Determinantal Point Processes (DPP) for
Maximum A Posteriori (MAP) inference, facilitating the efficient

2https://grouplens.org/datasets/movielens/1m/
3https://kuairand.com/
4https://www.kaggle.com/datasets/fengzhujoey/douban-datasetratingreviewside-
information

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’25, April 28–May 25, 2018, Sydney, Australia Anon. Submission Id: 805

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Overall performance comparison. Symbols “-A/D/F” represent different focuses “Accuracy/Diversity/Fairness” when
setting “Goal” in LLM4Rerank. The default LLM backbone is Llama-2-13B. ↑: higher is better; ↓: lower is better.

Model
ML-1M KuaiRand Douban-Movie

HR ↑ NDCG ↑ 𝛼-NDCG ↑ MAD ↓ HR ↑ NDCG ↑ 𝛼-NDCG ↑ MAD ↓ HR ↑ NDCG ↑ 𝛼-NDCG ↑ MAD ↓
GMF 0.4156 0.1853 0.1005 0.0613 0.4417 0.2314 0.1627 0.1588 0.5723 0.3150 0.2516 0.4006
DLCM 0.5781 0.2354 0.1378 0.0549 0.6893 0.3080 0.1767 0.1026 0.6827 0.4102 0.3581 0.2619
PRM 0.6986 0.3246 0.1653 0.0436 0.8083 0.3904 0.1869 0.1032 0.6979 0.4167 0.3477 0.2509
MMR 0.4675 0.2588 0.2104 0.0265 0.4928 0.2606 0.1877 0.1569 0.6538 0.3873 0.3744 0.2539

FastDPP 0.4719 0.2561 0.1942 0.0263 0.5728 0.2913 0.1882 0.0660 0.6635 0.4038 0.3818 0.2820
FairRec 0.4805 0.2007 0.1243 0.0199 0.6083 0.2761 0.1540 0.0318 0.6771 0.4021 0.3119 0.1752
RankGPT 0.5584 0.2587 0.1799 0.0564 0.6583 0.2910 0.1557 0.1256 0.6635 0.3967 0.3448 0.2472

GoT 0.5730 0.2714 0.1942 0.0486 0.7184 0.3198 0.1788 0.1211 0.6827 0.4135 0.3592 0.2195
LLM4Rerank-A 0.7031* 0.3320* 0.2294 0.0434 0.8252* 0.4229* 0.2032 0.1969 0.7041* 0.4301* 0.3806 0.2446
LLM4Rerank-D 0.6875 0.3292 0.2407* 0.0571 0.8058 0.4143 0.2223* 0.0969 0.6701 0.4019 0.3837* 0.2757
LLM4Rerank-F 0.5584 0.2328 0.1411 0.0193* 0.7282 0.3276 0.1825 0.0271* 0.6598 0.3917 0.2970 0.1696*

LLM4Rerank-ADF 0.6364 0.3058 0.2051 0.0250 0.8000 0.4117 0.2163 0.0530 0.6877 0.4105 0.3664 0.1975

production of diverse recommendation sets. This model focuses
on the diversity aspect of the recommendation result.

• FairRec [36] introduces a fairness-aware recommendation frame-
work that employs decomposed adversarial learning and orthogo-
nality regularization. It aims to alleviate bias concerning sensitive
user attributes, thereby fostering fairness in recommendations
without compromising overall performance.

• RankGPT [28] investigates the application of LLMs in rank-
ing tasks within information retrieval, employing a novel in-
structional permutation generation method alongside a sliding
window strategy. This model is distinguished by its focus on ac-
curacy. Note that, as a zero-shot LLM baseline, the permutation
distillation method in the original paper is not implemented.

• GoT [3] proposes a graph-of-thought approach to enhance LLMs’
prompting efficacy by structuring generated content as a graph.
This facilitates synergistic outcomes, thought distillation, and
feedback loop integration, aligning LLM reasoning more closely
with human cognitive processes. Unlike LLM4Rerank, GoT ad-
heres to predetermined node-to-node inference paths without
historical data consideration. By applying a fixed path, “Accuracy-
Diversity-Fairness-Stop.” GoT serves as a zero-shot LLM baseline
focusing on the combination of accuracy, diversity, and fairness
aspects in this paper.

3.1.3 Implementation Details. In the evaluation of the accuracy
aspect, we adopt widely recognized metrics: Hit Ratio (HR) and
Normalized Discounted Cumulative Gain (NDCG). For assessing the
diversity aspect, we apply the commonly used metric 𝛼-NDCG. To
evaluate fairness, we use the Mean Absolute Difference (MAD) [44].
The MAD calculation is formalized as:

𝑀𝐴𝐷 =

�����∑𝑅 (0)��𝑅 (0) �� −
∑
𝑅 (1)��𝑅 (1) ��

����� , (4)

where 𝑅 (0) and 𝑅 (1) represent the predicted ratings for two distinct
groups, and

���𝑅 (𝑖) ��� denotes the total number of ratings for group
𝑖 . Within the ML-1M dataset, we utilize the “genre” feature for
diversity analysis and the “year” feature for fairness assessment,
categorizing films into two groups based on their release year: pre-
1996 and post-1996 [16, 44]. For the KuaiRand dataset, “upload_type”
serves as the criterion for diversity, while “video_duration”-divided
into less than 60,000 ms and greater than 60,000 ms-serves for

fairness evaluation. To fine-tune deep learning-based models for
optimal performance, we set the learning rate at 0.001 and engage in
a grid search to determine the best hyper-parameters. For zero-shot
LLM baselines and LLM4Rerank, Llama-2-13B [29] is selected as the
default LLM backbone. The LLM4Rerank’s reference code is made
available for replication purposes 1. In addition, we also provide
hyper-parameter analysis, inference analysis, and reproduction
guideline in the Appendix B, C, D, and E.

3.2 Overall Performance (RQ1)
This section presents a comprehensive performance comparison of
LLM4Rerank against various baselines, as detailed in Table 2. The
comparative analysis reveals that:

• DLCM and PRM achieve acceptable performance in terms of
accuracy, as indicated byHR andNDCGmetrics. PRM, leveraging
a transformer architecture for user-item relevance evaluation,
surpasses DLCM in accuracy.

• MMR and FastDPP demonstrate effectiveness in enhancing diver-
sity, as quantified by the 𝛼-NDCG metric. These models excel in
diversifying user reranking lists by emphasizing item similarity
and list-wide diversity.

• FairRec exhibits strong performance in promoting fairness, mea-
sured using the MAD metric. Through the integration of de-
composed adversarial learning and orthogonality regularization
techniques, FairRec ensures more equitable recommendations
across different user groups.

• RankGPT shows commendable performance, underscoring the
capability of zero-shot LLMs in reranking tasks. Conversely,
GoT, employing a Chain-of-Thought approach, yields superior
outcomes by facilitating a sequential analysis of multiple aspects.

• LLM4Rerank, through personalized “Goal” setting and an auto-
matic reranking process, significantly surpasses baselines, vali-
dating its comprehensive efficacy. LLM4Rerank adeptly merges
various aspect requirements for reranking, illustrating its versa-
tility. While LLM4Rerank-ADF may not lead in any single aspect,
its overall balanced performance across all dimensions confirms
the advantage of integrating LLMs with an automatic reranking
framework. This approach effectively harmonizes different as-
pect demands via semantic comprehension, delivering optimized
results across accuracy, diversity, and fairness.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

LLM4Rerank: LLM-based Auto-Reranking Framework for Recommendations WWW ’25, April 28–May 25, 2018, Sydney, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Aspect Combination Analysis. “Node Used” indicates the average utilization of Accuracy (Acc), Diversity (Div), and
Fairness (Fair) nodes. “Fav Path/Prop” represent the most used path/proportion. “Ave Length” is the average reasoning length.
“Max Stop Prop” is the proportion of paths that reach the maximum node count𝑀𝐶.

Model
ML-1M Node Used Path Used

𝛼-NDCG ↑ MAD ↓ Acc Div Fair Fav Path Fav Prop Ave Length Max Stop Prop
DF 0.2110 0.0255 21% 47% 32% A-D-F 12% 3.13 21%
D-F 0.2337 0.0416 20% 59% 21% A-D-D-F 19% 3.31 9%
F-D 0.1456 0.0242 21% 27% 52% A-F-D-F 18% 3.39 11%

Table 4: Ablation Study of LLM4Rerank

Model HR NDCG 𝛼-NDCG MAD
LLM4Rerank-A 0.7031 0.3320 0.2294 0.0434
LLM4Rerank-H 0.6410 0.3142 0.2275 0.0496
LLM4Rerank-AR 0.6413 0.3191 0.2200 0.0464
LLM4Rerank-N 0.6533 0.3079 0.2141 0.0515

3.3 Aspect Combination Analysis (RQ2)
In this section, we delve into experiments designed to assesswhether
LLM4Rerank can automatically tailor its reranking strategy to incor-
porate a specific blend of aspect requirements, guided by different
user-defined “Goal”. Our investigation on the ML-1M dataset en-
compasses tests with LLM4Rerank under varied “Goals” reflecting
distinct prioritizations on the diversity and fairness aspects:
• DF: Assign equal importance to diversity and fairness aspects.
• D-F: Prioritize diversity, with subsequent emphasis on fairness.
• F-D: Prioritize fairness, with subsequent emphasis on diversity.

In this experiment, the maximum node count𝑀𝐶 is set to 5. The
outcomes, presented in Table 3, indicate that LLM4Rerank profi-
ciently adjusts its reranking paths based on different “Goals”, facili-
tating a dynamic, weighted integration of aspect requirements. This
capability significantly bolsters the personalization of the reranking
process. It is noteworthy that the “Accuracy” node is consistently
involved across all reranking outcomes, underscoring that every
reranking sequence commences with the accuracy node. This initial
step ensures the foundational accuracy in user-item matching is
maintained. Moreover, it is noted that in the LLM’s favorite path for
different “Goals”, the prioritized aspects dominate, indicating that
LLM4Rerank framework can drive the LLM to think and capture
the importance relation of aspects in “Goals”, and influence the
reasoning focus of the LLM. Additionally, it can be noted that there
are few inference paths that end because the inference node reaches
its maximum value. This shows that in the current setting with 3
different aspect nodes, 3-4 thinking steps are enough for the LLM
to give the result naturally.

3.4 Ablation Study (RQ3)
In this section, we undertake ablation studies on the ML-1M dataset
to elucidate the impact of LLM4Rerank’s various components on
overall performance. The experiments aim to dissect the model’s
architecture by systematically removing certain features, thereby
highlighting their individual contributions. We focus on the “Ac-
curacy” aspect as a case study and align our investigation with a
specific “Goal”: Pay attention to the accuracy aspects. The following
variants of LLM4Rerank are considered for comparison:
• LLM4Rerank-A: As detailed in Table 2, including all sub-structures

and focusing on the accuracy aspect.

• w/o historical reranking pool (-H): Exclude the historical
reranking pool, removing the capability to reference previous
reranking outcomes.

• w/o automatic reranking (-AR): Adopting a static reranking
path of ’Accuracy-Accuracy-Stop’.

• w/o other aspect nodes (-N): Omit all nodes except for “Accu-
racy” and “Stop” nodes.

The findings from Table 4, allow us to draw several conclusions:
• The absence of the historical reranking pool (LLM4Rerank-H)

leads to a marked decline in performance, underscoring the im-
portance of a holistic view in sequential decision-making. This
feature enables LLM4Rerank to recall and evaluate previous
choices, enhancing the model’s strategic depth.

• The removal of the automatic reranking process (LLM4Rerank-
AR) results in a significant performance drop, validating the
utility of adaptive pathways in addressing diverse aspect require-
ments. The automatic reranking mechanism allows LLM4Rerank
to dynamically determine subsequent steps based on the entirety
of current information, thus optimizing the reranking sequence.

• Eliminating other aspects and functional nodes (LLM4Rerank-
N) also precipitates a notable decrease in performance. This
highlights the value of a comprehensive review mechanism, as
facilitated by the “Backward” node, in mimicking human-like
decision-making processes. Meanwhile, in comparison with -
AR, the LLM can still decide how many times it can access this
node before ending the reranking process. The performance
improvement verifies that LLM4Rerank can still benefit from
dynamic node visit times, even if LLM4Rerank only has a single
aspect node.
These results illuminate the critical roles played by LLM4Rerank’s

substructures in augmenting reranking performance, particularly
in tailoring the process to specific aspect focuses. The study under-
scores the model’s sophisticated architecture, designed to flexibly
integrate and balance various reranking criteria.

3.5 Case Study
In this section, we present a concrete case study to further illustrate
how the LLM4Rerank framework works and whether it can really
balance different aspects of reranking as shown in Figure 7. In this
figure, we report the two most common paths for LLM4Rerank un-
der the different “Goals”: The first one (A-D-F) considers accuracy,
diversity, and fairness simultaneously; The second one (A-A-B-D)
focuses more on the accuracy aspect, followed by the diversity
aspect. The evaluation is based on the average result on the specific
path. As shown from the first path, according to the guidance of the
“Goal”, LLM4Rerank passes through the “Accuracy”, “Diversity”, and
“Fairness” nodes, respectively, and then ends reranking. After the

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’25, April 28–May 25, 2018, Sydney, Australia Anon. Submission Id: 805

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Accuracy

HR: 0.5799
NDCG: 0.2409

α-NDCG: 0.1413
MAD: 0.0609

Diversity

HR: 0.6301
NDCG: 0.3121

α-NDCG: 0.2049
MAD: 0.0536

Accuracy

HR: 0.6771
NDCG: 0.3067

α-NDCG: 0.1411
MAD: 0.0754

Accuracy

HR: 0.5799
NDCG: 0.2409

α-NDCG: 0.1413
MAD: 0.0609

Fairness

HR: 0.6276
NDCG: 0.3071

α-NDCG: 0.1995
MAD: 0.0268

Backward

HR: 0.5799
NDCG: 0.2409

α-NDCG: 0.1413
MAD: 0.0609

Diversity

HR: 0.6704
NDCG: 0.2911

α-NDCG: 0.1968
MAD: 0.0619

Ranking Result

HR: 0.4103
NDCG: 0.1846

α-NDCG: 0.1006
MAD: 0.0597

Ranking Result

Goal: Focus on accuracy,
diversity, fairness, three

equally important aspects

Goal: Mainly focus on
accuracy, followed by

diversity

Reranking
Start

A-D-F

A-A-B-D

End

End

Figure 7: Case study of LLM4Rerank on ML-1M dataset. The figure shows the most common paths for LLM4Rerank under the
two “Goals”. The evaluation is based on the average result on the specific path.

step of diversity reranking, not only the “𝛼-NDCG” metric becomes
higher, but also the “HR” and “NDCG” metrics. This may be because
in the experiment, LLM can synthesize the current reranking con-
sidering not only the current aspect but also the historical reranking
results. In addition, the positive relation between “𝛼-NDCG” and
the “NDCG” metrics may also influence both aspect results when
considering them together. From the second path, it can be seen
that the addition of functional nodes such as “Backward” helps LLM
to think more systematically. When it senses that there is almost
no change in the diversity aspect after continuous access to the
“Accuracy” node, it considers returning to the previous step and
setting the next step as the diversity node.

4 Related Work
This section offers a review of the current methods of reranking
strategies in recommendations.

4.1 Reranking in Recommendations
Reranking emerges as a critical post-processing strategy within
recommender systems by introducing supplementary criteria to
optimize the initial sequence of candidates. For example, the Deep
Listwise Context Model (DLCM) [1] employs a recurrent neural
network to sequentially process candidate items, thereby accruing
contextual insights. Similarly, the Personalized Re-ranking Model
(PRM) [24] utilizes the Transformer architecture [30] for encoding,
enabling the modeling of extensive inter-item relationships.

Furthermore, the reranking phase is instrumental in addressing
varied aspectual requirements, such as diversity [10, 39] and fair-
ness [26, 38]. These aspects are increasingly recognized for their
pivotal role in enriching user experience and ensuring that recom-
mendations are congruent with overarching business objectives.
For instance, the Maximal Marginal Relevance (MMR) [4] model
formulates a reranking schema emphasizing diversity by balancing
document-query similarity against inter-document similarity. Con-
versely, FastDPP [6] innovates with an efficient greedy Maximum A
Posteriori (MAP) inference for Determinantal Point Processes (DPP),
facilitating the generation of both relevant and diverse recommen-
dation sets. Additionally, FairRec [36] pioneers a fairness-focused

recommendation framework employing decomposed adversarial
learning and orthogonality regularization to mitigate biases and
promote equity in the reranking process. Moreover, recent advance-
ments in LLMs indicate that LLM excels in reranking tasks with
shorter contexts [18, 22, 28, 37] than in tasks with longer contexts.
This discovery makes it possible to use LLM for better and more per-
sonalized reranking. For instance, DQ-LoRe [37] uses dual queries
for exemplar selection in prompting, RankGPT [28] employs a
sliding window for ranking with long context, and the Graph of
Thoughts [3] framework improves reranking outcomes with a fixed
graph [33, 35] which allows for a complicated step-to-step data
processing approach.

However, existing research typically focuses on one aspect, “Ac-
curacy”, and occasionally includes one more aspect, such as “Di-
versity”. They overlook the need to integrate multiple aspects of
different applications. In contrast, LLM4Rerank employs a function
graph for automatic reranking, offering scalability and personal-
ization in combining various aspects to suit different situations.
Further discussions about future developments are also provided
in Appendix F.

5 Conclusion
In this paper, we introduce an LLM-based automatic reranking
framework designed to enhance recommender systems through
auto-reranking. Central to our approach is the development of a
generic node structure, which serves to represent various aspect
requirements and functions as distinct nodes within the system.
This structure facilitates the construction of a function graph that
orchestrates the automatic reranking process, complemented by
a historical reranking pool that enables retrospective analysis of
reranking decisions. Additionally, a “Goal” sentence is utilized to
direct the integration of different nodes, ensuring that the frame-
work can dynamically amalgamate multiple aspect requirements.
This design allows LLM4Rerank to deliver superior performance,
scalability, and personalization in the reranking process. Experi-
mental validation on three widely recognized industrial datasets
underscores the efficacy of the proposed LLM4Rerank framework.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

LLM4Rerank: LLM-based Auto-Reranking Framework for Recommendations WWW ’25, April 28–May 25, 2018, Sydney, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Qingyao Ai, Keping Bi, Jiafeng Guo, and W Bruce Croft. 2018. Learning a deep

listwise context model for ranking refinement. In The 41st international ACM
SIGIR conference on research & development in information retrieval. 135–144.

[2] Immanuel Bayer, Xiangnan He, Bhargav Kanagal, and Steffen Rendle. 2017. A
generic coordinate descent framework for learning from implicit feedback. In
Proceedings of the 26th international conference on world wide web. 1341–1350.

[3] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr
Nyczyk, et al. 2023. Graph of thoughts: Solving elaborate problems with large
language models. arXiv preprint arXiv:2308.09687 (2023).

[4] Jaime Carbonell and Jade Goldstein. 1998. The use of MMR, diversity-based
reranking for reordering documents and producing summaries. In Proceedings of
the 21st annual international ACM SIGIR conference on Research and development
in information retrieval. 335–336.

[5] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Kaijie Zhu, Hao Chen, Linyi
Yang, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. 2023. A survey on
evaluation of large language models. arXiv preprint arXiv:2307.03109 (2023).

[6] Laming Chen, Guoxin Zhang, and Eric Zhou. 2018. Fast greedy map inference
for determinantal point process to improve recommendation diversity. Advances
in Neural Information Processing Systems 31 (2018).

[7] Charles LA Clarke, Maheedhar Kolla, Gordon V Cormack, Olga Vechtomova,
Azin Ashkan, Stefan Büttcher, and Ian MacKinnon. 2008. Novelty and diversity
in information retrieval evaluation. In Proceedings of the 31st annual international
ACM SIGIR conference on Research and development in information retrieval. 659–
666.

[8] Wenqi Fan, Xiangyu Zhao, Lin Wang, Xiao Chen, Jingtong Gao, Qidong Liu,
and Shijie Wang. 2023. Trustworthy Recommender Systems: Foundations and
Frontiers. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. 5796–5797.

[9] Luciano Floridi and Massimo Chiriatti. 2020. GPT-3: Its nature, scope, limits, and
consequences. Minds and Machines 30 (2020), 681–694.

[10] Lu Gan, Diana Nurbakova, Léa Laporte, and Sylvie Calabretto. 2021. EMDKG:
Improving Accuracy-Diversity Trade-Off in Recommendation with EM-based
Model and Knowledge Graph Embedding. In IEEE/WIC/ACM International Con-
ference on Web Intelligence and Intelligent Agent Technology. 17–24.

[11] Chongming Gao, Shijun Li, Yuan Zhang, Jiawei Chen, Biao Li, Wenqiang Lei,
Peng Jiang, and Xiangnan He. 2022. KuaiRand: An Unbiased Sequential Recom-
mendation Dataset with Randomly Exposed Videos. In Proceedings of the 31st
ACM International Conference on Information and Knowledge Management (At-
lanta, GA, USA) (CIKM ’22). 3953–3957. https://doi.org/10.1145/3511808.3557624

[12] Huifeng Guo, Bo Chen, Ruiming Tang, Weinan Zhang, Zhenguo Li, and Xiuqiang
He. 2021. An embedding learning framework for numerical features in ctr
prediction. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. 2910–2918.

[13] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1–19.

[14] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[15] Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale Fung.
2023. Towards mitigating LLM hallucination via self reflection. In Findings of the
Association for Computational Linguistics: EMNLP 2023. 1827–1843.

[16] Toshihiro Kamishima and Shotaro Akaho. 2017. Considerations on recommen-
dation independence for a find-good-items task. (2017).

[17] Jan Kocoń, Igor Cichecki, Oliwier Kaszyca, Mateusz Kochanek, Dominika Szydło,
Joanna Baran, Julita Bielaniewicz, Marcin Gruza, Arkadiusz Janz, Kamil Kanclerz,
et al. 2023. ChatGPT: Jack of all trades, master of none. Information Fusion (2023),
101861.

[18] Jianghao Lin, Xinyi Dai, Yunjia Xi, Weiwen Liu, Bo Chen, Xiangyang Li, Chenxu
Zhu, Huifeng Guo, Yong Yu, Ruiming Tang, et al. 2023. How Can Recom-
mender Systems Benefit from Large Language Models: A Survey. arXiv preprint
arXiv:2306.05817 (2023).

[19] Zhuoyi Lin, Sheng Zang, Rundong Wang, Zhu Sun, J Senthilnath, Chi Xu, and
Chee Keong Kwoh. 2022. Attention over self-attention: Intention-aware re-
ranking with dynamic transformer encoders for recommendation. IEEE Transac-
tions on Knowledge and Data Engineering (2022).

[20] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,
Fabio Petroni, and Percy Liang. 2023. Lost in the middle: How language models
use long contexts. arXiv preprint arXiv:2307.03172 (2023).

[21] Weiwen Liu, Yunjia Xi, Jiarui Qin, Fei Sun, Bo Chen, Weinan Zhang, Rui Zhang,
and Ruiming Tang. 2022. Neural re-ranking in multi-stage recommender systems:
A review. arXiv preprint arXiv:2202.06602 (2022).

[22] Yubo Ma, Yixin Cao, YongChing Hong, and Aixin Sun. 2023. Large language
model is not a good few-shot information extractor, but a good reranker for hard
samples! arXiv preprint arXiv:2303.08559 (2023).

[23] Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu
Nguyen, Oscar Sainz, Eneko Agirre, Ilana Heintz, and Dan Roth. 2023. Recent
advances in natural language processing via large pre-trained language models:
A survey. Comput. Surveys 56, 2 (2023), 1–40.

[24] Changhua Pei, Yi Zhang, Yongfeng Zhang, Fei Sun, Xiao Lin, Hanxiao Sun, Jian
Wu, Peng Jiang, Junfeng Ge, Wenwu Ou, et al. 2019. Personalized re-ranking
for recommendation. In Proceedings of the 13th ACM conference on recommender
systems. 3–11.

[25] Evaggelia Pitoura, Kostas Stefanidis, and Georgia Koutrika. 2022. Fairness in
rankings and recommendations: an overview. The VLDB Journal (2022), 1–28.

[26] Amifa Raj and Michael D Ekstrand. 2022. Measuring fairness in ranked results:
An analytical and empirical comparison. In Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
726–736.

[27] Noah Shinn, Beck Labash, and Ashwin Gopinath. 2023. Reflexion: an autonomous
agent with dynamic memory and self-reflection. arXiv preprint arXiv:2303.11366
(2023).

[28] Weiwei Sun, Lingyong Yan, Xinyu Ma, Pengjie Ren, Dawei Yin, and Zhaochun
Ren. 2023. Is ChatGPT Good at Search? Investigating Large Language Models as
Re-Ranking Agent. arXiv preprint arXiv:2304.09542 (2023).

[29] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[31] Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong,
and Ed Chi. 2021. Dcn v2: Improved deep & cross network and practical lessons
for web-scale learning to rank systems. In Proceedings of the web conference 2021.
1785–1797.

[32] Shoujin Wang, Xiuzhen Zhang, Yan Wang, and Francesco Ricci. 2022. Trust-
worthy recommender systems. ACM Transactions on Intelligent Systems and
Technology (2022).

[33] Xuezhi Wang, JasonWei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang,
Aakanksha Chowdhery, and Denny Zhou. 2022. Self-Consistency Improves
Chain of Thought Reasoning in Language Models. In The Eleventh International
Conference on Learning Representations.

[34] Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xingshan Zeng, Wenyong
Huang, Lifeng Shang, Xin Jiang, and Qun Liu. 2023. Aligning large language
models with human: A survey. arXiv preprint arXiv:2307.12966 (2023).

[35] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reason-
ing in large language models. Advances in Neural Information Processing Systems
35 (2022), 24824–24837.

[36] Chuhan Wu, Fangzhao Wu, Xiting Wang, Yongfeng Huang, and Xing Xie. 2021.
Fairness-aware news recommendation with decomposed adversarial learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 4462–4469.

[37] Jing Xiong, Zixuan Li, Chuanyang Zheng, Zhijiang Guo, Yichun Yin, Enze Xie,
Zhicheng Yang, Qingxing Cao, HaimingWang, Xiongwei Han, et al. 2023. Dq-lore:
Dual queries with low rank approximation re-ranking for in-context learning.
arXiv preprint arXiv:2310.02954 (2023).

[38] Himank Yadav, Zhengxiao Du, and Thorsten Joachims. 2021. Policy-gradient
training of fair and unbiased ranking functions. In Proceedings of the 44th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval. 1044–1053.

[39] Le Yan, Zhen Qin, Rama Kumar Pasumarthi, Xuanhui Wang, and Michael Bender-
sky. 2021. Diversification-aware learning to rank using distributed representation.
In Proceedings of the Web Conference 2021. 127–136.

[40] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao,
and Karthik Narasimhan. 2023. Tree of thoughts: Deliberate problem solving
with large language models. arXiv preprint arXiv:2305.10601 (2023).

[41] Meike Zehlike, Francesco Bonchi, Carlos Castillo, Sara Hajian, Mohamed Mega-
hed, and Ricardo Baeza-Yates. 2017. Fa* ir: A fair top-k ranking algorithm.
In Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management. 1569–1578.

[42] Feng Zhu, Chaochao Chen, Yan Wang, Guanfeng Liu, and Xiaolin Zheng. 2019.
DTCDR: A framework for dual-target cross-domain recommendation. In Pro-
ceedings of the 28th ACM International Conference on Information and Knowledge
Management. 1533–1542.

[43] Feng Zhu, Yan Wang, Chaochao Chen, Guanfeng Liu, and Xiaolin Zheng. 2020.
A Graphical and Attentional Framework for Dual-Target Cross-Domain Recom-
mendation. In Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI 2020. 3001–3008.

[44] Ziwei Zhu, Xia Hu, and James Caverlee. 2018. Fairness-aware tensor-based
recommendation. In Proceedings of the 27th ACM international conference on
information and knowledge management. 1153–1162.

9

https://doi.org/10.1145/3511808.3557624

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’25, April 28–May 25, 2018, Sydney, Australia Anon. Submission Id: 805

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Algorithm 1 The whole automatic reranking process of
LLM4Rerank
Input: User information 𝒖, Candidate item list 𝑰 𝑟 , the reranking
focus 𝐺𝑜𝑎𝑙 , Maximum node count𝑀𝐶
Output: Final reranking result 𝑰 𝑟𝑒
Note: 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑎) (𝑏) represents the execution of functions in
node 𝑎 with input 𝑏.
1: Initialize current node name 𝐶𝑁 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦; Current

reranking result 𝐶𝑅 = 𝑁𝑜𝑛𝑒; Node count 𝑁𝐶 = 0; Historical
reranking pool 𝑃𝑜𝑜𝑙 = [].

2: while 𝐶𝑁 ≠ 𝑆𝑡𝑜𝑝 do
3: 𝐶𝑁,𝐶𝑅 = 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐶𝑁) (𝒖, 𝑰 𝑟 , 𝐺𝑜𝑎𝑙 , 𝑃𝑜𝑜𝑙)
4: 𝑃𝑜𝑜𝑙 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝐶𝑅)
5: 𝑁𝐶+ = 1
6: if 𝑁𝐶 ≥ 𝑀𝐶 then
7: 𝐶𝑁 = 𝑆𝑡𝑜𝑝
8: end if
9: end while
10: return 𝑃𝑜𝑜𝑙 [−1]

A Overall Algorithm of LLM4Rerank
In this section, we present the pseudo-code for the LLM4Rerank
algorithm, as detailed in Algorithm 1. The entire reranking process
is executed automatically by the LLM4Rerank framework, leverag-
ing the capabilities of LLM. Critical actions, such as summarizing
the current step information and determining the next access node
(line 3), are assessed and executed autonomously by the LLM. The
process continues until the LLM identifies the stop node as the
subsequent node, or the total number of node visits reaches the
specified threshold (line 7). This framework enables the LLM to en-
gage in iterative, multi-step reasoning in a Chain-of-Thought (CoT)
manner, ultimately balancing various aspects to deliver optimal
reranking results.

B Hyper-parameter Analysis
Recent studies have illuminated the challenges LLMs face in com-
prehensively processing long contexts laden with dense informa-
tion [20]. As the number of candidate items in a ranking sequence
increases, so does the volume of semantic information, potentially
overwhelming LLMs. This could explain the diminished efficacy
observed when zero-shot LLMs are directly implemented in recom-
mender systems that catalog millions of items. In light of this, in
this section, we explore the impact of the hyper-parameter “can-
didate item number”, initially fixed at 20, on the reranking perfor-
mance within the ML-1M dataset, as demonstrated in Figure 8 with
LLM4Rerank-ADF.

The findings indicate a degradation in LLM4Rerank’s perfor-
mance across various aspects as the “candidate item number” esca-
lates. This outcome not only underscores the current limitations of
LLMs in parsing long contexts but also reinforces their aptitude for
tasks with fewer items and more concise contextual information,
such as reranking, over direct application in extensive recommen-
dation or ranking frameworks. This is attributed to reranking’s
focus on reordering items based on detailed attributes. Concur-
rently, there are fewer candidates in the reranking phase following

20 25 30 35 40 45 50
Candidate Num

0.40

0.45

0.50

0.55

0.60

HR

(a) HR

20 25 30 35 40 45 50
Candidate Num

0.18

0.20

0.22

0.24

ND
CG

(b) NDCG

20 25 30 35 40 45
Candidate Num

0.10

0.13

0.16

-N
DC

G

(c) 𝛼-NDCG

20 25 30 35 40 45
Candidate Num

0.035

0.045

0.055

M
AD

(d) MAD

Figure 8: Hyper-parameter analysis of the “candidate item
number” with LLM4Rerank-ADF on ML-1M dataset.

Table 5: Inference Analysis

Model RAM Time per sample
RankGPT 14.5GB 12.74s

GoT 14.5GB 36.81s
LLM4Rerank 14.5GB 14.12s

the initial coarse sorting performed during the ranking phase. By
constraining the number of items and focusing on rich semantic
content within a single request, LLM4Rerank effectively narrows
the semantic chasm across different aspect requirements, thus deliv-
ering more coherent reranking outcomes that enhance the overall
recommendation quality.

C Inference Analysis
Table 5 shows the inference performance of LLM4Rerank compared
to other LLM-based models on ML-1M under one of our exper-
iment environments using Llama 2-13B (INT8). Note that since
the LLM backbone is replaceable, the inference data provided is
only for comparative analysis. As shown in the table, all three
models have similar RAM because they use the same LLM back-
bone and handle only one request at a time. About inference time,
LLM4Rerank is slightly more time-consuming than RankGPT be-
cause it passes through multiple nodes and requires multiple visits
to the LLM, while RankGPT requires only one visit. GoT is the
most time-consuming model because it not only accesses multi-
ple nodes but also needs to give multiple sets of answers after
each visit to the LLM and aggregate the best results. Moreover,
although LLM4Rerank takes a slightly longer inference time than
RankGPT, it performs better than RankGPT in all three areas, as
mentioned in Table 2 of the main paper. This proves the effective-
ness of LLM4Rerank facing multiple aspects.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

LLM4Rerank: LLM-based Auto-Reranking Framework for Recommendations WWW ’25, April 28–May 25, 2018, Sydney, Australia

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

D Guidelines for Reproduction

Table 6: Used feature fields for ML-1M and KuaiRand

Dataset Feature Fields
ML-1M [’user_id’, ’gender’, ’age’, ’occupation’,

’zip’, ’item_id’, ’title’, ’genre’, ’year’]
KuaiRand [’user_id’, ’user_active_degree’, ’is_lowactive_period’,

’is_live_streamer’, ’is_video_author’,
’follow_user_num_range’, ’fans_user_num_range’,
’friend_user_num_range’, ’register_days_range’,
’item_id’, ’video_type’, ’upload_type’,
’visible_status’, ’server_width’, ’server_height’,
’music_type’, ’author_id’, ’music_id’, ’video_duration’]

Douban-Movie [’user_id’, ’item_id’, ’living_place’,
’director’, ’country’, ’language’, ’CategoryID’]

To facilitate the reproducibility of LLM4Rerank, the source code
for reference has been made publicly accessible 1. Our experimental
setup was standardized using the NVIDIA GeForce RTX 3060 GPU
to ensure consistent computational conditions for our results. It
is crucial to emphasize that the hyper-parameters included in the
code serve merely as references. The optimal hyper-parameters
were identified through an exhaustive grid search process, which is
elaborated upon in Section 3.1.3. Furthermore, due to variations in
hardware configurations, slight discrepancies in results may occur
across different devices, even with identical pseudo-random seed
settings, attributed to differences in floating-point computation
handling.

In this research, we utilized the ML-1M, KuaiRand and Douban-
Movie datasets, upon which a feature selection process was applied
to ensure straightforward and equitable comparisons across base-
line models. For theML-1M dataset, in order to facilitate evaluations
of diversity and fairness, the “genre” feature was selected to serve
as the classification basis for diversity evaluation (𝛼-NDCG). Addi-
tionally, a “year” feature was extracted to serve as the criterion for
fairness evaluation (MAD). In the case of the KuaiRand dataset, to
align the inputs for deep learning and LLM-based models as closely
as possible, only features with clear semantic significance were
selected. The “upload_type” feature was selected to serve as the
classification basis for diversity evaluation. The “video_duration”
feature was categorized into “short” (less than 60,000 ms) and “long”
(more than 60,000 ms) to assess fairness. For Douban-Movie, the
“CategoryID” feature was selected to serve as the classification basis
for diversity evaluation, and the “language” feature for fairness
evaluation. The specific feature fields utilized in both datasets are
detailed in Table 6.

E Guidelines on adding new nodes
As illustrated in Section 2.3 in the main paper, LLM4Rerank has
strong scalability and can easily support the addition of new nodes
and do reranking based on different aspects and functions. In this
section, we will provide a basic guide to adding nodes.

All of LLM4Rerank’s nodes are similar to Figure 2 (b) of the main
paper, with multiple structured inputs and two outputs. The inputs
contain the user information, the candidate list, the personalized
sentence “Goal", and the historical reranking pool (if available). The
outputs contain a reranking result, which could be an item ID list

Figure 9: Example prompt template of the novelty node.

and an indicator for the subsequent node. In this paper, the indicator
is set to be the next node’s name. Therefore, to implement new
nodes, you should first follow the existing node functions to create
a new node function with similar inputs and outputs. Then, a node
template should be applied in this function to convert the inputs and
the aspect requirements you need into text form. As an example,
if you want to consider the “Novelty” aspect in reranking. The
simplified template could be as Figure 9. Once you have converted
all the information to text using the node template, you can access
the LLM through the function and get a reply. After getting the
reply, the node function should process the output through the
LLM into two parts, one part is the next node’s indicator (node
name) of the next node, and the other is the current reranking
result. At this point, the node function needs to save the current
reranking result to the “historical reranking pool" and then proceed
to the next node function according to the obtained next node’s
indicator. In practical applications, in order to better improve LLM
output performance. The node prompt can be manually refined
according to the aspect characteristics, the realistic significance of
the evaluation indicators, and the important relevant features.

F Future Directions
In this paper, although LLM4Rerank has showcased the potential of
leveraging LLMs for considering multiple aspects in comprehensive
reranking, it is currently not superior to traditional models regard-
ing reasoning speed. This limitation stems from the efficiency of
the LLM itself rather than the reranking framework as illustrated
in Table 5. We remain optimistic that advancements in LLM-related
technologies, such as model compression, distillation algorithms,
and hardware enhancements, will soon address this issue. Conse-
quently, our future endeavors will focus on enhancing the efficiency
of LLM4Rerankwhile maintaining performance through techniques
like compression and distillation. Moreover, as highlighted in Ap-
pendix B, current LLMs face challenges in parsing lengthy contexts.
To address this, we plan to augment the framework’s capability
to comprehend extensive text, employing strategies like enhanced
Chain-of-Thought (CoT) methods [33] to broaden its applicability.

11

	Abstract
	1 Introduction
	2 Framework
	2.1 Problem Formulation
	2.2 LLM4Rerank Overview
	2.3 Nodes Construction
	2.4 Automatic Reranking Process

	3 Experiments
	3.1 Experimental Setup
	3.2 Overall Performance (RQ1)
	3.3 Aspect Combination Analysis (RQ2)
	3.4 Ablation Study (RQ3)
	3.5 Case Study

	4 Related Work
	4.1 Reranking in Recommendations

	5 Conclusion
	References
	A Overall Algorithm of LLM4Rerank
	B Hyper-parameter Analysis
	C Inference Analysis
	D Guidelines for Reproduction
	E Guidelines on adding new nodes
	F Future Directions

